Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8927-2025
https://doi.org/10.5194/gmd-18-8927-2025
Development and technical paper
 | 
24 Nov 2025
Development and technical paper |  | 24 Nov 2025

Development of the global maize yield model MATCRO-Maize version 1.0

Marin Nagata, Astrid Yusara, Tomomichi Kato, and Yuji Masutomi

Related authors

Developing an eco-physiological process-based model of soybean growth and yield (MATCRO-Soy v.1): model calibration and evaluation
Astrid Yusara, Tomomichi Kato, Elizabeth A. Ainsworth, Rafael Battisti, Etsushi Kumagai, Satoshi Nakano, Yushan Wu, Yutaka Tsutsumi-Morita, Kazuhiko Kobayashi, and Yuji Masutomi
Geosci. Model Dev., 18, 8801–8826, https://doi.org/10.5194/gmd-18-8801-2025,https://doi.org/10.5194/gmd-18-8801-2025, 2025
Short summary
The JapanFlux2024 dataset for eddy covariance observations covering Japan and East Asia from 1990 to 2023
Masahito Ueyama, Yuta Takao, Hiromi Yazawa, Makiko Tanaka, Hironori Yabuki, Tomo'omi Kumagai, Hiroki Iwata, Md. Abdul Awal, Mingyuan Du, Yoshinobu Harazono, Yoshiaki Hata, Takashi Hirano, Tsutom Hiura, Reiko Ide, Sachinobu Ishida, Mamoru Ishikawa, Kenzo Kitamura, Yuji Kominami, Shujiro Komiya, Ayumi Kotani, Yuta Inoue, Takashi Machimura, Kazuho Matsumoto, Yojiro Matsuura, Yasuko Mizoguchi, Shohei Murayama, Hirohiko Nagano, Taro Nakai, Tatsuro Nakaji, Ko Nakaya, Shinjiro Ohkubo, Takeshi Ohta, Keisuke Ono, Taku M. Saitoh, Ayaka Sakabe, Takanori Shimizu, Seiji Shimoda, Michiaki Sugita, Kentaro Takagi, Yoshiyuki Takahashi, Naoya Takamura, Satoru Takanashi, Takahiro Takimoto, Yukio Yasuda, Qinxue Wang, Jun Asanuma, Hideo Hasegawa, Tetsuya Hiyama, Yoshihiro Iijima, Shigeyuki Ishidoya, Masayuki Itoh, Tomomichi Kato, Hiroaki Kondo, Yoshiko Kosugi, Tomonori Kume, Takahisa Maeda, Shoji Matsuura, Trofim Maximov, Takafumi Miyama, Ryo Moriwaki, Hiroyuki Muraoka, Roman Petrov, Jun Suzuki, Shingo Taniguchi, and Kazuhito Ichii
Earth Syst. Sci. Data, 17, 3807–3833, https://doi.org/10.5194/essd-17-3807-2025,https://doi.org/10.5194/essd-17-3807-2025, 2025
Short summary
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025,https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Future projections of Siberian wildfire and aerosol emissions
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024,https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024,https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome, 300, D05109, ISBN 92-5-104219-5, 1998. 
Ball, J. T.: An analysis of stomatal conductance, PhD thesis, Stanford University, CA, USA, 1988. 
Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., Lawrence, D. M., and Swenson, S. C.: Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data, J. Geophys. Res., 116, 1–22, https://doi.org/10.1029/2010JG001593, 2011. 
Download
Short summary
We developed a maize version of a process-based crop model coupled to a land-surface model by incorporating photosynthesis for C4 plants and maize-specific parameters. The model was calibrated with field data and literature, and it was extensively validated with global reference yields. The model effectively captured interannual yield variability in global and county-level yield data, demonstrating its potential for assessing the climate impacts on maize production.
Share