Articles | Volume 18, issue 2
https://doi.org/10.5194/gmd-18-433-2025
https://doi.org/10.5194/gmd-18-433-2025
Methods for assessment of models
 | 
27 Jan 2025
Methods for assessment of models |  | 27 Jan 2025

ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool

Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini

Related authors

MATCHA, a novel regional hydroclimate-chemical reanalysis: System description and evaluation
Chayan Roychoudhury, Rajesh Kumar, Cenlin He, William Y. Y. Cheng, Kirpa Ram, Naoki Mizukami, and Avelino F. Arellano
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-275,https://doi.org/10.5194/essd-2025-275, 2025
Preprint under review for ESSD
Short summary
Understanding mesoscale convective processes over the Congo Basin using the Model for Prediction Across Scales-Atmosphere (MPAS-A)
Siyu Zhao, Rong Fu, Kelly Núñez Ocasio, Robert Nystrom, Cenlin He, and Jiaying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3591,https://doi.org/10.5194/egusphere-2025-3591, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Assessing and enhancing Noah-MP land surface modeling over tropical environments
Yanyan Cheng, Kalli Furtado, Cenlin He, Fei Chen, Alan Ziegler, Song Chen, Matteo Detto, Yuna Mao, Baoxiang Pan, Yoshiko Kosugi, Marryanna Lion, Shoji Noguchi, Satoru Takanashi, Lulie Melling, and Baoqing Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3898,https://doi.org/10.5194/egusphere-2025-3898, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Diagnosing aerosol–meteorological interactions on snow within Earth system models: a proof-of-concept study over High Mountain Asia
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
Earth Syst. Dynam., 16, 1237–1266, https://doi.org/10.5194/esd-16-1237-2025,https://doi.org/10.5194/esd-16-1237-2025, 2025
Short summary
A long-term high-resolution air quality reanalysis with a public-facing air quality dashboard over the Contiguous United States (CONUS)
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data, 17, 1807–1834, https://doi.org/10.5194/essd-17-1807-2025,https://doi.org/10.5194/essd-17-1807-2025, 2025
Short summary

Cited articles

Alqahtani, A., Shah, M. I., Aldrees, A., and Javed, M. F.: Comparative Assessment of Individual and Ensemble Machine Learning Models for Efficient Analysis of River Water Quality, Sustainability, 14, 1183, https://doi.org/10.3390/su14031183, 2022. a
Antoniadis, A., Lambert-Lacroix, S., and Poggi, J.-M.: Random forests for global sensitivity analysis: A selective review, Reliability Engineering & System Safety, 206, 107312, https://doi.org/10.1016/j.ress.2020.107312, 2021. a
Antonogeorgos, G., Panagiotakos, D. B., Priftis, K. N., and Tzonou, A.: Logistic Regression and Linear Discriminant Analyses in Evaluating Factors Associated with Asthma Prevalence among 10- to 12-Years-Old Children: Divergence and Similarity of the Two Statistical Methods, International J. Pediatrics, 2009, 952042, https://doi.org/10.1155/2009/952042, 2009. a
Arpaci, A., Malowerschnig, B., Sass, O., and Vacik, H.: Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests, Appl. Geogr., 53, 258–270, https://doi.org/10.1016/j.apgeog.2014.05.015, 2014. a
Arsenault, K. R., Nearing, G. S., Wang, S., Yatheendradas, S., and Peters-Lidard, C. D.: Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation, J. Hydrometeorol., 19, 815–830, https://doi.org/10.1175/jhm-d-17-0205.1, 2018. a
Download
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Share