Articles | Volume 18, issue 17
https://doi.org/10.5194/gmd-18-5575-2025
https://doi.org/10.5194/gmd-18-5575-2025
Model description paper
 | 
04 Sep 2025
Model description paper |  | 04 Sep 2025

Huge ensembles – Part 1: Design of ensemble weather forecasts using spherical Fourier neural operators

Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard

Related authors

Huge ensembles – Part 2: Properties of a huge ensemble of hindcasts generated with spherical Fourier neural operators
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5605–5633, https://doi.org/10.5194/gmd-18-5605-2025,https://doi.org/10.5194/gmd-18-5605-2025, 2025
Short summary
Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024,https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary

Cited articles

Agrawal, S., Carver, R., Gazen, C., Maddy, E., Krasnopolsky, V., Bromberg, C., Ontiveros, Z., Russell, T., Hickey, J., and Boukabara, S.: A Machine Learning Outlook: Post-processing of Global Medium-range Forecasts, arXiv [preprint], https://doi.org/10.48550/ARXIV.2303.16301, 2023. a
Allen, S., Ginsbourger, D., and Ziegel, J.: Evaluating forecasts for high-impact events using transformed kernel scores, arXiv [preprint], https://doi.org/10.48550/ARXIV.2202.12732, 2022. a, b, c
Allen, S., Bhend, J., Martius, O., and Ziegel, J.: Weighted Verification Tools to Evaluate Univariate and Multivariate Probabilistic Forecasts for High-Impact Weather Events, Weather Forecast., 38, 499–516, https://doi.org/10.1175/waf-d-22-0161.1, 2023. a
Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., and Ott, E.: A Machine Learning‐Based Global Atmospheric Forecast Model, Geophys. Res. Lett., 47, 9, https://doi.org/10.1029/2020gl087776, 2020. a
Balch, J. K., Abatzoglou, J. T., Joseph, M. B., Koontz, M. J., Mahood, A. L., McGlinchy, J., Cattau, M. E., and Williams, A. P.: Warming weakens the night-time barrier to global fire, Nature, 602, 442–448, https://doi.org/10.1038/s41586-021-04325-1, 2022. a
Short summary
Simulating extreme weather events in a warming world is a challenging task for current weather and climate models. These models' computational cost poses a challenge in studying low-probability extreme weather. We use machine learning to construct a new probabilistic system. We give an in-depth explanation of how we constructed this system. We present a thorough pipeline to validate our method. Our method requires fewer computational resources than existing weather and climate models.
Share