Articles | Volume 18, issue 15
https://doi.org/10.5194/gmd-18-4823-2025
https://doi.org/10.5194/gmd-18-4823-2025
Model evaluation paper
 | 
08 Aug 2025
Model evaluation paper |  | 08 Aug 2025

Impacts of the CICE sea ice model and ERA atmosphere on an Antarctic MetROMS ocean model, MetROMS-UHel-v1.0

Cecilia Äijälä, Yafei Nie, Lucía Gutiérrez-Loza, Chiara De Falco, Siv Kari Lauvset, Bin Cheng, David Anthony Bailey, and Petteri Uotila

Related authors

How well do the regional atmospheric and oceanic models describe the Antarctic sea ice albedo?
Kristiina Verro, Cecilia Äijälä, Roberta Pirazzini, Ruzica Dadic, Damien Maure, Willem Jan van de Berg, Giacomo Traversa, Christiaan T. van Dalum, Petteri Uotila, Xavier Fettweis, Biagio Di Mauro, and Milla Johansson
EGUsphere, https://doi.org/10.5194/egusphere-2025-386,https://doi.org/10.5194/egusphere-2025-386, 2025
Short summary

Related subject area

Oceanography
Comparing an idealized deterministic–stochastic model (SUP model, version 1) of the tide- and wind-driven sea surface currents in the Gulf of Trieste to high-frequency radar observations
Sofia Flora, Laura Ursella, and Achim Wirth
Geosci. Model Dev., 18, 4685–4712, https://doi.org/10.5194/gmd-18-4685-2025,https://doi.org/10.5194/gmd-18-4685-2025, 2025
Short summary
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020a. a, b, c, d, e, f, g, h, i
Adusumilli, S., Fricker, H. A., Medley, B. C., Padman, L., and Siegfried, M. R.: Data from: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. UC San Diego Library Digital Collections, https://doi.org/10.6075/J04Q7SHT, 2020b. a
Äijälä, C. and Nie, Y.: MetROMS evaluation scripts, Zenodo [data set], https://doi.org/10.5281/zenodo.15471580, 2024. a
Äijälä, C. and Uotila, P.: MetROMS-UHel, Zenodo [code], https://doi.org/10.5281/zenodo.14185734, 2024. a
Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, in: Methods in Computational Physics: Advances in Research and Applications, edited by: Chang, J., Vol. 17 of General Circulation Models of the Atmosphere, 173–265, Elsevier, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. a
Download
Short summary
The sea ice around Antarctica has experienced record lows in recent years. To understand these changes, models are needed. MetROMS-UHel is a new version of an ocean–sea ice model with updated sea ice code and the atmospheric data. We investigate the effect of our updates on different variables with a focus on sea ice and show an improved sea ice representation as compared with observations.
Share