Articles | Volume 18, issue 2
https://doi.org/10.5194/gmd-18-529-2025
https://doi.org/10.5194/gmd-18-529-2025
Development and technical paper
 | 
30 Jan 2025
Development and technical paper |  | 30 Jan 2025

Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes

Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli

Related authors

Predicting ice supersaturation for contrail avoidance: ensemble forecasting using ICON with two-moment ice microphysics
Maleen Hanst, Carmen G. Köhler, Axel Seifert, and Linda Schlemmer
Atmos. Chem. Phys., 25, 17253–17274, https://doi.org/10.5194/acp-25-17253-2025,https://doi.org/10.5194/acp-25-17253-2025, 2025
Short summary
Case study of a long-lived Siberian summer cyclone that evolved from a heat low into an Arctic cyclone
Franziska Schnyder, Ming Hon Franco Lee, and Heini Wernli
Weather Clim. Dynam., 6, 1319–1337, https://doi.org/10.5194/wcd-6-1319-2025,https://doi.org/10.5194/wcd-6-1319-2025, 2025
Short summary
The role of radiation in the Northern Hemisphere troposphere-to-stratosphere transport
Tuule Müürsepp, Michael Sprenger, Heini Wernli, and Hanna Joos
EGUsphere, https://doi.org/10.5194/egusphere-2025-5224,https://doi.org/10.5194/egusphere-2025-5224, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Advective, adiabatic and diabatic contributions to heat extremes simulated with the Community Earth System Model version 2
Matthias Röthlisberger, Michael Sprenger, Urs Beyerle, Erich M. Fischer, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-5146,https://doi.org/10.5194/egusphere-2025-5146, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
The interaction of warm conveyor belt outflows with the upper-level waveguide: a four-type climatological classification
Selvakumar Vishnupriya, Michael Sprenger, Hanna Joos, and Heini Wernli
Weather Clim. Dynam., 6, 1195–1219, https://doi.org/10.5194/wcd-6-1195-2025,https://doi.org/10.5194/wcd-6-1195-2025, 2025
Short summary

Cited articles

Adams, S. V., Ford, R. W., Hambley, M., Hobson, J., Kavčič, I., Maynard, C. M., Melvin, T., Müller, E. H., Mullerworth, S., Porter, A. R., Rezny, M., Shipway, B. J., and Wong, R.: LFRic: Meeting the challenges of scalability and performance portability in Weather and Climate models, J. Parallel Distr. Com., 132, 383–396, https://doi.org/10.1016/j.jpdc.2019.02.007, 2019. a
Afanasyev, A., Bianco, M., Mosimann, L., Osuna, C., Thaler, F., Vogt, H., Fuhrer, O., VandeVondele, J., and Schulthess, T. C.: GridTools: A framework for portable weather and climate applications, SoftwareX, 15, 100707, https://doi.org/10.1016/j.softx.2021.100707, 2021. a, b
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/mwr-d-10-05013.1, 2011. a
Bauer, P., Quintino, T., Wedi, N. P., Bonanni, A., Chrust, M., Deconinck, W., Diamantakis, M., Dueben, P. D., English, S., Flemming, J., Gillies, P., Hadade, I., Hawkes, J., Hawkins, M., Iffrig, O., Kühnlein, C., Lange, M., Lean, P., Maciel, P., Marsden, O., Müller, A., Saarinen, S., Sarmany, D., Sleigh, M., Smart, S., Smolarkiewicz, P. K., Thiemert, D., Tumolo, G., Weihrauch, C., and Zanna, C.: The ECMWF scalability programme: Progress and plans, ECMWF Technical Memo No. 857, https://doi.org/10.21957/gdit22ulm, 2020. a, b
Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nature Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021. a
Download
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Share