Articles | Volume 18, issue 2
https://doi.org/10.5194/gmd-18-529-2025
https://doi.org/10.5194/gmd-18-529-2025
Development and technical paper
 | 
30 Jan 2025
Development and technical paper |  | 30 Jan 2025

Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes

Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli

Related authors

Characteristics and dynamics of extreme winters in the Barents Sea in a changing climate
Katharina Hartmuth, Heini Wernli, and Lukas Papritz
Weather Clim. Dynam., 6, 505–520, https://doi.org/10.5194/wcd-6-505-2025,https://doi.org/10.5194/wcd-6-505-2025, 2025
Short summary
Case study of a long-lived Siberian summer cyclone that evolved from a heat low into an Arctic cyclone
Franziska Schnyder, Ming Hon Franco Lee, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1724,https://doi.org/10.5194/egusphere-2025-1724, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
The interaction of warm conveyor belt outflows with the upper-level waveguide: a four-type climatological classification
Selvakumar Vishnupriya, Michael Sprenger, Hanna Joos, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-1731,https://doi.org/10.5194/egusphere-2025-1731, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Revealing the dynamics of a local Alpine windstorm using large-eddy simulations
Nicolai Krieger, Heini Wernli, Michael Sprenger, and Christian Kühnlein
Weather Clim. Dynam., 6, 447–469, https://doi.org/10.5194/wcd-6-447-2025,https://doi.org/10.5194/wcd-6-447-2025, 2025
Short summary
Insights from hailstorm track analysis in European climate change simulations
Killian P. Brennan, Iris Thurnherr, Michael Sprenger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-918,https://doi.org/10.5194/egusphere-2025-918, 2025
Short summary

Related subject area

Atmospheric sciences
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025,https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025,https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025,https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Estimation of aerosol and cloud radiative heating rate in the tropical stratosphere using a radiative kernel method
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025,https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary

Cited articles

Adams, S. V., Ford, R. W., Hambley, M., Hobson, J., Kavčič, I., Maynard, C. M., Melvin, T., Müller, E. H., Mullerworth, S., Porter, A. R., Rezny, M., Shipway, B. J., and Wong, R.: LFRic: Meeting the challenges of scalability and performance portability in Weather and Climate models, J. Parallel Distr. Com., 132, 383–396, https://doi.org/10.1016/j.jpdc.2019.02.007, 2019. a
Afanasyev, A., Bianco, M., Mosimann, L., Osuna, C., Thaler, F., Vogt, H., Fuhrer, O., VandeVondele, J., and Schulthess, T. C.: GridTools: A framework for portable weather and climate applications, SoftwareX, 15, 100707, https://doi.org/10.1016/j.softx.2021.100707, 2021. a, b
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/mwr-d-10-05013.1, 2011. a
Bauer, P., Quintino, T., Wedi, N. P., Bonanni, A., Chrust, M., Deconinck, W., Diamantakis, M., Dueben, P. D., English, S., Flemming, J., Gillies, P., Hadade, I., Hawkes, J., Hawkins, M., Iffrig, O., Kühnlein, C., Lange, M., Lean, P., Maciel, P., Marsden, O., Müller, A., Saarinen, S., Sarmany, D., Sleigh, M., Smart, S., Smolarkiewicz, P. K., Thiemert, D., Tumolo, G., Weihrauch, C., and Zanna, C.: The ECMWF scalability programme: Progress and plans, ECMWF Technical Memo No. 857, https://doi.org/10.21957/gdit22ulm, 2020. a, b
Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nature Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021. a
Download
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Share