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Abstract. Process-based crop models combined with land
surface models are useful tools for accurately quantifying the
impacts of climate change on crops while considering the in-
teractions between agricultural land and climate. MATCRO
model is a process-based crop model initially developed for
paddy rice, combined with a land surface model. We devel-
oped MATCRO-Maize as a new model for maize by incor-
porating leaf-level photosynthesis of C4 plants and adjusting
crop-specific parameters into the original MATCRO model.
MATCRO-Maize was evaluated at both a point scale and
a global scale through comparisons with observational val-
ues. For global-scale simulations, the simulated yield showed
statistically significant differences compared with Food and
Agriculture Organization’s FAOSTAT data at the country and
global levels. Although the absolute value of the simulated
yield tended to be overestimated, MATCRO-Maize repro-
duced spatial patterns with a correlation coefficient (COR)
of 0.58 (p value < 0.01) for the 30-year average yield com-
parison of the top 20 maize-producing countries. In addi-
tion, the comparisons of the interannual variability derived
from detrended deviation were statistically significant for the
total global yield (COR of 0.55 with p value <0.01) and
for half of the top 20 countries (COR of 0.64-0.90 with
p value <0.001 for 6 countries; COR of 0.50-0.51 with
p value < 0.01 for 2 countries; COR of 0.48-0.55 with p
value < 0.05 for 2 countries), which are comparable with
those of other global crop models. One of the reasons for this
overestimation could be related to the strong model response
to nitrogen fertilizer observed in MATCRO-Maize. With ex-

perimental field data under more comprehensive conditions,
improvements in the functions of nitrogen fertilizer in the
model would be needed to simulate the maize yield more ac-
curately.

1 Introduction

Maize (Zea mays L.) is one of the most important cereals not
only because of its large production (FAO, 2022) but also
because of its various roles in human food, feed, and in-
dustrial uses. Maize exhibits high photosynthetic efficiency
due to its C4 plant nature. It contains phosphoenolpyruvate
(PEP) carboxylase in mesophyll cells, which concentrates
CO; in bundle sheath cells. The concentrated CO, increases
the relative amount of carboxylation versus oxygenation per-
formed by ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco) (Kanai and Edwards, 1999), allowing C4 plants to
operate at lower stomatal conductance rates than Cs plants
(Sage, 1999). This mechanism results in high efficiencies
of light, water, and nitrogen use (Knapp and Medina, 1999;
Long, 1999). These features, such as multipurpose crops and
high photosynthetic efficiency, enable the cultivated area to
range over wide environments from wet to dry and from
low to midlatitudes. However, climate change impacts and
climate-related extremes negatively affect the productivity of
the agricultural sector, which leads to negative consequences
for food security (IPCC, 2023). Therefore, it is important
to accurately quantify the impact of climate change on crop
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growth and yield and to identify effective adaptation strate-
gies to mitigate climate risk.

Process-based crop models are useful tools for climate
change studies because they consider the response of the
physiological processes of crop growth and development
to the environment and management (Tubiello and Ewert,
2002). The ensemble of process-based crop model simula-
tions has shown good agreement with observed maize yields
both at the site scale and at the global scale (Bassu et al.,
2014; Jagermeyr et al., 2021), showing its potential to quan-
tify the uncertainty in studies on the impacts of climate
change on crop yields (Asseng et al., 2013). Crop models
combined with Land Surface Models (LSMs) or Earth Sys-
tem Models (ESMs) (as classified by Peng et al., 2018) have
the ability to consider the effects of agricultural land on the
climate globally through the exchange of fluxes of heat, wa-
ter, and gases, as well as the effects of climate on crops. Some
studies have revealed that agricultural land affects the cli-
mate through fluxes (Bondeau et al., 2007; Levis et al., 2012;
Maruyama and Kuwagata, 2010; Tsvetsinskaya et al., 2001)
and subsequently affects crop production (Osborne et al.,
2009). This indicates the importance of considering the in-
teraction between agricultural land and climate to accurately
quantify the impacts of climate change on crops. Despite this
importance, few LSM/ESM-based crop models exist (Lin et
al., 2021; Lombardozzi et al., 2020; Osborne et al., 2015; Wu
et al., 2016).

MATCRO is a process-based crop growth model devel-
oped for C;3 plants (Masutomi et al., 2016a, b; Yusara et al.,
2025). It was initially combined with a land surface model
of Minimal Advanced Treatments of Surface Interaction and
Runoff, called MATSIRO (Takata et al., 2003). MATSIRO
is embedded in an ESM, which is the Model for Interdis-
ciplinary Research on Climate, Earth System version 2 for
Long-term simulations called MIROC-ES2L (Hajima et al.,
2020). MATCRO simulates crop growth based on leaf-level
photosynthesis and parameterized crop-specific parameters
determined from experimental data, and it can run simula-
tions both at a point scale and at a global scale. The model
was applied to assess the impact of climate change at the
country and local levels (Kinose et al., 2020; Kinose and Ma-
sutomi, 2019), and it was used in a study investigating fac-
tors to improve the simulation performance of global gridded
crop models (GGCMs) (lizumi et al., 2021). MATCRO is ap-
plicable to other crops, including maize as a C4 plant, with
adjusted parameters from experimental datasets and the liter-
ature.

We extended MATCRO for global maize yield simula-
tion, called MATCRO-Maize, by adjusting crop-specific pa-
rameters for maize and incorporating the C4 photosynthetic
mechanism. The original model of MATCRO-Rice can sim-
ulate latent heat flux, sensible heat flux, net carbon uptake
by crops, and rice yield, indicating its application in stud-
ies on climate change impacts as an LSM-based model (Ma-
sutomi et al. 2016b). However, this study focused only on
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crop growth and yields, omitting water and heat fluxes to in-
crease computational efficiency. This paper aims to describe
the methodology of MATCRO-Maize in detail (Sect. 2), to
evaluate simulated yields both at a point scale and at a global
scale with reference datasets (Sect. 3), and to provide discus-
sion of the evaluation and model limitations (Sect. 4).

2 Model description

MATCRO consists of four modules: radiation, net carbon as-
similation, crop growth, and soil water balance. It requires
the following input data: (i) phenological data (i.e., crop cal-
endar), (ii) water management data (i.e., the land is rainfed
or irrigated), (iii) nitrogen fertilizer application data (Nfert)
[kg Nha~!], (iv) soil classification data (i.e., soil texture clas-
sification), (v) annual CO; data [ppm], and (vi) 6 types of
daily meteorological data: air pressure (Ps) [Pa], precipi-
tation (Py) [kgm™2 s~ '], specific humidity [Sy] [kgkg™'],
downwards shortwave radiation (Rs) [W m™—2], maximum,
minimum, and mean air temperature (Tiax, Tmin, 72) [K], and
wind speed (U) [ms™ 11. Based on input data, MATCRO sim-
ulates crop growth during a growing period. It is controlled
by the crop developmental stage (Dys) based on (Bouman et
al., 2001), which is the index used to quantify crop develop-
ment. The final crop yield is determined by the dry weight
of the storage organ with a parameter (Kyiq) when Dys = 1.
To adapt MATCRO for maize, crop-specific parameters and
equations were improved, as shown in Table 1 and Eqgs. (1)-
(35). The details are described in the following sections.

2.1 Photosynthetic mechanism

MATCRO-Maize calculates net carbon assimilation for the
entire canopy (A,) via the big-leaf model, where C4 leaf-
level photosynthesis is separately calculated for sunlit and
shaded leaves from the coupled photosynthesis-stomatal con-
ductance model (Collatz et al., 1991; Dai et al., 2004).

A, for the entire canopy is given by:

An = Zn,sn Lsn + Zn,sl‘lllsh» (1)

where Zn,sn and Zn’ sh represent the net carbon assimilation
per unit leaf area [pumol m~2s71; Ly, and L, represent the
leaf area index (LAI) [m? (leaf) m~2]; and sn and sh indicate
sunlit and shaded leaves, respectively. Z,,ﬁsn and Zn,sh are
defined in the following equations:

Kn,)c = Zg,)c - Ed,x, ()

where Zg‘x and Ed,x represent gross carbon assimilation and
dark respiration per unit leaf area [umol m~2s~!], respec-
tively. Suffix x means sn or sh. Lg, and Ly, are determined
following the approach of Masutomi et al., (2016a). Ry, is
calculated via the following equation (Bonan et al., 2011):

2(Tv—298.15)/10
, 3
1 +exp(1.3(T, — 328.15))) ©)

Ry = 0.025 Vemax.x (
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Table 1. Parameters in MATCRO-Maize.
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Variable Value Units Description Source

Crop-specific  (maize)

b 0.04 mol (H,O) m2s~1 intercept of the Ball-Berry model Sellers et al. (1996)

Celu,ear 0.815 ratio conversion factor of dry weight from glucose to ear Penning de Vries et al. (1989)
Colu,leaf 0.871 ratio conversion factor of dry weight from glucose to leaf Penning de Vries et al. (1989)
Celu, rot 0.857 ratio conversion factor of dry weight from glucose to root Penning de Vries et al. (1989)
Cglu,stm 0.810 ratio conversion factor of dry weight from glucose to stem Penning de Vries et al. (1989)
Dy rot1 0.35 ratio 1st point of Dy at which the partition pattern to root changes Penning de Vries et al. (1989)
Dy o2 0.72 ratio 2nd point of Dy at which the partition pattern to root changes Penning de Vries et al. (1989)
Dy earl 0.37 ratio 1st point of Dy at which the partition pattern to ear changes Parameterized in this study
Dy car2 0.6 ratio 2nd point of Dys at which the partition pattern to ear changes Parameterized in this study
Dys fiw 0.52 ratio Dy at flowering Parameterized in this study
Dy lef1 0.25 ratio 1st point of Dy at which the partition pattern to leaf changes Parameterized in this study
Dys lef2 0.48 ratio 2nd point of Dy at which the partition pattern to leaf changes Parameterized in this study
fste 0.35 ratio fraction of glucose allocated to starch reserves Penning de Vries et al. (1989)
haa 2 m crop height at flowering Penning de Vries et al. (1989)
kyld 0.83 ratio ratio of crop yield to dry weight of ear at maturity Parameterized in this study
kslw 3 ratio parameter that represents the relationship between Sy, and Dys Parameterized in this study

m 4 ratio the slope of the Ball-Berry model Sellers et al. (1996)

Gad,m - Kd growing degree day at maturity Parameterized in this study
Pier 0.49 ratio partition ratio of glucose to leaf from glucose partitioned to the shoot ~ Parameterized in this study
Prot 0.25 ratio partition ratio of glucose to root Penning de Vries et al. (1989)
rdl, lef 3.0x 1077 5! ratio of dead leaf at harvest Masutomi et al. (2016b)

Tt 0.06 ms~! growth ratio of root Penning de Vries et al. (1989)
Sin, plt 0.825 g m—2 specific leaf nitrogen at planting Parameterized in this study
Sin,mx See Eq. 29) ¢ m—2 maximum specific leaf nitrogen Parameterized in this study
Sin, matu See Eq. 30) g m~2 specific leaf nitrogen at maturity Parameterized in this study
Siw,mn 400 kg ha~! minimum specific leaf weight Parameterized in this study
Siw,mx 700 kgha™! maximum specific leaf weight Parameterized in this study
Ty 8.6 ° minimum temperature for development Osborne et al. (2015)

Th 42.0 ° maximum temperature for development Osborne et al. (2015)

To 30.0 ° optimal temperature for development Osborne et al. (2015)

Zrt, mx 1.5 m maximum root depth Penning de Vries et al. (1989)
o 0.05 mol mol ! quantum efficiency Sellers et al. (1996)

Bej 0.8 ratio GPP transition factor Lawrence et al. (2020)

Others

kn 0.3 ratio vertical distribution of nitrogen Oleson et al. (2013)

S1 0.3 K-! temperature dependence of Vemax, x Lawrence et al. (2020)

Y 313.15 K temperature dependence of Vemax, x Lawrence et al. (2020)

S3 0.2 K-! temperature dependence of Vemax, x Lawrence et al. (2020)

S4 288.15 K temperature dependence of Vemax, x Lawrence et al. (2020)

Bip 0.95 ratio GPP transition factor Lawrence et al. (2020)

where Vemax,x [umol m~2s7!] is the maximum rate of car-
boxylation and where T, is the leaf temperature [K] (as-
sumed to be the same as the air temperature: 7).

Zg,x is determined by the smaller root of the following
equations:

— — — — —

,3cj Al',)c - (Ac,x + Aj,x) Ai,x + c,xAj,x = 07 (4)
— _ — — [

ﬁipAg,x - (Ai,x + Ap,x) Ag,x + Ai,xAp,x =0, (5)

where B.; and B;, are the transition factors (Table 1) and
where Zi,x [umol m~2 s~ '] is the carbon fixation rate. Here,
we introduced the C4 leaf-level photosynthesis model based
on Collatz et al. (1992) into MATCRO, in which some pa-
rameters were taken from Oleson et al. (2013) and Lawrence
et al. (2020) (see Table 1). In C4 photosynthesis, Zc,x, A s
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and Zp, + [umol m2s71] represent Rubisco-limited, RUBP-
limited, and PEP-limited photosynthesis, respectively, and
are given by the following equations:

Kc,x = chax,x» (6)
Zj,)c = 05(4~6Qab,x)v @)
Zp,x = kp,xCi,Xv (®)

where Qap.x [W m~2] is the absorbed photosynthetically ac-
tive radiation (PAR); o [molmol~'] is the quantum effi-
ciency; kp x [mol m~—2s7 1] is the initial slope of the CO; re-
sponse curve for the C4 CO; response curve; and C; , [ppm]
is the internal leaf CO, concentration. Qgp x is calculated
from R via the same methods conducted in Masutomi et
al. (2016a) and is converted to photosynthetic photon flux
by multiplying by 4.6 [umol (photons) J -1 Vemax,x and kp x

Geosci. Model Dev., 18, 8927-8948, 2025
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are functions of T}, and are based on Lawrence et al. (2020),

(1€v—298.15)/10
chax,x = fv chax25,x [m} s (9)
fu(Ty) = 1+exp[Si (Ty, — $2)1, (10)
Ju(Ty) =1+exp[S3(Ss — T, an
kp,x — { kp25,x Q§€U7298,15)/]0’ Vemaxes,x > 0, , (12)
0-7, chax25,x - 0,

kp25,x = ZOOOOchaXZS,xv (13)

with Q10=2, §1 =03K™!, §, =313.15K, S35 =02K ',
and S4 = 288.15 K (see Table 1). Notably, &k, . is adjusted to
be 0.7 mol m~2s~! (Collatz et al., 1992) when Vemax2s.c = 0
because of the process of the photosynthesis calculation (see
Eq. 20). Vemax2s,x is the maximum Rubisco carboxylation
rate per unit leaf area at 25° (the details are described in
Sect. 2.2.2). fg(Ty) and fi (T,) are modulating functions
that reduce Vimax x at high and low temperatures, respec-
tively. f, is the water stress factor calculated in the soil water
balance module, which indirectly affects A,, through Vimax x
(Sellers et al., 1996). f, is derived from the following equa-
tions:

_ NsL| 1 xETF (i), FAW() > 0.45,
fo= Zi:l { % x ETF (i), otherwise, a5
WSL (i) — WILT) , 0
FAW (i) = min ( 22X (WSL () .9 (15)
FC-WILT
3 2_ .2
ETF(i) = E(Z“—SZ), (16)

Tt

where NSL represents the number of soil layers, ETF rep-
resents the fraction of transpiration from root distribution,
FAW represents the fraction of available water, WSL repre-
sents the soil water content [m3 m—3], WILT represents the
wilting point, FC represents the field capacity, and z;; and
z represent the root depth and the soil depth, respectively,
for each layer. MATCRO assumes NSL = 5, where each of
the soil layers has depth of 0.05, 0.2, 0.75, 1, and 2 [m] be-
low the ground, respectively. MATCRO uses the soil texture
data as input data, where the soil is classified into 13 types,
leading to differences in WILT and FC based on Campbell
and Norman (1998). WSL is calculated considering transpi-
ration from the canopy, evaporation from the soil, and water
flux (those calculations are the same as those of the orig-
inal MATCRO). The ETF calculation assumes that the root
has no spatial orientation and is equally distributed in the soil
(Masutomi et al., 2016a). z is determined by the same calcu-
lation as the original MATCRO, where the crop-specific pa-
rameter (Zr,mx) Was changed to maize (Table 1). The condi-
tional branch (FAW (i) > 0.45) is based on the FAO 56 guide-
lines (Allen et al., 1998).

Stomatal conductance influences CO, uptake during pho-
tosynthesis. MATCRO-Maize represents stomatal conduc-
tance for CO2 (G x [umol m~2s71)), based on Ball (1988)
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as follows:

Z}l.x
Giox = Goc+ GreRn

Gy, otherwise,

) An,x > 01 (17)

where Cs x [ppm] is the CO, concentration at the leaf surface
and Ry [-] is the relative humidity at the leaf surface. G,
and G are derived from parameters of Ball-Berry stomatal
conductance model of b and m (shown in Table 1) by adjust-
ing their ratio of 1: 1.6, which is the ratio of diffusivity of
H,O to CO,. Here, the leaf-level net carbon assimilation rate
(Zn, x), stomatal conductance for CO; (G, ), and boundary
layer conductance for CO; (Gpc) were calculated to satisfy
the following physical flux equations.

Zn,x = Gsc,x (Cs,x - Ci,x) s (18)
Zn,)c = Gpe (Ca - Cs,x) s (19)

where C, [ppm] is the atmospheric CO, concentration. Gy,
is a function of air pressure (P [Pa]) and the wind speed in
the canopy (U [m s~I.

Here, T, Qab.x» Rn, U, and C, are environmental vari-
ables derived from input meteorological climate data. There
are four relationships (Egs. 2, 17-19) in terms of internal
variables (Zn,x, Ggc.x» Cs.x, Cix). MATCRO for C3 photo-
synthesis obtains analytical solutions from relationships via
the method shown in Masutomi (2023). For C4 photosynthe-
sis, it is also possible to solve these equations analytically. In
the case of Rubisco-limited and RuBP-limited photosynthe-
sis, exact expressions for chx and A j,x are obtained. Under
Zn,x > 0, PEP-limited photosynthesis (Zp,x) can be repre-
sented by quadratic equations by the algebraic procedures as
follows:

0= {Gﬁcclth — GpeGoc — kp.x (Goe — GreGre Ry
—2
+Goe} Ay, + {CGEGoc — GreGocRa
+GeG1cRnRa = kpCa (GE.G1c Ry — 2GreGae

—Gﬁc) } Apx + CaGoGoe (Ra— kpxCa) . (20)

Under A, , < 0, the PEP-limited photosynthesis rate can be
expressed as

_ k, .Co—R
Apy= pxza” 7d 1)

1+kpx (% + %)

According to these equations, in the case of PEP-limited pho-
tosynthesis, there are three possible solutions. Following the
criteria described by Masutomi (2023), only one analytical
solution can be selected when the following requirements are
satisfied: (i) under Z,,, x > 0, the solution must be a positive
or zero real solution, and under Zn, x < 0, it must be a nega-
tive real solution; (ii) G x > 0; and (iii) C; > 0.
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2.2 Crop-specific parameterization
2.2.1 Phenology

The crop growing period in MATCRO is expressed as Dyg
based on Bouman et al. (2001). Here, Dys = 0 means sow-
ing, and Dys = 1 means maturity (harvesting). It is calculated
from the following equations:

Dysi = Gud,i/Gddm,i» (22)
t
Gaa = / Durdr’, 23)
0
0, T; <Th|Th =T,
Dy=3Ti—T Ty <T; <T, (24)
B D) | 7, < 7y < T,

where Gq,; is the growing degree days at ¢ (time) for specific
grid cell number i; Gggm,; is the growing degree day at ma-
turity; D, is the developmental rate at time ¢; and 7; is the
temperature at time 7. Ty, Ty, and T, are the crop-specific car-
dinal temperatures (minimum, maximum, and optimal tem-
peratures for development, respectively, as shown in Table 1).
Gaa,m were calibrated for each point scale simulation and
global scale simulation (Sect. 2.3). In addition, one parame-
ter that represents the timing of flowering (known as silking;
Dy aw) was calibrated based on observational data for the
point scale simulation (Table 1).

2.2.2 Leaf nitrogen and Rubisco capacity
Maximum Rubisco carboxylation rate

Vemax2s.x used in the photosynthesis module (Sect. 2.1) is ob-
tained by dividing the maximum Rubisco carboxylation rate
at a LAl depth of I (Vemax2s,x (1)) by Ly separately for sunlit
and shaded leaves based on Bonan et al. (2011). The vertical
distribution of Vemax2s(l), which is the sum of Vemax2s,sn (1)
and Vemax2s,sh(/), follows the exponential profile:

Vemax2s (1) = Vemax2s (0) exp (— K1), (25)

where Vemax2s (0) is the maximum Rubisco carboxylation
rate at the canopy top, K, is a parameter for the vertical dis-
tribution of nitrogen (Table 1), and / represents the LAI depth
from the top. The maximum Rubisco carboxylation rate in
sunlit leaves (Vemax25,sn (1)) is also calculated by the same
relationship considering the light distribution:

Vemax2s,sn (1) = Vemaxas (0) [1 —exp(—I(Kn + K))]
1

, 26
K 1K (26)

where K is the direct beam extinction coefficient (the cal-
culation is the same as that for Masutomi et al., 2016a).
Vemax2s.sh (1) 1s given by the subtraction of Egs. (25) and (26).
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Here, while Bonan et al. (2011) use the fixed value of
Vemax2s(0) value over time, Vemax25(0) in MATCRO is cal-
culated dynamically as a function of specific leaf nitrogen
(S [gN m~2]). The function is established based on the ex-
perimental literature data. Notably, we applied the relation-
ship between Sy, and light-saturated CO; assimilation (A pax)
from the literature, although MATCRO-Rice and MATCRO-
Soy utilize the direct relationship between Sp, and Vemax2s(0)
based on the experimental literature data. The reasons are
that we assume that Ap,x could be used as Rubisco-limited
photosynthesis in C4 photosynthesis, hence Rubisco-limited
photosynthesis could be equal to the maximum Rubisco car-
boxylation rate from Eq. (6). Several studies have shown
that Amax has a close relationship with Sy, as shown by the
logistic equation for maize (Drouet and Bonhomme, 2004;
Muchow and Sinclair, 1994; Paponov and Engels, 2003; Pa-
ponov et al., 2005; Sinclair and Horie, 1989; Vos et al., 2005).
We used two functions from the studies for different Dyg as
follows:

chax25 (0) =
2
45.1x T+exp[—2.9-($i,—0.25)] — 1}, Dys < Dy fiw. @7
2 .
40.2 % Trexpl—1.41-(S,—0.43)] — 1}, otherwise,

where Dys < Dy fw represents the vegetative stage at which
the equation was based on Vos et al. (2005); then, for the
reproductive stage, the equation was from Drouet and Bon-
homme (2004). Stage-specific parameterizations were ap-
plied to reflect the lower photosynthetic activity observed
during the reproductive phase compared to the vegetative
phase since no single dataset adequately represents both
growth phase.

Specific leaf nitrogen

Sin, which is used in the calculation of V¢max25(0), is dynam-
ically change during the crop growth of Dys in MATCRO.
The function is established based on the observational data.
We utilized the study by Muchow (1988), in which Sj, was
measured under various levels of Ngt (0, 60, 120, 240, 420
kg ha_l]), as follows: (i) we traced S, data using digi-
tizer software (https://apps.automeris.io/wpd4/, last access:
20 November 2024) and obtained the measurement and phe-
nological data from the paper; and (ii) we conducted the fit-
ting based on the assumption that Sy, linearly increased until
flowering and then decreased towards maturity. The parame-
terization given by Eqgs. (28)—(30) is shown in Fig. 1.

Sln =
Sln,mx_Sln,pll
WDVS + Sin,pits Dvs < Dys fiw, 8)
Shnmatu = (B0 — 1) 4 Sin matus Dvs = Dys.fiw-
1_Dvs,ﬂw s N

Where Sin,mx, Sin,plts Sin,mate are maximum Sy, and Sy, at
planting time and maturity, respectively. Sy pie Was param-
eterized by assuming low Sy, in the early stage (Table 1).

Geosci. Model Dev., 18, 8927-8948, 2025
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Figure 1. Relationship between developmental stage (Dys) and
specific leaf nitrogen (Sj,) in MATCRO-Maize. Symbols show
observational data from Muchow (1988) with the 5 types of
Nfert: Okgha_1 (square), 6Okgha_1 (cycle), 120kgha_1 (trian-
gle), 240kgha—! (diamond), and 420kgha™! (inverted triangle).
The red lines represent the fitted line parameters used in MATCRO-
Maize, while the dashed line represents Dys at flowering (Dgy)-

Menwhile, Sin,mx and Sin,maru are empirically parameterized
as functions of Ngert as follows:

Sln,mx =

—0.00001 N2, + 0.0064 Niert +0.6891, Neery < 240, (29
1.75, Nier > 240.
0.001 Nfere +0.57, Niere < 240,

Sln,matu = { 1’ Nfert = 240 (30)

We set fixed values of 1.75 for Sin,mx and 1.0 for Sinmatu
when Ny exceeds 240 [kg ha=!], as Sin,mx and Sin, matu €X-
hibit minimal increases beyond this threshold.

2.2.3 Crop growth
Glucose partitioning

MATCRO calculates crop growth by partitioning net carbon
assimilation (A,) in the form of glucose, which is calculated
in the photosynthesis module (Sect. 2.1). Partitioned glucose
is supplied through photosynthesis in leaves and remobiliza-
tion from the stem. The ratio of glucose partition to each
organ (leaf, stem, root, and storage organ; ear) depends on
Dys. The term “ear” in maize represents the organ that sup-
ports the development and storage of grain. The grain de-
veloped later than the ear with approximately 83 % of ear at
maturity in this study (see Sect. 2.2.5). The dry matter for
each organ is obtained from the partitioned glucose consid-
ering the carbon fraction for each organ (Cgly,ear, Celu,leafs
Calu,rots Cglu,stm in Table 1). We calibrated the partitioning
ratio to leaf and ear based on the observational biomass
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data from Ciampitti et al. (2013a, b), whereas the ratio to
shoots:roots was derived from the value from Penning de
Vries et al. (1989). The stem partitioning was determined
by reducing the shoot ratio with respect to the leaf and ear.
Figure 2 shows the partition ratio to the leaf (P ef) and ear
(Pr ear) established via the following equations:

Pief, Dys < Dvs,leflv
Pief(Dys,lef2— Dys)
Pr,lef = WCD\,”J,T’ Dy < Dvs,lef2 s 31)
0, otherwise,
0, Dys < Dvs,earl»
P _ Dvs_Dvs,earl D D 32)
r.ear — Dysears—Dysearl? VS < Dyg,lef2, (
1, otherwise,

where Dys left, Dys,lef2, Dys,eart and Dy ear2 represent the
Dy at which the corresponding partition changes, as de-
scribed in Table 1 and based on Fig. 2; Pjf is the ratio of
glucose partitioned to glucose to the leaf from glucose parti-
tioned to the shoot.

Specific leaf weight

The specific leaf weight (Syy) is used to calculate the total
leaf area index (L) in MATCRO. It is varied dynamically
with the developmental stage of Dy and is given by:

Siw = Slw,mx + (Slw,mn - Slw,mx) exp(—ksiw Dys) (33)

where Siw,mn» Stw,mx, and ksjy are minimum, maximum, and
absolute value of the rate constant in the Sjy, function, respec-
tively. These crop-specific parameters were derived from the
observational data expressed in Table 1. We conducted curve
fitting of Sjy to calculate the dry weight of the leaf biomass
and the leaf area index based on Ciampitti et al. (2013a, b)
and established a relationship (Fig. 3).

2.2.4 Crop height

Crop height (Hy,) is related to the calculation of evapotran-
spiration in MATCRO. It assumes that the dependence of the
crop height is based on Dy using function from Penning de
Vries et al. (1989) and is given by

H. — haaDvs/Dvs,HWv Dys < Dvs,ﬂw
8t haa’ Dvs > Dvs,ﬂw

(34)

where h,, is the crop height at flowering (Table 1).
2.2.5 Crop yield

MATCRO calculates the final crop yield, Y4, from the dry
weight of the storage organ at maturity (Wear,mt) as follows:

Yia = kyld Wear,mt- (35)

Here, ky1q is the crop-specific parameter (Table 1), which rep-
resents the ratio of Yiq to Wear me. The dry weight of the ear
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Figure 2. The ratio of glucose partitioning to leaves (a) and ears (b). Symbols show the ratio of glucose partition with different Ngey:
Okg ha~! (square), 112kg ha~! (cycle), and 224 kg ha~! (triangle) measured in Ciampitti et al. (2013a, b). The red lines in Fig. 2 show the
segmented line parameters used in MATCRO-Maize, while the dashed line represents Dys at flowering (Dys fiy)-

Specific leaf weight [kg ha ]
590 690 790 8(?0

400

300

0.00 0.25 0.50 0.75 1.00
DVS

Figure 3. Relationships between specific leaf weights and develop-
mental stages. Symbols are the same as in Fig. 2.

is a consistent predictor of the plant’s potential yield at ma-
turity. We parameterized Kyiq using experimental data from
Ciampitti et al. (2013b).

2.3 Model evaluation

MATCRO can run the simulation both at a point scale and
at a global scale. The developed model was evaluated both
at a point scale and at a global scale. For point scale lev-
els, LAI and total aboveground were compared with the ob-
servation data from the four sites. Meanwhile, we use yield
data for evaluation. After confirming the ability of the model
to simulate maize growth, two types of evaluations were
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conducted at the global scale. First, the simulated yields at
the grid cell were compared with the gridded yield datasets
of the Global Dataset of Historical Yields (GDHY; lizumi
and Sakai, 2020), GlobalCropYield (GCY; Cao et al., 2025),
and the Spatial Production Allocation Model (SPAM; IFPRI,
2019). Second, the simulated yields at the country and to-
tal global levels were compared with the country yield re-
port and global data from the Food and Agriculture Organi-
zation’s FAOSTAT database (FAOSTAT, 2024). To quantify
the model performance, four statistical values were used in
this study: the Pearson correlation coefficient (COR), root
mean square error (RMSE), relative root mean square er-
ror (RRMSE) and normalized mean absolute error (NMAE).
RRMSE and NMAE were calculated as follows:

= A
RMSE = \/;Zizl()’i - 5i)% (36)

RMSE
RRMSE = ———, 37)
y
1 n ’5’1 - )’i‘
NMAE = ;Z,:]T’ (38)

where y; is the actual value, ¥; is the predicted value, and y
is the mean of the actual value.

2.3.1 Model evaluation at a point scale

To evaluate the model performance at a field scale, we used
observational data from four sites (Brazil, France, Tanzania,
and the USA; Table 2) used in the Agricultural Model Inter-
comparison and Improvement Project (AgMIP) study (Bassu
et al., 2014). We used local daily climate data of precipita-
tion, downwards shortwave radiation, air temperature, wind
speed (P, Rs, Ty, U respectively), management data (Nfer
and irrigation regime) and phenological data (planting, flow-
ering, and maturity dates) for model input data at each site.

Geosci. Model Dev., 18, 8927-8948, 2025
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Figure 4. Model-fit comparison of the flowering and maturity date
simulations (SIM on the y axis) and observations (OBS on the
x axis). DOY represents the number of days from 1 January. Sym-
bols show each site: Brazil (square), France (circle), Tanzania (tri-
angle), and the USA (diamond). The colours indicate the phenolog-
ical stages of flowering (red) and maturity (blue).

We identified the soil texture from the gridded soil texture
dataset of ISIMIP (Volkholz and Miiller, 2020), and annual
CO; data from the ISIMIP3a (Biichner and Reyer, 2022).
Climatic data were obtained from the NASA Modern Era
Retrospective-Analysis for Research and Applications cor-
rected with observational datasets (AgMERRA; Ruane et al.,
2015) when measured data were unavailable (Bassu et al.,
2014).

Notably, air pressure (P) and specific humidity (Sy) data
were not provided. Hence, we represented the point scale
by extracting Ps from the nearest 0.5° x 0.5° grid cell of
GSWP3-WS5ES dataset for the ISIMIP3a (Lange et al., 2022).
Meanwhile, S, was converted from Ry using 7, and the
vapour pressure. We parameterized Ggq,m and Dys fw based
on T, and phenological data (sowing, flowering, and matu-
rity dates). Ggq,m calibrated for each site is used for the sim-
ulations, while the average Dy, aw over the 4 sites is used
(0.52 in Table 1). As a result, the mean average errors were
estimated as 4.25 and 7 d for flowering and maturity, respec-
tively (Fig. 4). MATCRO was run with these parameters, and
then the model output was evaluated with the observations
for the following 3 variables: seasonal change in the LAI,
total aboveground biomass, and final yield.

Model calibration was conducted based on phenological
data (Table 2, Bassu et al., 2014) and biomass data for carbon
partitioning of leaves and ear (Fig. 2, derived from Ciampitti
etal., 2013a, b). In this study, a global parameter was applied
uniformly across all regions at the grid-cell level instead of
using site-specific calibrated parameters in the simulations.
The model was then assessed at the point scale to verify cali-
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bration for phenology (flowering and maturity) and was eval-
uated against time-series data of LAI, aboveground biomass,
and harvested yield (see Sect. 3.1), which were not included
in the model calibration.

2.3.2 Model evaluation at a global scale
Simulation settings

For the global-scale simulation, the model was run at a spatial
resolution of 0.5° x 0.5° from 1980-2010 under both rain-
fed and irrigated conditions. The required input data were as
follows: (i) crop calendar data were from the Global Grid-
ded Crop Model Intercomparison (GGCMI) phase 3 proto-
col (Jagermeyr et al., 2021). It provides planting and matu-
rity dates for 18 different crops, including maize, separated
by rainfed and irrigated systems. We parameterized the av-
erage Ggq,m at each grid over the period 1980-2010 for the
growing season from the planting to maturity dates for each
of the rainfed and irrigated conditions. Both the planting date
and the simulated Ggq,m Were used as the input data for the
global-scale simulations. (ii) Water management data (i.e., ir-
rigation regime) from the MIRCA2000 dataset (Portmann et
al., 2010). In the case of irrigated conditions, the soil mois-
ture was set to field capacity during the growing season. (iii)
Nrert from the Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP; Volkholz and Ostberg, 2022). It provides
the annual nitrogen fertilizer inputs for five crop types, in-
cluding C4 annual crops for maize. (iv) Soil texture classifi-
cation from ISIMIP3a protocol soil input data (Volkholz and
Miiller, 2020). (v) Annual atmospheric CO; data from the
ISIMIP3a (Biichner and Reyer, 2022). (vi) Six types of daily
meteorological for model inputs (Ps, P, Rs, Shy Tmax> Tmin»
T,, U) from the GSWP3-W5ES5 dataset for the ISIMIP3a
dataset (Lange et al., 2022). We set the data from (i), (ii),
and (iv) as constants across the simulation period, whereas
the data from (iii), (v), and (vi) are variables.

Analysis

MATCRO-Maize was first assessed for the phenological sim-
ulation of harvest time against the GGCMI dataset (Jager-
meyr et al., 2021) and global datasets of crop phenological
events for agricultural and earth system modeling (GCPE),
which were derived from various field experiments and a
phenology model (Mori et al., 2023). These datasets were
compared under both rainfed and irrigated conditions at a
0.5° x 0.5° resolution to check the model’s performance.
Then, we assessed the yields by combining simulated yield
at irrigated and rainfed according to the maize area in each
grid cell.

The simulated final yields in each grid cell under irrigated
and rainfed conditions were aggregated by grid cell, country
and global level with the harvested area from MIRCA2000
data (Portmann et al., 2010) via the following equation for
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Table 2. Evaluation site information in the point-scale simulation.
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Country  Site Latitude  Longitude  Soil Sowing Hybrid Total N Irrigation
type date fertilizer
[kgNha—1]
Brazil Rio Verde 17.52°S  51.43°W  Geri-Gibbsic Ferralsol 22 Oct 2003  Pioneer 30K75 0 No
France Lusignan  46.25°N  00.07°E Cambisol 26 Apr 1996  Furio 255  Yes
Tanzania Morogoro  06.50°S  37.39°E Haplic Arenosol 26 Oct 2009 TMV1 61 Yes
USA Towa 42.01°N  9345°W  Gleysols 4 May 2010  Golden Harvest GH-9014 167 No

each year from 1981-2010:

Yieldaggregated =

iy (Yield; i x Areay o) + D7 (Yield; i X Area; jrr)
> (Area f + Area jrr)

where Yieldaggregated i the aggregated yield with the total
grid cells (n) in grid cell i. Yield;s and Yield;; are the sim-
ulated yields under rainfed and irrigated conditions, respec-
tively, and Area,f and Area;, are the harvested areas from
MIRCA2000 for rainfed and irrigated conditions, respec-
tively.

The model performance was evaluated by comparing its
output with the historical yield dataset. The grid-cell-level
yield was averaged across a 30-year period (1980-2010)
and compared with the Global Dataset of Historical Yields
(GDHY; lizumi and Sakai, 2020) for 1980-2010, an upscaled
GlobalCropYield dataset with 5 min resolution (GCY; Cao et
al., 2025) for 1981-2010, and the Spatial Production Allo-
cation Model (SPAM; IFPRI, 2019) for the year 2020. The
country and global-level yields were compared with FAO-
STAT data (FAOSTAT, 2024) for the average and annual vari-
abilities over the 30 years. In the comparison at the country
level, we focus on the top 20 maize-producing countries that
account for more than 85 % of total maize production.

We focused on two perspectives for evaluation: (i) the abil-
ity of the model to capture the spatial distribution of yield
in both low and high-producing countries and (ii) the abil-
ity of the model to reproduce the climatic effect reflected in
the interannual variability at the country and global scales.
The first perspective was analysed using NMAE to quantify
model error for both the global yield and the yield of the
top 20 producing countries. The 30-year average yields were
also compared based on the statistics of COR, RMSE, and
RRMSE to confirm accuracy. The second perspective was
analysed via the COR of the detrended deviation between
the simulated and FAOSTAT yields to assess the interannual
variability.

(39)

3 Results
3.1 Point-scale simulations

A comparison of the time series changes in the LAI at each
experimental site is shown in Fig. 5. In general, MATCRO-
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Maize captured the increasing trend towards flowering time,
followed by a decreasing trend towards the end of maturity.
Especially during the vegetative stage (Dys < Dys fiw : 0.52),
the simulated LAI showed relatively good agreement. How-
ever, the simulated LAI was notably underestimated in Brazil
and France immediately before the reproductive stage (near
the dashed black line in Fig. 5). The LAI underestimation in
France and Brazil (Fig. 5) could also be seen with a large
RMSE, which is approximately 50 % of the average LAI
across all observational values at 3 sites except for Tanza-
nia during the crop growth, although overall, the comparison
was statistically significant (p value < 0.01), with a COR of
0.762.

Figure 6 compares the time series of total aboveground
biomass between the simulated and experimental data. Ex-
cept for Tanzania, MATCRO-Maize accurately estimated the
increasing trend of total aboveground biomass towards ma-
turity (Fig. 6a and b), although the simulated biomass in
Brazil was underestimated at maturity (Fig. 6a). The simu-
lated total aboveground biomass in Tanzania increased until
maturity, while the observations gradually decreased towards
the maturity time (Fig. 6¢). The comparison of total above-
ground biomass during the crop growth was statistically sig-
nificant (p value < 0.001), with a COR of 0.895, although the
RMSE was 3628.3 [kg ha~!], which corresponds to approxi-
mately 35 % of the average of all observed total aboveground
biomass.

Figure 7 compares the 1 : 1 line between the simulated and
experimental data for harvested yield. The comparison of the
final crop yield was statistically significant (p value < 0.01).
It had a relatively low COR compared with the LAI and total
aboveground biomass, due to the small sample size (N =4)
and the overestimation for Tanzania. The RMSE was 2575.0
[kg ha~'], which is approximately 30 % of the average ob-
servational yield at all the sites. It is noted that Figs. 5-7
present the model evaluation using independent data. Evalu-
ation was performed using a global parameter from the liter-
ature to simulate the plant organs in the global-scale simula-
tion, which may have resulted in some deviations.

Geosci. Model Dev., 18, 8927-8948, 2025
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Figure 5. Temporal evaluation of leaf area index (LAI) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b) France, (c)
Tanzania and (d) the USA across the developmental stage (Dys). The observation data in each site are shown by black points. Notably, there
were no observational data in Tanzania. The error bars were provided only for Brazil. The dashed black line shows the flowering time.

3.2 Global-scale simulations
3.2.1 Phenology

The timing of seasonal biological events (i.e. harvest time)
has a significant impact on crop growth and yield outcomes.
Global yield is affected by global phenology. We assessed
agreement to check the model performance by comparing
the difference between simulated global average harvest time
(1981-2010) with the gridded global dataset of phenological
datasets of GGCMI (Fig. 8a and b) and GCPE (Fig. 8c and
d). The maps show consistent spatial patterns for later har-
vest time between the simulation and the reference datasets,
in parts of Brazil, USA, southern and central Africa. The
discrepancies between datasets are likely produced due to
the difference in phenology parameterization and manage-
ment assumptions where GGCMI and GCPE used different
methodologies and data sources. Moreover, the use of the av-
erage growing degree day in the simulations led to year-to-

Geosci. Model Dev., 18, 8927-8948, 2025

year differences in harvest time compared with the reference
crop calendar used for the input data (Fig. 8a and b). The
mean absolute differences in harvest time (Fig. 8e and f) in-
dicate that the largest biases occur mostly in tropical regions.

3.2.2 Yield

A comparison of the global distributions is shown in Fig. 9
(simulations: Fig. 9a; observation datasets: Fig. 9b, c, and
d). All datasets were harmonized to a 0.5° x 0.5° resolution,
including simulated yield from MATCRO-Maize (Fig. 9a),
GDHY (Fig. 9b), GCY (Fig. 9¢), and SPAM (Fig. 9d). The
data were averaged over 30 years (1981-2010) for GDHY,
over 29 years (1982-2010) for GCY, and at the year 2010 for
SPAM. While the overestimation is mainly evident in tropi-
cal regions, the simulated yield could capture high-yielding
regions, including the Corn Belt in the United States and
the northern part of China, in agreement with the reference
datasets.
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Figure 6. Temporal evaluation of total aboveground biomass (AGB) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b)
France, (c¢) Tanzania and (d) the USA across the developmental stage (Dys). The observation data in each site are shown by black points.
The error bars were only provided for Brazil and Tanzania. The dashed black line shows the flowering time.

Temporal changes in the global yield across 30 years indi-
cated that the simulated global yield had an NMAE of 0.67.
This shows a simulation error of 67 % with respect to the av-
erage FAOSTAT yield. The comparison of interannual vari-
ability between the simulations and observations was sta-
tistically significant (p value < 0.01), with a COR of 0.549
(Fig. 10). For the top 20 producing countries, MATCRO-
Maize also tended to overestimate the annual yield (Fig. 11)
and the average yield over a 30-year period (Fig. 12). The
overestimation was particularly pronounced in Egypt, where
the simulated yield was approximately four times greater
over a 30-year period. In terms of interannual variability,
half of the 20 countries showed statistically significant cor-
relations: six countries had p values < 0.001, two countries
had p values < 0.01, and two countries had p values < 0.05
(Fig. 11). The 30-year average comparison was also statis-
tically significant (p value < 0.01), with a COR of 0.58, al-
though the RMSE was 4007.7 [kg ha='] (Fig. 12).
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3.3 The effects of photosynthesis and N fertilizer

In addition to the yield comparison, we analysed the effect of
nitrogen fertilizer (Ngert) on maize yield, as it is a key deter-
minant of crop yield. It compared both simulated yield data
and FAOSTAT yield data with Ny for a 30-year average us-
ing a fitted polynomial curve (quadratic polynomial regres-
sion). We also conducted two tests to quantify the effects
of the Npe-related function and parameters as follows: (i)
Eq. (27) during the vegetative stage is derived from Drouet
and Bonhomme (2004), defined as “test Siy-Vemax , Where
Vemax (0) used this function:

2
Vemax (0) = 36.8 -1
cmax( ) X { 1+exp[—2~45 . (Sln - 0.27)] }

Dys < Dvs,ﬂw (40)

and (ii) Sy pic used parameter value from 0.825 (Table 1) to
0.5 (defined as “test Sy, pit”).

Figure 13 illustrates the comparison of country-level yield
data with nitrogen fertilizer levels: (a) FAOSTAT data, (b)
simulated yield by MATCRO-Maize, (c) the impact of re-
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Figure 7. Statistical comparison (COR, RMSE, and RRMSE) of
maize yield. The x axis (OBS) represents the observational data,
and the y axis (SIM.) is the simulated data. Shapes show each site:
Brazil (square), France (circle), Tanzania (triangle), and the USA
(diamond). Notably, there was no observed LAI in Tanzania. The
symbols ***_ ** ‘indicate p values < 0.001 and 0.01, respectively.

duced Rubisco activity on photosynthetic rates based on ex-
perimental data from Drouet and Bonhomme (2004) in the
“test SIn-Vcemax™ scenario, and (d) the effect of reduced pho-
tosynthetic rates due to lower initial specific leaf nitrogen at
planting time in the “test Sln,plt” scenario. The nitrogen fer-
tilizer values were derived from the gridded dataset of N fer-
tilizer from ISIMIP (Volkholz and Ostberg, 2022).

Figure 13a and b show the comparisons based on Ngey¢ for
each FAOSTAT and simulated yield, respectively. MATCRO
has a strong Nr effect on the yield reflected in the steep
upward trend of the fitted curves. This effect was scarcely al-
leviated by the intentionally reduced effect of photosynthesis
(Fig. 13c and d), mainly because of the effect of Egypt as an
outlier with higher values. Without Egypt as an outlier, the
curves for FAOSTAT and MATCRO-Maize were more com-
parable. The maize yield in Egypt shows high value com-
pared to other countries where significant overestimation was
observed.

4 Discussion
4.1 Point-scale simulations

The point-scale simulations were evaluated using global pa-
rameters to assess their ability to capture broad yield pat-
terns across different regions. The simulated harvested yield
showed statistically significant correlations at the point scale
(Fig. 7), indicating that the MATCRO-Maize model could
simulate maize growth and yield. However, there were some
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discrepancies between the simulations and observations that
remain due to the limitations of using global parameters, such
as the underestimation of the LAI in Brazil and France, the
underestimation of the total aboveground biomass in Brazil,
and the different growth trends of the total aboveground
biomass in Tanzania. The underestimation of LAI is pri-
marily due to the use of global morphological parameters at
the site scale. Further investigation will improve site-specific
performance by coupling LAI to key soil properties (soil or-
ganic carbon, total nitrogen, and water-holding capacity) and
by incorporating canopy cover fraction following Hasegawa
et al. (2008). Global parameters at the point scale enable test-
ing the model’s applicability across various regions, although
local variations in soil, climate, or crop management may not
be fully captured in this study.

One potential factor contributing to the underestimation of
the LAI in France might be related to the effect of plant den-
sity, which is not currently considered in MATCRO. The ac-
tual plant density [plants m~2] at each site was 9.5 (France),
7.5 (USA), 6.6 (Brazil), and 9.5 (Tanzania) (Bassu et al.,
2014). Some studies have shown that LAI trends are af-
fected primarily by the plant density factor relative to Nfer
and hybrids (Boomsma et al., 2009; Ciampitti et al., 2013a;
Ciampitti and Vyn, 2011). MATCRO could not reproduce the
trends driven by plant density leading to underestimation, al-
though other important factors (e.g., management practices,
climatic conditions), which are quite different from each site
in the literature, would also affect crop growth variables, in-
cluding the LAL

Both the underestimation of the LAI and total above-
ground biomass in Brazil were caused by the field exper-
imental conditions of N =0, given its effect on crop
growth in MATCRO. The reason for the lack of fertilization
in the field experiment was that sufficient N was released by
organic matter mineralization (Bassu et al., 2014), which was
not considered in the model. Moreover, Ny directly affects
Sin in MATCRO, with an increasing trend towards flowering
and then a decreasing trend towards maturity (Fig. 1). Sy, is
related to Vemax25(0), which in turn affects the photosynthe-
sis calculation (Sect. 2.1 and 2.2.2). In particular, during the
reproductive stage, we used Eq. (27), which results in a low
Vemax2s(0) under low Sy, due to the more gradual slope of the
curve compared with the vegetative stage (1.41 for the repro-
ductive stage and 2.9 for the vegetative stage, in Eq. 27). The
lower photosynthesis rate indirectly affected low biomass ac-
cumulation in Brazil. This could be attributed to the underes-
timation of total aboveground biomass at maturity (Fig. 6a).

For underestimation of the LAI, low leaf biomass accumu-
lation, which is derived from the same mechanism, would be
the reason considering the calculation process of the LAI in
MATCRO. The LAI is determined by the division of the leaf
biomass weight by Sy, which depends on Dys. Because Siy
is calculated from the same parameter at all sites (Eq. 33)
and Fig. 3), leaf weight is the factor that causes differences
between sites, leading to the underestimation of the LAI in
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Figure 8. The difference between simulated harvest time (days) in MATCRO-Maize simulations with: (a) GGCMI in the rainfed, and (b)
irrigated conditions; (¢) GCPE in the irrigated, and (d) rainfed conditions. Blue indicates underestimation, while red indicates overestimation
between simulations and references. Panels (e) and (f) show the mean of absolute differences (days) between simulations and two reference
datasets under the rainfed (a, ¢) and irrigated (b, d) conditions, respectively.

Brazil. Therefore, the condition of Nfery = O might be the rea-
son for both underestimations.

Another reason for the difference in the growth trend of
biomass in Tanzania was related to the length of the grow-
ing season. The cultivar used in Tanzania was a short-season
type with 99d of observed growing season length, whereas
the cultivars at other sites were medium- or long-season types
with lengths ranging from 122 to 173 d (Bassu et al., 2014).
Capristo et al. (2007) reported that, compared with medium-
and long-season cultivars, short-season cultivars presented
the lowest biomass accumulation from flowering to matu-
rity, which was reflected in the observed biomass (Fig. 6¢).
This suggests that the trend of biomass accumulation varies
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across growing season types. Although other factors, such as
climatic conditions or biotic stresses, could also affect the
biomass accumulation. While MATCRO considers the grow-
ing season length as G4q m to judge the harvesting time, this
does not mean that MATCRO could capture the difference in
trends due to growing season types, leading to the gap be-
tween the simulations and observations shown in Tanzania.

4.2 Global-scale simulations

A comparison of the global distribution of maize yield re-
vealed that MATCRO-Maize could capture the distribution
of high-yield regions but could not capture the yield in trop-
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Figure 10. Interannual variability in global maize yield from 1981
to 2010 for our simulation (red circles) and FAOSTAT (black)
yields. COR represents the correlation coefficient of interannual
variability. NMAE means normalized mean absolute error. Aster-
isks ** indicate p value < 0.01.

ical regions (Figs. 8 and 9). Similar overestimations in tropi-
cal regions have also been reported in other global models,
possibly because of the lack of representation of extreme
weather events or crop pests (Lombardozzi et al., 2020; Os-
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borne et al., 2015). Moreover, soil fertility is also an impor-
tant source of model error and contributes to spatial variation.

Notably, MATCRO-Maize tended to overestimate the ab-
solute values for global yield and the yields of the top
20 countries, as reflected in the NMAE and RMSE values
(Figs. 10, 11, and 12). The simulated total global yield is
mainly determined by the yields of the top three maize-
producing countries: the United States, China, and Brazil,
which have large cultivation areas (Table 3). The yields of
all three countries were overestimated, with simulated yields
approximately 1.2, 1.7, and 1.8 times greater than the 30-
year averages of the observed values in the United States,
China, and Brazil, respectively, leading to an overestimation
of the total global yield. Such overestimations in the main
producing countries, especially in China and Brazil, are also
observed in other global crop models (von Bloh et al., 2018;
Osborne et al., 2015; Schaphoff et al., 2018). This indicates
that there are important factors for determining yields that
are not considered in most crop models.

For the top 20 producing countries, the overestimation was
particularly strong in Egypt, with a simulated yield approx-
imately four times greater than that reported by FAOSTAT.
This overestimation is caused by the irrigated conditions in
all grids in Egypt. Under simulation in rainfed conditions,
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Figure 11. Comparison of interannual variability for the top 20 maize-producing countries. Similar to Fig. 9. Notably, the simulated yield
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respectively.

crop growth in Egypt was not simulated in the model due
to the inhibited photosynthesis rate caused by strong water
stress. Under irrigated conditions, this strong water stress
was alleviated. In addition, the radiation in Egypt was con-
sistently strong throughout the growing period, and Nfer
was highest among the top 20 countries across the 30-year
simulation. The reported Ng.¢ increased from approximately
180kgha~! in 1980 to 360kgha~! in 2010. This caused the
photosynthesis rate to be high (Eq. 4) across the growing sea-
sons, leading to marked overestimation.

The current version of MATCRO-Maize can reproduce
yield responses to nitrogen fertilization across a range of fer-
tilizer levels, but it tends to overestimate yields under certain
conditions (e.g., Egypt). This occurs because the model as-
sumes high nitrogen use efficiency and idealized irrigation
conditions, where actual yields are constrained by soil qual-
ity, management, and local cultivar traits not explicitly rep-
resented. This suggests that the representation of nitrogen ef-
fects in the model remains simplified, and further refinement
is needed for region-specific scale simulation.

Although the simulated yield has the large error in terms
of the absolute value, the comparison of the 30-year aver-
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age yield was statistically significant, with a COR of 0.58 (p
value < 0.01) and an RMSE of 4008 kg ha™! (Fig. 12), show-
ing the ability to capture the spatial distribution of the yield
both in low- and high-producing countries from the first per-
spective of the comparison (Sect. 2.3.2). This result was com-
parable to another model, LPJ-GUESS (Olin et al., 2015),
with a COR of 0.46 and an RMSE of 4300 kg ha~! (Table 4).
However, the targeted countries differed in scope (top 20 pro-
ducing countries for MATCRO-Maize, and whole countries
for LPJ-GUESS).

In terms of interannual variability from the second per-
spective, the total global yield and approximately one-third
of the top 20 producing countries were statistically signifi-
cant, with p values < 0.01 (Figs. 10 and 11). It indicates that
MATCRO-Maize could reproduce the climatic effect glob-
ally to some extent. This result is also supported by similar
comparisons of other global crop models in terms of statis-
tics (Table 4). However, it is difficult to simply compare the
statistical values between the models owing to the differences
in periods, input data, and methods for detrending and aggre-
gating the yield. The COR of interannual variability for total
global yield in MATCRO-Maize was in the range of those

Geosci. Model Dev., 18, 8927-8948, 2025
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Table 3. Maize cultivated land area for 20 major producer countries from MIRCA2000 (Portmann et al., 2010).

Country Total area [ha]  Rainfed area [ha]  Irrigated area [ha]
Argentina 3248715.9 3147580.7 101 135.3
Brazil 11223262.5 11120154.9 103107.6
Canada 1364585.3 1328206.2 36379.1
China 24376 805.2 11615190.0 12761615.2
Egypt 827766.1 0.0 827766.1
Ethiopia 1172231.1 1084795.6 87435.5
France 3128401.0 2257380.0 871021.0
Hungary 1057610.7 1052622.6 4988.1
India 62947709 48336859 1461085.0
Indonesia 3479825.7 3135443.9 344381.8
Italy 1322692.9 534281.4 788411.5
Mexico 7459039.5 5852617.4 1606422.1
Nigeria 3686757.3 3667564.5 19192.8
Philippines 2590081.0 2590081.0 0.0
Romania 3139981.1 3016990.5 122990.6
Russia 4206747.0 3594403.2 612343.9
Serbia 1074614.2 1062985.8 11628.4
South Africa 3060053.5 2930208.2 129845.4
Ukraine 3382783.5 3194146.2 188 637.3
United States 31307667.3 26508 600.7 4799 066.7

of the other models (0.55; 0.42-0.89, respectively). For the
top 20 countries, almost all the COR values also fell within
the range of the other models. Therefore, these comparisons
from two perspectives might indicate that MATCRO-Maize
reproduces reasonable results. The moderate correlations ob-
served reflect the typical influence of yield data variability
and uncertainty in management practices across regions.

Geosci. Model Dev., 18, 8927-8948, 2025

4.3 Model limitations

MATCRO-Maize currently lacks explicit simulation of soil
organic carbon and soil nitrogen mineralization. Instead,
the effects of nitrogen supply are represented by describ-
ing the relationship between a broad range of nitrogen fer-
tilization levels (Muchow, 1988) and specific leaf nitrogen

https://doi.org/10.5194/gmd-18-8927-2025
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Figure 13. Relationship between Ny and yield in (a) FAOSTAT data, (b) simulated yield with the original setting (Default), (¢) simulated
yield with the changed S}, — Vemax relationship (test Sln-Vemax), (d) simulated yield with the changed parameter related to the Dys — Sip
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same as those in Fig. 11. The solid lines are the fitted curves for the data, while the dashed line in (b), (¢), and (d) indicates a fitted curve in

(a). All lines were fitted using a quadratic polynomial regression.

(SLN), which subsequently affects photosynthetic capacity
(Vemax). While this simplification allows for global-scale
application, it limits the model’s ability to accurately repre-
sent nitrogen balance in maize yield at specific sites. Yield
variations can be influenced by soil organic carbon and nitro-
gen, which are affected by farming practices that contribute
to soil fertility (Ma et al., 2023). Future development could
involve coupling MATCRO with a mechanistic soil nitrogen
and carbon module to a dynamic plant nitrogen balance. This
would enhance the model ability to capture nitrogen dynam-
ics under varying soil types and management practices.

The strong Ny effect shown in the evaluation (under-
estiomation found in Brazil for the point scale comparison)
and comparison based on the Npe and yield (Fig. 13). In
the model, N has a direct relationship with Si, (Eq. 28)
and consequently affects Vimax25(0) through the function
Sin-Vemax25(0) (Eq. 27). Therefore, the strong Ny effect is
caused by either the former, the latter, or both processes.
Few studies have explicitly shown time series changes in
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Sin and Spn-Vemax relationships from experiments. We used
some of them to establish the functions shown in Eqgs. (27)
and (28) (Sect. 2.2.2), resulting in a strong Nrer effect in the
model. However, the intentional experiment indicated that
the changed relationships could partly reproduce the ade-
quate effect, which was observed in the FAOSTAT yield.
This shows that the established functions include a degree
of uncertainty. Nitrogen effects are represented indirectly via
SLN as a function of fertilizer rate and developmental stage,
which constrains the model ability to capture nitrogen cy-
cling in soils and plants. Incorporating broader experimental
data could refine the model’s nitrogen response and improve
maize yield simulations.

In this study, we applied global parameters to simulate the
global yield across all grid cells and throughout the years
without considering cultivar differences. As mentioned in
Sect. 4.2, the trend of biomass accumulation varies across
growing season types. A limitation of the current study is
the use of global parameters at the site scale leads to dis-

Geosci. Model Dev., 18, 8927-8948, 2025
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Table 4. Statics of model simulation accuracy of the MATCRO-Maize and other crop models. Notably, the asterisks for GGCMI phase 1
indicate the p values: *** for p values < 0.001, ** for p values < 0.05, * for p values < 0.1, whereas those of LPJmL4 and MATCRO-Maize
indicate the p values: *** for p values < 0.001, ** for p values < 0.01, * for p values < 0.05.

COR of interannual variability

References Period Global USA China Brazil ~ Mexico France Argentina
MATCRO-Maize 1981-2010  0.549** 0.692%** 0.518** 0349  0.015 0.654™*F  0.694***
JULES-crop!-2 19612008  0.48 0.43 0.12 0.12 0.061 0.52 0.57
LPJmL4%b 1981-2010 - 0.675%** 0.676* 0.169  —0.124  —0.331  0.717"**
LPJmL53-¢ 1981-2010 - 0.686™** 0.641***  0.0591 0.0618 0.461* 0.650%**
GGCMI phase 3+ 1981-2015 - 0.817 0.245 0.029 - 0.649 0.727
GGCMI phase 1>°¢  1982-2006  0.42**-0.89*** (.89 0.75 0.66 0.85 0.87 0.85
COR of interannual variability
References Period Romania South Africa India Italy Hungary  Indonesia  Ukraine
MATCRO-Maize 1981-2010  0.719*** 0.646™*** 0.046 0.276  0.900***  0.252 0.339
JULES-crop!-2 1961-2008  0.32 0.41 0.34 0.34 0.33 0.065 -
LPJmL4%b 1981-2010 - 0.711%*%* —0.22 - - 0.124 —0.046
LPJmL53-¢ 1981-2010 - 0.667*** 0.496** - - —0.163 0.152
GGCMI phase 3*4  1981-2015 - - - - - - -
GGCMI phase 1>¢  1982-2006  0.90 0.91 0.76 0.76 0.90 0.42 0.61
30-year averaged yield
References Period COR RMSE [kg ha—1]
MATCRO-Maize 1981-2010  0.580™* 4008
LPJ-GUESS®! 1996-2005  0.46 4300

I Countries-level comparison was conducted for 12 countries, which were detrended only for observation. p values are not shown. 2.3 Countries-level comparison was conducted
for the top 10 producing countries, which were detrended via a 5-year moving average. 4 Twelve global gridded crop models were used. The COR shown here is the ensembled
mean value for the 5 largest producing countries after detrending. p values are not shown. 5 Fourteen global gridded crop models were used. The COR of the global yield shown
here is the minimum and maximum value, except for one nonsignificant correlation with the default setting. The COR of each country shown here is the best correlation among
the 14 models, including 3 different settings with statistical significance (p values are not shown). For both the global and country-level comparisons, a 5-year moving average
was used to remove trends. © The 10-year average comparisons included all countries. p values are not shown.  Osborne et al. (2015), b Schaphoff et al. (2018), ¢ von Bloh et

al. (2018), d Jagermeyr et al. (2021), © Miiller et al. (2017), f Olin et al. (2015).

crepancies between site-level and country-level simulations.
Although MATCRO-Maize shows relatively weak correla-
tions at the site scale due to the use of generalized param-
eters that do not account for local varieties and management,
the model demonstrates consistent and statistically signifi-
cant performance at country and global levels. This indicates
that MATCRO-Maize is well suited for capturing large-scale
yield patterns and for application in global gridded crop mod-
eling, while recognizing its limited capacity for precise site-
specific prediction. However, global-scale simulation results
tend to overestimate yield due to LAI being directly driven
by carbon balance, which can create feedback that produce
excessively high LAI. Future improvements should incorpo-
rate constraints on LAI expansion and adjust leaf partitioning
when LAI exceeds realistic levels.

Moreover, in major producing countries, such as the
United States and China, some studies have shown that there
is genetic gain in terms of maize yield (Cooper et al., 2014;
Duvick et al., 2003; Liu et al., 2021). Such cultivar differ-
ences and long-term genetic improvements are not included

Geosci. Model Dev., 18, 8927-8948, 2025

in the current MATCRO-Maize. This finding indicates that
the generic parameterization used in the model are simple in
accounting for the diversity of crop cultivars (Lombardozzi
et al., 2020), partly leading to a gap between the simulations
and observations, which is recognized as a limitation of the
global model (Osborne et al., 2015). Other important factors
that are not considered in the current MATCRO include bi-
otic stresses (e.g., diseases, pests) and detailed management
practices (e.g., plant density, as mentioned in Sect. 4.1) as it
affects crop growth and final yield. Further improvement to
incorporate such factors with reliable N-related functions
could be needed to contribute to more accurate simulations
and contribute to studies on the interaction between climate
and agriculture.

5 Conclusions

We developed a process-based crop model for maize yield
estimation, called MATCRO-Maize, by incorporating Cy4
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leaf-level photosynthesis and some crop-specific parame-
ters into MATCRO. The model was first evaluated at the
point scale, showing reasonable accuracy considering the
available field-based information for parameterization. The
calibrated parameters were set from point-scale experimen-
tal data and used uniformly in the global-scale simulation.
MATCRO-Maize could represent the spatial distribution well
and showed reasonable responses to climatic variability,
where the results were comparable with those of other stud-
ies in terms of statistics. The strong nitrogen fertilizer effect
was one of the MATCRO limitations, while the established
functions related to nitrogen fertilizer in the model have a
degree of uncertainty. Further experimental data under more
comprehensive conditions might improve the model. Overall,
MATCRO-Maize could contribute to climate impact studies
through its ability to be integrated with the LSM for crop
growth and the interactions between climate and agriculture.
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