Articles | Volume 18, issue 2
https://doi.org/10.5194/gmd-18-433-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-433-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
Cenlin He
NSF National Center for Atmospheric Research (NCAR), Boulder, CO, USA
Fei Chen
Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR, China
Lorenzo Giovannini
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
Related authors
No articles found.
Yanyan Cheng, Kalli Furtado, Cenlin He, Fei Chen, Alan Ziegler, Song Chen, Matteo Detto, Yuna Mao, Baoxiang Pan, Yoshiko Kosugi, Marryanna Lion, Shoji Noguchi, Satoru Takanashi, Lulie Melling, and Baoqing Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3898, https://doi.org/10.5194/egusphere-2025-3898, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tropical land surface processes shape the Earth’s climate, but models often lack accuracy in the tropics due to limited data for validation. We improved the Noah-MP land surface model for the tropics using data from forests in Panama and Malaysia, and an urban site in Singapore. Calibration enhanced simulations of energy and water fluxes, and revealed key vegetation and soil parameters, as well as future directions for model improvement in tropical regions.
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
Earth Syst. Dynam., 16, 1237–1266, https://doi.org/10.5194/esd-16-1237-2025, https://doi.org/10.5194/esd-16-1237-2025, 2025
Short summary
Short summary
We present a novel data-driven approach to understand how pollution and weather processes interact to influence snowmelt in Asian glaciers and how these interactions are represented in three climate models. Our findings show where models need improvement in predicting snowmelt, particularly dust and its transport. This method can support future model development for reliable predictions in climate-vulnerable regions.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data, 17, 1807–1834, https://doi.org/10.5194/essd-17-1807-2025, https://doi.org/10.5194/essd-17-1807-2025, 2025
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS). The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county-level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Parag Joshi, Tzu-Shun Lin, Cenlin He, and Katia Lamer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1751, https://doi.org/10.5194/egusphere-2025-1751, 2025
Short summary
Short summary
Study revisits urban representation (using canopy models & bulk parameterization) in the Weather Research & Forecasting model. We propose methods to identify evaluable parameters via field measurements and found inconsistencies between UCM physics and code implementation. Simulations reveal small errors can significantly impact outputs, highlighting the need for precise physics implementation.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci., 29, 1221–1240, https://doi.org/10.5194/hess-29-1221-2025, https://doi.org/10.5194/hess-29-1221-2025, 2025
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-Multi-parameterisation (Noah-MP) land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modelling to better prepare for climate-related challenges.
Cenlin He, Tzu-Shun Lin, David M. Mocko, Ronnie Abolafia-Rosenzweig, Jerry W. Wegiel, and Sujay V. Kumar
EGUsphere, https://doi.org/10.5194/egusphere-2024-4176, https://doi.org/10.5194/egusphere-2024-4176, 2025
Short summary
Short summary
This study integrates the refactored community Noah-MP version 5.0 model with the NASA Land Information System (LIS) version 7.5.2 to streamline the synchronization, development, and maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. The model benchmarking and evaluation results reveal key model strengths and weaknesses in simulating land surface quantities and show implications for future model improvements.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021, https://doi.org/10.5194/gmd-14-2097-2021, 2021
Short summary
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020, https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Cited articles
Alqahtani, A., Shah, M. I., Aldrees, A., and Javed, M. F.: Comparative Assessment of Individual and Ensemble Machine Learning Models for Efficient Analysis of River Water Quality, Sustainability, 14, 1183, https://doi.org/10.3390/su14031183, 2022. a
Antoniadis, A., Lambert-Lacroix, S., and Poggi, J.-M.: Random forests for global sensitivity analysis: A selective review, Reliability Engineering & System Safety, 206, 107312, https://doi.org/10.1016/j.ress.2020.107312, 2021. a
Antonogeorgos, G., Panagiotakos, D. B., Priftis, K. N., and Tzonou, A.: Logistic Regression and Linear Discriminant Analyses in Evaluating Factors Associated with Asthma Prevalence among 10- to 12-Years-Old Children: Divergence and Similarity of the Two Statistical Methods, International J. Pediatrics, 2009, 952042, https://doi.org/10.1155/2009/952042, 2009. a
Arpaci, A., Malowerschnig, B., Sass, O., and Vacik, H.: Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests, Appl. Geogr., 53, 258–270, https://doi.org/10.1016/j.apgeog.2014.05.015, 2014. a
Arsenault, K. R., Nearing, G. S., Wang, S., Yatheendradas, S., and Peters-Lidard, C. D.: Parameter Sensitivity of the Noah-MP Land Surface Model with Dynamic Vegetation, J. Hydrometeorol., 19, 815–830, https://doi.org/10.1175/jhm-d-17-0205.1, 2018. a
Baki, H., Chinta, S., C Balaji, and Srinivasan, B.: Determining the sensitive parameters of the Weather Research and Forecasting (WRF) model for the simulation of tropical cyclones in the Bay of Bengal using global sensitivity analysis and machine learning, Geosci. Model Dev., 15, 2133–2155, https://doi.org/10.5194/gmd-15-2133-2022, 2022. a
Bar Massada, A., Syphard, A. D., Stewart, S. I., and Radeloff, V. C.: Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA, Int. J. Wildland Fire, 22, 174–183, https://doi.org/10.1071/WF11178, 2013. a
Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Foundations of Data Science, 2, 55–80, https://doi.org/10.3934/fods.2020004, 2020. a
Bonavita, M. and Laloyaux, P.: Machine Learning for Model Error Inference and Correction, J. Adv. Model. Earth Sy., 12, e2020MS002232, https://doi.org/10.1029/2020MS002232, 2020. a
Boser, B. E., Guyon, I. M., and Vapnik, V. N.: A training algorithm for optimal margin classifiers, p. 144–152, https://doi.org/10.1145/130385.130401, 1992. a
Box, G. E. and Tiao, G. C.: John Wiley & Sons, Ltd, ISBN 9781118033197, https://doi.org/10.1002/9781118033197, 1992. a
Bratley, P. and Fox, B. L.: Algorithm 659: Implementing Sobol's quasirandom sequence generator, ACM Trans. Math. Softw., 14, 88–100, https://doi.org/10.1145/42288.214372, 1988. a
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, 2001. a
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification and Regression Trees, Biometrics, 40, 874 pp., https://api.semanticscholar.org/CorpusID:29458883 (last access: 1 March 2024), 1984. a
Brunton, S. L. and Kutz, J. N.: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, https://doi.org/10.1017/9781108380690, 2019. a
Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity analysis of large models, Environ. Modell. Softw., 22, 1509–1518, https://doi.org/10.1016/j.envsoft.2006.10.004, 2007. a
Campolongo, F., Saltelli, A., and Cariboni, J.: From screening to quantitative sensitivity analysis. A unified approach, Comput. Phys. Commun., 182, 978–988, https://doi.org/10.1016/j.cpc.2010.12.039, 2011. a
Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V.: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues, Nat. Hazards Earth Syst. Sci., 13, 2815–2831, https://doi.org/10.5194/nhess-13-2815-2013, 2013. a
Chase, R. J., Harrison, D. R., Burke, A., Lackmann, G. M., and McGovern, A.: A Machine Learning Tutorial for Operational Meteorology. Part I: Traditional Machine Learning, Weather Forecast., 37, 1509–1529, https://doi.org/10.1175/WAF-D-22-0070.1, 2022. a
Chase, R. J., Harrison, D. R., Lackmann, G. M., and McGovern, A.: A Machine Learning Tutorial for Operational Meteorology, Part II: Neural Networks and Deep Learning, Weather Forecast., 38, 1271–1293, https://doi.org/10.1175/WAF-D-22-0187.1, 2023. a
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, ACM, https://doi.org/10.1145/2939672.2939785, 2016. a
Chen, T., Zhu, L., Niu, R.-Q., Trinder, C. J., Peng, L., and Lei, T.: Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models, J. Mountain Sci., 17, 670–685, https://doi.org/10.1007/s11629-019-5839-3, 2020. a
Cinquegrana, D., Zollo, A. L., Montesarchio, M., and Bucchignani, E.: A Metamodel-Based Optimization of Physical Parameters of High Resolution NWP ICON-LAM over Southern Italy, Atmosphere, 14, 788, https://doi.org/10.3390/atmos14050788, 2023. a, b
Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses for hydrological modeling, Water Resour. Res., 47, W09301, https://doi.org/10.1029/2010WR009827, 2011. a
Cortes, C. and Vapnik, V. N.: Support-Vector Networks, Mach. Learn., 20, 273–297, https://api.semanticscholar.org/CorpusID:52874011 (last access: 1 March 2024), 1995. a
Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V., Villefranque, N., Rio, C., Audouin, O., Salter, J., Bazile, E., Brient, F., Favot, F., Honnert, R., Lefebvre, M.-P., Madeleine, J.-B., Rodier, Q., and Xu, W.: Process-Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement, J. Adv. Model. Earth Sy., 13, e2020MS002217, https://doi.org/10.1029/2020MS002217, 2021. a, b
Cui, C. and Wang, D.: High dimensional data regression using Lasso model and neural networks with random weights, Information Sci., 372, 505–517, https://doi.org/10.1016/j.ins.2016.08.060, 2016. a
Cuntz, M., Mai, J., Zink, M., Thober, S., Kumar, R., Schäfer, D., Schrön, M., Craven, J., Rakovec, O., Spieler, D., Prykhodko, V., Dalmasso, G., Musuuza, J., Langenberg, B., Attinger, S., and Samaniego, L.: Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resour. Res., 51, 6417–6441, https://doi.org/10.1002/2015WR016907, 2015. a, b
Cuntz, M., Mai, J., Samaniego, L., Clark, M., Wulfmeyer, V., Branch, O., Attinger, S., and Thober, S.: The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model, J. Geophys. Res.-Atmos., 121, 10676–10700, https://doi.org/10.1002/2016JD025097, 2016. a, b
Dagon, K., Sanderson, B. M., Fisher, R. A., and Lawrence, D. M.: A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, https://doi.org/10.5194/ascmo-6-223-2020, 2020. a, b
Daviran, M., Shamekhi, M., Ghezelbash, R., and Maghsoudi, A.: Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: hyperparameters tuning by genetic optimization algorithm, Int. J. Environ. Sci. Technol., 20, 259–276, https://doi.org/10.1007/s13762-022-04491-3, 2023. a
Dey, A., Sahoo, D. P., Kumar, R., and Remesan, R.: A multimodel ensemble machine learning approach for CMIP6 climate model projections in an Indian River basin, Int. J. Climatol., 42, 9215–9236, https://doi.org/10.1002/joc.7813, 2022. a
Di Santo, D.: ML-AMPSIT/datasetFlatSeabreeze: datasetFlatSeabreeze, Zenodo [data set], https://doi.org/10.5281/zenodo.14051616, 2024a. a
Di Santo, D.: ML-AMPSIT, Zenodo [code], https://doi.org/10.5281/zenodo.10789930, 2024b. a
Dudhia, J.: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model, J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989. a
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003. a
Elia, L., Castellaro, S., Dahal, A., and Lombardo, L.: Assessing multi-hazard susceptibility to cryospheric hazards: Lesson learnt from an Alaskan example, Sci. Total Environ., 898, 165289, https://doi.org/10.1016/j.scitotenv.2023.165289, 2023. a
Engelbrecht, A. P., Cloete, I., and Zurada, J. M.: Determining the significance of input parameters using sensitivity analysis, in: From Natural to Artificial Neural Computation, edited by: Mira, J. and Sandoval, F., IWANN 1995, Lecture Notes in Computer Science, vol 930, Springer, Berlin, Heidelberg, 82–388, https://doi.org/10.1007/3-540-59497-3_199, 1995. a
Farooq, F., Nasir Amin, M., Khan, K., Rehan Sadiq, M., Faisal Javed, M., Aslam, F., and Alyousef, R.: A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC), Appl. Sci., 10, 7330, https://doi.org/10.3390/app10207330, 2020. a
Fernández-Godino, M. G., Park, C., Kim, N., and Haftka, R.: Review of multi-fidelity models, Adv. Comput. Sci. Eng., 1, 351–400, https://doi.org/10.3934/acse.2023015, 2017. a
Fischer, M., Knippertz, P., van der Linden, R., Lemburg, A., Pante, G., Proppe, C., and Marsham, J. H.: Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models, Weather Clim. Dynam., 5, 511–536, https://doi.org/10.5194/wcd-5-511-2024, 2024. a
Forrester, A., Sobester, A., and Keane, A.: Engineering Design Via Surrogate Modelling: A Practical Guide, ISBN 978-0-470-06068-1, https://doi.org/10.1002/9780470770801, 2008. a
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007. a
Gholampour, A., Gandomi, A. H., and Ozbakkaloglu, T.: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming, Construct. Build. Mater., 130, 122–145, https://doi.org/10.1016/j.conbuildmat.2016.10.114, 2017. a
Gigović, L., Pourghasemi, H. R., Drobnjak, S., and Bai, S.: Testing a New Ensemble Model Based on SVM and Random Forest in Forest Fire Susceptibility Assessment and Its Mapping in Serbia’s Tara National Park, Forests, 10, 408, https://doi.org/10.3390/f10050408, 2019. a
Grundner, A., Beucler, T., Gentine, P., Iglesias-Suarez, F., Giorgetta, M. A., and Eyring, V.: Deep Learning Based Cloud Cover Parameterization for ICON, J. Adv. Model. Earth Sy., 14, e2021MS002959, https://doi.org/10.1029/2021MS002959, 2022. a
Haghiabi, A. H., Nasrolahi, A. H., and Parsaie, A.: Water quality prediction using machine learning methods, Water Qual. Res. J., 53, 3–13, https://doi.org/10.2166/wqrj.2018.025, 2018. a
Han, Y., Zhang, G. J., Huang, X., and Wang, Y.: A Moist Physics Parameterization Based on Deep Learning, J. Adv. Model. Earth Sy., 12, e2020MS002076, https://doi.org/10.1029/2020MS002076, 2020. a
He, C., P., V., Barlage, M., Chen, F., Gochis, D., Cabell, R., Schneider, T., Rasmussen, R., Niu, G.-Y., Yang, Z.-L., Niyogi, D., and Ek, M.: The Community Noah-MP Land Surface Modeling System Technical Description Version 5.0, No. NCAR/TN-575+STR, https://doi.org/10.5065/ew8g-yr95, 2023. a
Herman, J. D., Kollat, J. B., Reed, P. M., and Wagener, T.: Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models, Hydrol. Earth Syst. Sci., 17, 2893–2903, https://doi.org/10.5194/hess-17-2893-2013, 2013. a
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006. a
Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., and Mansor, S.: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN), Geomat. Nat. Haz. Risk, 9, 49–69, https://doi.org/10.1080/19475705.2017.1407368, 2018. a
Kim, S. and Boukouvala, F.: Machine learning-based surrogate modeling for data-driven optimization: a comparison of subset selection for regression techniques, Optim. Lett., 14, 989–1010, https://doi.org/10.1007/s11590-019-01428-7, 2020. a
Kok, Z. H., Mohamed Shariff, A. R., Alfatni, M. S. M., and Khairunniza-Bejo, S.: Support Vector Machine in Precision Agriculture: A review, Comput. Electron. Agr., 191, 106546, https://doi.org/10.1016/j.compag.2021.106546, 2021. a
Lamberti, G. and Gorlé, C.: A multi-fidelity machine learning framework to predict wind loads on buildings, J. Wind Eng. Ind. Aerod., 214, 104647, https://doi.org/10.1016/j.jweia.2021.104647, 2021. a
Lee, J.-H., Sameen, M. I., Pradhan, B., and Park, H.-J.: Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods, Geomorphology, 303, 284–298, https://doi.org/10.1016/j.geomorph.2017.12.007, 2018. a
Lei, T., Ng, S., and Siu, S.: Application of ANN, XGBoost, and Other ML Methods to Forecast Air Quality in Macau, Sustainability, 15, 5341, https://doi.org/10.3390/su15065341, 2023. a
Leinonen, J., Nerini, D., and Berne, A.: Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields With a Generative Adversarial Network, IEEE T. Geosci. Remote, 59, 7211–7223, https://doi.org/10.1109/TGRS.2020.3032790, 2021. a
Li, J., Chen, F., Zhang, G., Barlage, M., Gan, Y., Xin, Y., and Wang, C.: Impacts of Land Cover and Soil Texture Uncertainty on Land Model Simulations Over the Central Tibetan Plateau, J. Adv. Model. Earth Sy., 10, 2121–2146, https://doi.org/10.1029/2018MS001377, 2018. a
Liu, Y., Xu, P., Cao, C., Shan, B., Zhu, K., Ma, Q., Zhang, Z., and Yin, H.: A comparative evaluation of machine learning algorithms and an improved optimal model for landslide susceptibility: a case study, Geomat. Nat. Haz. Risk, 12, 1973–2001, https://doi.org/10.1080/19475705.2021.1955018, 2021. a
Longo, R., Bellemans, A., Derudi, M., and Parente, A.: A multi-fidelity framework for the estimation of the turbulent Schmidt number in the simulation of atmospheric dispersion, Build. Environ., 185, 107066, https://doi.org/10.1016/j.buildenv.2020.107066, 2020. a
Maleki, H., Sorooshian, A., Goudarzi, G., Baboli, Z., Tahmasebi Birgani, Y., and Rahmati, M.: Air pollution prediction by using an artificial neural network model, Clean Technol. Environ., 21, 1341–1352, https://doi.org/10.1007/s10098-019-01709-w, 2019. a
Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for Climate Research, Cambridge University Press, https://doi.org/10.1017/9781107588783, 2018. a
Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., and de Mendonça, A.: Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests, BMC Research Notes, 4, 299, https://doi.org/10.1186/1756-0500-4-299, 2011. a
Mckay, M., Beckman, R., and Conover, W.: A Comparison of Three Methods for Selecting Vales of Input Variables in the Analysis of Output From a Computer Code, Technometrics, 21, 239–245, https://doi.org/10.1080/00401706.1979.10489755, 1979. a
Meenal, R., Binu, D., Ramya, K. C., Michael, P. A., Vinoth Kumar, K., Rajasekaran, E., and Sangeetha, B.: Weather Forecasting for Renewable Energy System: A Review, Arch. Comput. Methods E., 29, 2875–2891, https://doi.org/10.1007/s11831-021-09695-3, 2022. a
Mendoza, P. A., Clark, M. P., Barlage, M., Rajagopalan, B., Samaniego, L., Abramowitz, G., and Gupta, H.: Are we unnecessarily constraining the agility of complex process-based models?, Water Resour. Res., 51, 716–728, https://doi.org/10.1002/2014WR015820, 2015. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
Mooers, G., Pritchard, M., Beucler, T., Ott, J., Yacalis, G., Baldi, P., and Gentine, P.: Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models With Real-Geography Boundary Conditions, J. Adv. Model. Earth Sy., 13, e2020MS002385, https://doi.org/10.1029/2020MS002385, 2021. a
Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Quality Eng., 37, 307–310, 1991. a
Murti, M. A., Junior, R., Ahmed, A. N., and Elshafie, A.: Earthquake multi-classification detection based velocity and displacement data filtering using machine learning algorithms, Sci. Rep., 12, 21200, https://doi.org/10.1038/s41598-022-25098-1, 2022. a
Muthukrishnan, R. and Rohini, R.: LASSO: A feature selection technique in predictive modeling for machine learning, in: 2016 IEEE International Conference on Advances in Computer Applications (ICACA), 18–20, https://doi.org/10.1109/ICACA.2016.7887916, 2016. a
Niu, G.-Y. and Yang, Z.-L.: Effects of vegetation canopy processes on snow surface energy and mass balances, J. Geophys. Res.-Atmos., 109, D23111, https://doi.org/10.1029/2004JD004884, 2004. a
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su, H.: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data, J. Geophys. Res.-Atmos., 112, D07103, https://doi.org/10.1029/2006JD007522, 2007. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011. a
Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., and Pereira, J. M.: Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest, Forest Ecol. Manage., 275, 117–129, https://doi.org/10.1016/j.foreco.2012.03.003, 2012. a
O'Hagan, A.: Bayesian analysis of computer code outputs: A tutorial, Reliab. Eng. Syst. Safe., 91, 1290–1300, https://doi.org/10.1016/j.ress.2005.11.025, 2006. a
Palani, S., Liong, S.-Y., and Tkalich, P.: An ANN application for water quality forecasting, Mar. Pollut. Bull., 56, 1586–1597, https://doi.org/10.1016/j.marpolbul.2008.05.021, 2008. a
Pourtaghi, Z. S., Pourghasemi, H. R., Aretano, R., and Semeraro, T.: Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques, Ecol. Indic., 64, 72–84, https://doi.org/10.1016/j.ecolind.2015.12.030, 2016. a
Pradhan, B.: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Comput. Geosci., 51, 350–365, https://doi.org/10.1016/j.cageo.2012.08.023, 2013. a
Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Kevin Tucker, P.: Surrogate-based analysis and optimization, Prog. Aerospace Sci., 41, 1–28, https://doi.org/10.1016/j.paerosci.2005.02.001, 2005. a
Rahmati, O., Pourghasemi, H. R., and Melesse, A. M.: Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran, CATENA, 137, 360–372, https://doi.org/10.1016/j.catena.2015.10.010, 2016. a
Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine Learning, The MIT Press, ISBN 9780262256834, https://doi.org/10.7551/mitpress/3206.001.0001, 2005. a
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid processes in climate models, P. Natl. Acad. Sci. USA, 115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018. a
Ren, Y., Zhang, L., and Suganthan, P.: Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article], IEEE Comput. Intell. M., 11, 41–53, https://doi.org/10.1109/MCI.2015.2471235, 2016. a
Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J., Chica-Olmo, M., and Ribeiro, L.: Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain), Sci. Total Environ., 476–477, 189–206, https://doi.org/10.1016/j.scitotenv.2014.01.001, 2014. a
Ross, A., Li, Z., Perezhogin, P., Fernandez-Granda, C., and Zanna, L.: Benchmarking of Machine Learning Ocean Subgrid Parameterizations in an Idealized Model, J. Adv. Model. Earth Sy., 15, e2022MS003258, https://doi.org/10.1029/2022MS003258, 2023. a
Sakaguchi, K. and Zeng, X.: Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5), J. Geophys. Res.-Atmos., 114, D01107, https://doi.org/10.1029/2008JD010834, 2009. a
Salmasi, F., Nouri, M., Sihag, P., and Abraham, J.: Application of SVM, ANN, GRNN, RF, GP and RT models for predicting discharge coefficients of oblique sluice gates using experimental data, Water Supply, 21, 232–248, https://doi.org/10.2166/ws.2020.226, 2020. a
Saltelli, A.: Elementary Effects Method, Chap. 3, John Wiley & Sons, Ltd, 109–154, ISBN 9780470725184, https://doi.org/10.1002/9780470725184.ch3, 2007. a
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S.: Variance based sensitivity analysis of model output, Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 259–270, https://doi.org/10.1016/j.cpc.2009.09.018, 2010. a, b
Sarkar, A. and Pandey, P.: River Water Quality Modelling Using Artificial Neural Network Technique, Aquatic Procedia, 4, 1070–1077, https://doi.org/10.1016/j.aqpro.2015.02.135, 2015. a
Satir, O., Berberoglu, S., and Donmez, C.: Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem, Geomat. Nat. Haz. Risk, 7, 1645–1658, https://doi.org/10.1080/19475705.2015.1084541, 2016. a
Schaake, J. C., Koren, V. I., Duan, Q.-Y., Mitchell, K., and Chen, F.: Simple water balance model for estimating runoff at different spatial and temporal scales, J. Geophys. Res.-Atmos., 101, 7461–7475, https://doi.org/10.1029/95JD02892, 1996. a
Schneider, R., Bonavita, M., Geer, A., Arcucci, R., Dueben, P., Vitolo, C., Le Saux, B., Demir, B., and Mathieu, P.-P.: ESA-ECMWF Report on recent progress and research directions in machine learning for Earth System observation and prediction, npj Clim. Atmos. Sci., 5, 51, https://doi.org/10.1038/s41612-022-00269-z, 2022. a
Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., Mozaffari, A., and Stadtler, S.: Can deep learning beat numerical weather prediction?, Philos. T. Roy. Soc. A-Math., 379, 20200097, https://doi.org/10.1098/rsta.2020.0097, 2021. a
Schölkopf, B. and Smola, A.: Support Vector Machines and Kernel Algorithms, Encyclopedia of Biostatistics, 5328–5335 (2005), ISBN 0-470-84907-X, 2002. a
Sekulić, A., Kilibarda, M., Heuvelink, G. B., Nikolić, M., and Bajat, B.: Random Forest Spatial Interpolation, Remote Sens., 12, 1687, https://doi.org/10.3390/rs12101687, 2020. a
Shah, M. I., Alaloul, W. S., Alqahtani, A., Aldrees, A., Musarat, M. A., and Javed, M. F.: Predictive Modeling Approach for Surface Water Quality: Development and Comparison of Machine Learning Models, Sustainability, 13, https://doi.org/10.3390/su13147515, 2021. a
Sharma, A., Paliwal, K. K., Imoto, S., and Miyano, S.: A feature selection method using improved regularized linear discriminant analysis, Mach. Vision Appl., 25, 775–786, https://doi.org/10.1007/s00138-013-0577-y, 2014. a
Shen, K.-Q., Ong, C.-J., Li, X.-P., and Wilder-Smith, E. P. V.: Feature selection via sensitivity analysis of SVM probabilistic outputs, Mach. Learn., 70, 1–20, https://doi.org/10.1007/s10994-007-5025-7, 2008. a
Sihag, P., Kumar, V., Afghan, F. R., Pandhiani, S. M., and Keshavarzi, A.: Predictive modeling of PM2.5 using soft computing techniques: case study—Faridabad, Haryana, India, Air Quality, Atmos. Health, 12, 1511–1520, https://doi.org/10.1007/s11869-019-00755-z, 2019. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A Description of the Advanced Research WRF Version 4, NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97, 2019. a
Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D., Liu, Z., Berner, J., Wanh, W., Powers, J., Duda, M., Barker, D., and Huang, X.-Y.: A Description of the Advanced Research WRF Model Version 4.3, No. NCAR/TN-556+STR, https://doi.org/10.5065/1dfh-6p97, 2021. a, b
Sridhara, S., Manoj, K. N., Gopakkali, P., Kashyap, G. R., Das, B., Singh, K. K., and Srivastava, A. K.: Evaluation of machine learning approaches for prediction of pigeon pea yield based on weather parameters in India, Int. J.f Biometeorol., 67, 165–180, https://doi.org/10.1007/s00484-022-02396-x, 2023. a
Stein, M. L.: Interpolation of spatial data: some theory for kriging, Springer Science & Business Media, https://doi.org/10.1007/978-1-4612-1494-6, 1999. a, b
Suárez Sánchez, A., García Nieto, P., Riesgo Fernández, P., del Coz Díaz, J., and Iglesias-Rodríguez, F.: Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain), Math. Comput. Model., 54, 1453–1466, https://doi.org/10.1016/j.mcm.2011.04.017, 2011. a
Tian, W.: A review of sensitivity analysis methods in building energy analysis, Renew. Sust. Energ. Rev., 20, 411–419, https://doi.org/10.1016/j.rser.2012.12.014, 2013. a
Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso, J. Roy. Stat. Soc. Ser. B, 58, 267–288, https://doi.org/10.1111/j.2517-6161.1996.tb02080.x, 1996. a
Torres, M.: A Machine Learning Method for Parameter Estimation and Sensitivity Analysis, 330–343, ISBN 978-3-030-77976-4, https://doi.org/10.1007/978-3-030-77977-1_26, 2021. a
Trabelsi, F. and Bel Hadj Ali, S.: Exploring Machine Learning Models in Predicting Irrigation Groundwater Quality Indices for Effective Decision Making in Medjerda River Basin, Tunisia, Sustainability, 14, 2341, https://doi.org/10.3390/su14042341, 2022. a
Vapnik, V. N. and Chervonenkis, A.: On a class of algorithms of learning pattern recognition, Avtomat. i Telemekh, 25, 112–120, 1963. a
Watson-Parris, D., Williams, A., Deaconu, L., and Stier, P.: Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator, Geosci. Model Dev., 14, 7659–7672, https://doi.org/10.5194/gmd-14-7659-2021, 2021. a, b
Wicker, L. and Skamarock, W.: Time-Splitting Methods for Elastic Models Using Forward Time Schemes, Mon. Weather Rev., 130, 2088–2097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2, 2002. a
Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., and Yamazaki, K.: History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble, Clim. Dynam., 41, 1703–1729, https://doi.org/10.1007/s00382-013-1896-4, 2013. a
Wolff, B., Kramer, O., and Heinemann, D.: Selection of Numerical Weather Forecast Features for PV Power Predictions with Random Forests, in: Data Analytics for Renewable Energy Integration, edited by: Woon, W. L., Aung, Z., Kramer, O., and Madnick, S., Springer International Publishing, Cham, 78–91, https://doi.org/10.1007/978-3-319-50947-1, 2017. a
Wu, W., Li, M.-F., Xu, X., Tang, X.-P., Yang, C., and Liu, H.-B.: The transferability of random forest and support vector machine for estimating daily global solar radiation using sunshine duration over different climate zones, Theor. Appl. Climatol., 146, 45–55, https://doi.org/10.1007/s00704-021-03726-6, 2021. a
Wu, Z., Cui, N., Gong, D., Zhu, F., Xing, L., Zhu, B., Chen, X., Wen, S., and Liu, Q.: Simulation of daily maize evapotranspiration at different growth stages using four machine learning models in semi-humid regions of northwest China, J. Hydrol., 617, 128947, https://doi.org/10.1016/j.jhydrol.2022.128947, 2023. a
Yang, W.-X., Wang, F.-F., Pan, Y.-Y., Xie, J.-Q., Lu, M.-H., and You, C.-G.: Comparison of ischemic stroke diagnosis models based on machine learning, Front. Neurol., 13, 1014346, https://doi.org/10.3389/fneur.2022.1014346, 2022. a
Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins, J. Geophys. Res.-Atmos., 116, D12110, https://doi.org/10.1029/2010JD015140, 2011. a
Yilmaz, I.: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine, Environ. Earth Sci., 61, 821–836, https://doi.org/10.1007/s12665-009-0394-9, 2010. a
Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., and Al-Katheeri, M. M.: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia, Landslides, 13, 839–856, https://doi.org/10.1007/s10346-015-0614-1, 2016. a
Yu, R., Yang, Y., Yang, L., Han, G., and Move, O. A.: RAQ–A Random Forest Approach for Predicting Air Quality in Urban Sensing Systems, Sensors, 16, https://doi.org/10.3390/s16010086, 2016. a
Yu, Z., Dai, H., Yang, J., Zhu, Y., and Yuan, S.: Global sensitivity analysis with deep learning-based surrogate models for unraveling key parameters and processes governing redox zonation in riparian zone, J. Hydrol., 638, 131442, https://doi.org/10.1016/j.jhydrol.2024.131442, 2024. a
Yuval, J. and O'Gorman, P. A.: Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions, Nat. Commun., 11, 3295, https://doi.org/10.1038/s41467-020-17142-3, 2020. a
Zhang, X., Srinivasan, R., and Van Liew, M.: Approximating SWAT Model Using Artificial Neural Network and Support Vector Machine1, JAWRA J. Am. Water Resour. Assoc., 45, 460–474, https://doi.org/10.1111/j.1752-1688.2009.00302.x, 2009. a
Zhou, C., Yin, K., Cao, Y., Ahmed, B., Li, Y., Catani, F., and Pourghasemi, H. R.: Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China, Comput. Geosci., 112, 23–37, https://doi.org/10.1016/j.cageo.2017.11.019, 2018. a
Zouhri, W., Homri, L., and Dantan, J.-Y.: Handling the impact of feature uncertainties on SVM: A robust approach based on Sobol sensitivity analysis, Expert Syst. Appl., 189, 115691, https://doi.org/10.1016/j.eswa.2021.115691, 2022. a
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and...