Articles | Volume 18, issue 13
https://doi.org/10.5194/gmd-18-4293-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-4293-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Department of Civil, Environmental and Geospatial Engineering, Michigan Technological University, Houghton, MI, USA
Great Lakes Research Center, Michigan Technological University, Houghton, MI, USA
Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA
Chenfu Huang
Great Lakes Research Center, Michigan Technological University, Houghton, MI, USA
Yafang Zhong
Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI, USA
Michael Notaro
Nelson Institute Center for Climatic Research, University of Wisconsin-Madison, Madison, WI, USA
Miraj B. Kayastha
Department of Civil, Environmental and Geospatial Engineering, Michigan Technological University, Houghton, MI, USA
Xing Zhou
Department of Civil, Environmental and Geospatial Engineering, Michigan Technological University, Houghton, MI, USA
Chuyan Zhao
Great Lakes Research Center, Michigan Technological University, Houghton, MI, USA
Christa Peters-Lidard
National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, USA
Carlos Cruz
National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, USA
Eric Kemp
National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, USA
Related authors
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-47, https://doi.org/10.5194/wes-2025-47, 2025
Preprint under review for WES
Short summary
Short summary
This study introduces a system that combines weather, ocean, and wave models to better understand their interactions during tropical storms and their impact on offshore structures like wind turbines. Tested using Hurricane Henri (2021), the system improves storm predictions by including how waves and ocean cooling affect storm strength and wind patterns. The results show this approach helps assess risks to offshore infrastructure during severe weather, making it more accurate and reliable.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Pengfei Xue, Xinyu Ye, Jeremy S. Pal, Philip Y. Chu, Miraj B. Kayastha, and Chenfu Huang
Geosci. Model Dev., 15, 4425–4446, https://doi.org/10.5194/gmd-15-4425-2022, https://doi.org/10.5194/gmd-15-4425-2022, 2022
Short summary
Short summary
The Great Lakes are the world's largest freshwater system. They are a key element in regional climate influencing local weather patterns and climate processes. Many of these complex processes are regulated by interactions of the atmosphere, lake, ice, and surrounding land areas. This study presents a Great Lakes climate change projection that employed the two-way coupling of a regional climate model with a 3-D lake model (GLARM) to resolve 3-D hydrodynamics essential for large lakes.
Chunyong Jung, Pengfei Xue, Chenfu Huang, William Pringle, Mrinal Biswas, Geeta Nain, and Jiali Wang
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-47, https://doi.org/10.5194/wes-2025-47, 2025
Preprint under review for WES
Short summary
Short summary
This study introduces a system that combines weather, ocean, and wave models to better understand their interactions during tropical storms and their impact on offshore structures like wind turbines. Tested using Hurricane Henri (2021), the system improves storm predictions by including how waves and ocean cooling affect storm strength and wind patterns. The results show this approach helps assess risks to offshore infrastructure during severe weather, making it more accurate and reliable.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Gifford H. Miller, Simon L. Pendleton, Alexandra Jahn, Yafang Zhong, John T. Andrews, Scott J. Lehman, Jason P. Briner, Jonathan H. Raberg, Helga Bueltmann, Martha Raynolds, Áslaug Geirsdóttir, and John R. Southon
Clim. Past, 19, 2341–2360, https://doi.org/10.5194/cp-19-2341-2023, https://doi.org/10.5194/cp-19-2341-2023, 2023
Short summary
Short summary
Receding Arctic ice caps reveal moss killed by earlier ice expansions; 186 moss kill dates from 71 ice caps cluster at 250–450, 850–1000 and 1240–1500 CE and continued expanding 1500–1880 CE, as recorded by regions of sparse vegetation cover, when ice caps covered > 11 000 km2 but < 100 km2 at present. The 1880 CE state approached conditions expected during the start of an ice age; climate models suggest this was only reversed by anthropogenic alterations to the planetary energy balance.
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022, https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
Short summary
The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) global and Central Asia data streams described here generate routine estimates of snow, soil moisture, runoff, and other variables useful for tracking water availability. These data are hosted by NASA and USGS data portals for public use.
Pengfei Xue, Xinyu Ye, Jeremy S. Pal, Philip Y. Chu, Miraj B. Kayastha, and Chenfu Huang
Geosci. Model Dev., 15, 4425–4446, https://doi.org/10.5194/gmd-15-4425-2022, https://doi.org/10.5194/gmd-15-4425-2022, 2022
Short summary
Short summary
The Great Lakes are the world's largest freshwater system. They are a key element in regional climate influencing local weather patterns and climate processes. Many of these complex processes are regulated by interactions of the atmosphere, lake, ice, and surrounding land areas. This study presents a Great Lakes climate change projection that employed the two-way coupling of a regional climate model with a 3-D lake model (GLARM) to resolve 3-D hydrodynamics essential for large lakes.
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Short summary
The MENA (Middle East and North Africa) region faces significant food and water insecurity and hydrological hazards. Here we investigate the value of assimilating remote sensing data sets into an Earth system model to help build an effective drought monitoring system and support risk mitigation and management by countries in the region. We highlight incorporating satellite-informed vegetation conditions into the model as being one of the key processes for a successful application for the region.
Sujay V. Kumar, Thomas R. Holmes, Rajat Bindlish, Richard de Jeu, and Christa Peters-Lidard
Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, https://doi.org/10.5194/hess-24-3431-2020, 2020
Short summary
Short summary
Vegetation optical depth (VOD) is a byproduct of the soil moisture retrieval from passive microwave instruments. This study demonstrates that VOD information can be utilized for improving land surface water budget and carbon conditions through data assimilation.
Shraddhanand Shukla, Kristi R. Arsenault, Abheera Hazra, Christa Peters-Lidard, Randal D. Koster, Frank Davenport, Tamuka Magadzire, Chris Funk, Sujay Kumar, Amy McNally, Augusto Getirana, Greg Husak, Ben Zaitchik, Jim Verdin, Faka Dieudonne Nsadisa, and Inbal Becker-Reshef
Nat. Hazards Earth Syst. Sci., 20, 1187–1201, https://doi.org/10.5194/nhess-20-1187-2020, https://doi.org/10.5194/nhess-20-1187-2020, 2020
Short summary
Short summary
The region of southern Africa is prone to climate-driven food insecurity events, as demonstrated by the major drought event in 2015–2016. This study demonstrates that recently developed NASA Hydrological Forecasting and Analysis System-based root-zone soil moisture monitoring and forecasting products are well correlated with interannual regional crop yield, can identify below-normal crop yield events and provide skillful crop yield forecasts, and hence support early warning of food insecurity.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Kristi R. Arsenault, Sujay V. Kumar, James V. Geiger, Shugong Wang, Eric Kemp, David M. Mocko, Hiroko Kato Beaudoing, Augusto Getirana, Mahdi Navari, Bailing Li, Jossy Jacob, Jerry Wegiel, and Christa D. Peters-Lidard
Geosci. Model Dev., 11, 3605–3621, https://doi.org/10.5194/gmd-11-3605-2018, https://doi.org/10.5194/gmd-11-3605-2018, 2018
Short summary
Short summary
The Earth’s land surface hydrology and physics can be represented in highly sophisticated models known as land surface models. The Land surface Data Toolkit (LDT) software was developed to meet these models’ input processing needs. LDT supports a variety of land surface and hydrology models and prepares the inputs (e.g., meteorological data, satellite observations to be assimilated into a model), which can be used for inter-model studies and to initialize weather and climate forecasts.
Simon L. Pendleton, Gifford H. Miller, Robert A. Anderson, Sarah E. Crump, Yafang Zhong, Alexandra Jahn, and Áslaug Geirsdottir
Clim. Past, 13, 1527–1537, https://doi.org/10.5194/cp-13-1527-2017, https://doi.org/10.5194/cp-13-1527-2017, 2017
Short summary
Short summary
Recent warming in the high latitudes has prompted the accelerated retreat of ice caps and glaciers, especially in the Canadian Arctic. Here we use the radiocarbon age of preserved plants being exposed by shrinking ice caps that once entombed them. These ages help us to constrain the timing and magnitude of climate change on southern Baffin Island over the past ~ 2000 years. Our results show episodic cooling up until ~ 1900 CE, followed by accelerated warming through present.
Christa D. Peters-Lidard, Martyn Clark, Luis Samaniego, Niko E. C. Verhoest, Tim van Emmerik, Remko Uijlenhoet, Kevin Achieng, Trenton E. Franz, and Ross Woods
Hydrol. Earth Syst. Sci., 21, 3701–3713, https://doi.org/10.5194/hess-21-3701-2017, https://doi.org/10.5194/hess-21-3701-2017, 2017
Short summary
Short summary
In this synthesis of hydrologic scaling and similarity, we assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modeling, have laid the foundation for a data-driven framework for scrutinizing hydrological hypotheses. We call upon the community to develop a focused effort towards a fourth paradigm for hydrology.
Martyn P. Clark, Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard
Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, https://doi.org/10.5194/hess-21-3427-2017, 2017
Short summary
Short summary
The diversity in hydrologic models has led to controversy surrounding the “correct” approach to hydrologic modeling. In this paper we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, summarize modeling advances that address these challenges, and define outstanding research needs.
Sujay V. Kumar, Jiarui Dong, Christa D. Peters-Lidard, David Mocko, and Breogán Gómez
Hydrol. Earth Syst. Sci., 21, 2637–2647, https://doi.org/10.5194/hess-21-2637-2017, https://doi.org/10.5194/hess-21-2637-2017, 2017
Short summary
Short summary
Data assimilation deals with the blending of model forecasts and observations based on their relative errors. This paper addresses the importance of accurately representing the errors in the model forecasts for skillful data assimilation performance.
S. V. Kumar, C. D. Peters-Lidard, J. A. Santanello, R. H. Reichle, C. S. Draper, R. D. Koster, G. Nearing, and M. F. Jasinski
Hydrol. Earth Syst. Sci., 19, 4463–4478, https://doi.org/10.5194/hess-19-4463-2015, https://doi.org/10.5194/hess-19-4463-2015, 2015
K.-H. Wyrwoll, F. H. McRobie, M. Notaro, and G. Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-10313-2013, https://doi.org/10.5194/hessd-10-10313-2013, 2013
Preprint withdrawn
Z. Tao, J. A. Santanello, M. Chin, S. Zhou, Q. Tan, E. M. Kemp, and C. D. Peters-Lidard
Atmos. Chem. Phys., 13, 6207–6226, https://doi.org/10.5194/acp-13-6207-2013, https://doi.org/10.5194/acp-13-6207-2013, 2013
A. C. V. Getirana and C. Peters-Lidard
Hydrol. Earth Syst. Sci., 17, 923–933, https://doi.org/10.5194/hess-17-923-2013, https://doi.org/10.5194/hess-17-923-2013, 2013
Related subject area
Climate and Earth system modeling
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Assessing the climate impact of an improved volcanic sulfate aerosol representation in E3SM
Advanced climate model evaluation with ESMValTool v2.11.0 using parallel, out-of-core, and distributed computing
ICON-HAM-lite 1.0: simulating the Earth system with interactive aerosols at kilometer scales
Process-based modeling framework for sustainable irrigation management at the regional scale: integrating rice production, water use, and greenhouse gas emissions
Implementing deep soil and dynamic root uptake in Noah-MP (v4.5): impact on Amazon dry-season transpiration
Reducing time and computing costs in EC-Earth: an automatic load-balancing approach for coupled Earth system models
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Baseline Climate Variables for Earth System Modelling
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
The ensemble consistency test: from CESM to MPAS and beyond
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
OpenBench: a land models evaluation system
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
A Fortran–Python interface for integrating machine learning parameterization into earth system models
ROCKE-3D 2.0: An updated general circulation model for simulating the climates of rocky planets
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
COSP-RTTOV-1.0: Flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Evaluation of Ozone and its Precursors using the Multi-Scale Infrastructure for Chemistry and Aerosols Version 0 (MUSICAv0) during the Michigan-Ontario Ozone Source Experiment (MOOSE)
Impact of spatial resolution on CMIP6-driven Mediterranean climate simulations: a focus on precipitation distribution over Italy
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Statistical summaries for streamed data from climate simulations: One-pass algorithms (v0.6.2)
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025, https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Short summary
This study represents the primary marine organic aerosol (PMOA) emissions, focusing on their sea–atmosphere transfer. Using the FESOM2.1–REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol–climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the southern oceans.
Ziming Ke, Qi Tang, Jean-Christophe Golaz, Xiaohong Liu, and Hailong Wang
Geosci. Model Dev., 18, 4137–4153, https://doi.org/10.5194/gmd-18-4137-2025, https://doi.org/10.5194/gmd-18-4137-2025, 2025
Short summary
Short summary
This study assesses volcanic aerosol representation in E3SM (Energy Exascale Earth System Model), showing that an emission-based approach moderately improves temperature variability and cloud responses compared to a prescribed forcing approach, yet significant bias persists.
Manuel Schlund, Bouwe Andela, Jörg Benke, Ruth Comer, Birgit Hassler, Emma Hogan, Peter Kalverla, Axel Lauer, Bill Little, Saskia Loosveldt Tomas, Francesco Nattino, Patrick Peglar, Valeriu Predoi, Stef Smeets, Stephen Worsley, Martin Yeo, and Klaus Zimmermann
Geosci. Model Dev., 18, 4009–4021, https://doi.org/10.5194/gmd-18-4009-2025, https://doi.org/10.5194/gmd-18-4009-2025, 2025
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for the evaluation of Earth system models. Here, we describe recent significant improvements of ESMValTool’s computational efficiency including parallel, out-of-core, and distributed computing. Evaluations with the enhanced version of ESMValTool are faster, use less computational resources, and can handle input data larger than the available memory.
Philipp Weiss, Ross Herbert, and Philip Stier
Geosci. Model Dev., 18, 3877–3894, https://doi.org/10.5194/gmd-18-3877-2025, https://doi.org/10.5194/gmd-18-3877-2025, 2025
Short summary
Short summary
Aerosols strongly influence Earth's climate as they interact with radiation and clouds. New Earth system models run at resolutions of a few kilometers. To simulate the Earth system with interactive aerosols, we developed a new aerosol module. It represents aerosols as an ensemble of lognormal modes with given sizes and compositions. We present a year-long simulation with four modes at a resolution of 5 km. It captures key processes like the formation of dust storms in the Sahara.
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev., 18, 3799–3817, https://doi.org/10.5194/gmd-18-3799-2025, https://doi.org/10.5194/gmd-18-3799-2025, 2025
Short summary
Short summary
This study proposed an advancing framework for modeling regional rice production, water use, and greenhouse gas emissions. The framework integrated a process-based soil-crop model with vital physiological effects, a novel model upscaling method, and the NSGA-II multi-objective optimization algorithm at a parallel computing platform. The framework provides a valuable tool for multi-objective optimization of rice irrigation schemes at a large scale.
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025, https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Short summary
Access to deep moisture below the Earth's surface is important for vegetation in areas of the Amazon where there is little precipitation for part of the year. Most existing numerical models of the Earth system do not adequately capture where and when deep root water uptake occurs. We address this by adding deep soil layers and a root water uptake feature to an existing model. Out modifications lead to increased dry-month transpiration and improved simulation of the annual transpiration cycle.
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev., 18, 3661–3679, https://doi.org/10.5194/gmd-18-3661-2025, https://doi.org/10.5194/gmd-18-3661-2025, 2025
Short summary
Short summary
We present an automatic tool that optimizes resource distribution in coupled climate models, enhancing speed and reducing computational costs without requiring expert knowledge. Users can set energy/time criteria or limit resource usage. Tested on various European Community Earth System Model (EC-Earth) configurations and high-performance computing (HPC) platforms, it achieved up to 34 % faster simulations with fewer resources.
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025, https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
Short summary
As fire seasons in Brazil become increasingly severe, confidently understanding the factors driving fires is more critical than ever. To address this challenge, we developed FLAME (Fire Landscape Analysis using Maximum Entropy), a new model designed to predict fires and to analyse the spatial influence of both environmental and human factors while accounting for uncertainties. By adapting the model to different regions, we can enhance fire management strategies, making FLAME a powerful tool for protecting landscapes in Brazil and beyond.
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025, https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
Short summary
We present SURFER v3.0, a simple climate model designed to estimate the impact of CO2 and CH4 emissions on global temperatures, sea levels, and ocean pH. We added new carbon cycle processes and calibrated the model to observations and results from more complex models, enabling use over timescales ranging from decades to millions of years. SURFER v3.0 is fast, transparent, and easy to use, making it an ideal tool for policy assessments and suitable for educational purposes.
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025, https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
Short summary
NMH-CS 3.0 is a C#-based ecohydrological model reconstructed from the WRF-Hydro/Noah-MP model by translating the Fortran code of WRF-Hydro 3.0 and integrating a parallel river routing module. It enables efficient execution on multi-core personal computers. Simulations in the Yellow River basin demonstrate its consistency with WRF-Hydro outputs, providing a reliable alternative to the original Noah-MP model.
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025, https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Short summary
We present, analyze, and validate a methodology for quantifying uncertainty in gridded meteorological data products produced by spatial interpolation. In a validation case study using daily maximum near-surface air temperature (Tmax), the method works well and produces predictive distributions with closely matching theoretical versus actual coverage levels. Application of the method reveals that the magnitude of uncertainty in interpolated Tmax varies significantly in both space and time.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025, https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 135 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most frequently used variables from Earth system models based on an assessment of data publication and download records from the largest archive of global climate projects.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025, https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
Short summary
PaleoSTeHM v1.0 is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo-records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025, https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth's orbit. We demonstrate that ZEMBA reproduces many features of the Earth's climate for both the pre-industrial period and the Earth's most recent cold extreme – the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025, https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we develop and apply a new weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. This system is meant to advance our understanding of the ocean's role in climate predictability.
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025, https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
Short summary
Our research presents a novel deep learning approach called "TemDeep" for downscaling atmospheric variables at arbitrary time resolutions based on temporal coherence. Results show that our method can accurately recover evolution details superior to other methods, reaching 53.7 % in the restoration rate. Our findings are important for advancing weather forecasting models and enabling more precise and reliable predictions to support disaster preparedness, agriculture, and sustainable development.
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025, https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Short summary
The ensemble consistency test (ECT) and its ultrafast variant (UF-ECT) have become powerful tools in the development community for the identification of unwanted changes in the Community Earth System Model (CESM). We develop a generalized setup framework to enable easy adoption of the ECT approach for other model developers and communities. This framework specifies test parameters to accurately characterize model variability and balance test sensitivity and computational cost.
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025, https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Short summary
We describe, calibrate and test the Danish Center for Earth System Science (DCESS) II model, a new, broad, adaptable and fast Earth system model. DCESS II is designed for global simulations over timescales of years to millions of years using limited computer resources like a personal computer. With its flexibility and comprehensive treatment of the global carbon cycle, DCESS II is a useful, computationally friendly tool for simulations of past climates as well as for future Earth system projections.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025, https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Short summary
We studied carbon–nitrogen coupling in Earth system models by developing a global carbon–nitrogen cycle model (CNit v1.0) within the widely used emulator MAGICC. CNit effectively reproduced the global carbon–nitrogen cycle dynamics observed in complex models. Our results show persistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100, suggesting that nitrogen deficiency may constrain future land carbon sequestration.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025, https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from various Earth system models. Our findings reveal significant discrepancies between flux and pool size data, where cumulative imbalances can reach hundreds of gigatons of carbon or nitrogen. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land-use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Zhongwang Wei, Qingchen Xu, Fan Bai, Xionghui Xu, Zixin Wei, Wenzong Dong, Hongbin Liang, Nan Wei, Xingjie Lu, Lu Li, Shupeng Zhang, Hua Yuan, Laibo Liu, and Yongjiu Dai
EGUsphere, https://doi.org/10.5194/egusphere-2025-1380, https://doi.org/10.5194/egusphere-2025-1380, 2025
Short summary
Short summary
Land surface models are used for simulating earth's surface interacts with the atmosphere. As models grow more complex and detailed, researchers need better tools to evaluate their performance. OpenBench, a new software system that makes evaluation process more comprehensive and efficient. It stands out by incorporating various factors and working with data at any scale which enabling scientists to incorporate new types of models and measurements as our understanding of Earth’s systems evolves.
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025, https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary
Short summary
Forecasting river runoff, which is crucial for managing water resources and understanding climate impacts, can be challenging. This study introduces a new method using convolutional long short-term memory (ConvLSTM) networks, a machine learning model that processes spatial and temporal data. Focusing on the Baltic Sea region, our model uses weather data as input to predict daily river runoff for 97 rivers.
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025, https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
Short summary
Earth system models (ESMs) struggle with the uncertainties associated with parameterizing subgrid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran–Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity, and effectiveness.
Kostas Tsigaridis, Andrew S. Ackerman, Igor Aleinov, Mark A. Chandler, Thomas L. Clune, Christopher M. Colose, Anthony D. Del Genio, Maxwell Kelley, Nancy Y. Kiang, Anthony Leboissetier, Jan P. Perlwitz, Reto A. Ruedy, Gary L. Russell, Linda E. Sohl, Michael J. Way, and Eric T. Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2025-925, https://doi.org/10.5194/egusphere-2025-925, 2025
Short summary
Short summary
We present the second generation of ROCKE-3D, a generalized 3-dimensional model for use in Solar System and exoplanetary simulations of rocky planet climates. We quantify how the different component choices affect model results, and discuss strengths and limitations of using each component, together with how one can select which component to use. ROCKE-3D is publicly available and tutorial sessions are available for the community, greatly facilitating its use by any interested group.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2025-169, https://doi.org/10.5194/egusphere-2025-169, 2025
Short summary
Short summary
Satellites have observed earth's emission of infrared radiation since the 1970s. Because infrared wavelengths interact with the atmosphere in distinct ways, these observations contain information about the earth and atmosphere. We present a tool that runs alongside global climate models and produces output that can be directly compared with satellite measurements of infrared radiation. We then use this tool for climate model evaluation, climate change detection, and satellite mission design.
Noribeth Mariscal, Louisa K. Emmons, Duseong S. Jo, Ying Xiong, Laura M. Judd, Scott J. Janz, Jiajue Chai, and Yaoxian Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-228, https://doi.org/10.5194/egusphere-2025-228, 2025
Short summary
Short summary
The distribution of ozone (O3) and its precursors (NOx, VOCs) is explored using the chemistry-climate model, MUSICAv0, and evaluated using measurements from the Michigan-Ontario Ozone Source Experiment. A custom grid of ~7 km was created over Michigan. A sector-based diurnal cycle for anthropogenic nitric oxide was included in the model. This work shows that grid resolution played a more important role for O3 precursors, and the diurnal cycle significantly impacted nighttime O3 formation.
Maria Vittoria Struglia, Alessandro Anav, Marta Antonelli, Sandro Calmanti, Franco Catalano, Alessandro Dell'Aquila, Emanuela Pichelli, and Giovanna Pisacane
EGUsphere, https://doi.org/10.5194/egusphere-2025-387, https://doi.org/10.5194/egusphere-2025-387, 2025
Short summary
Short summary
We present the results of downscaling global climate projections for the Mediterranean and Italian regions aiming to produce high-resolution climate information for the assessment of climate change signals, focusing on extreme events. A general warming is foreseen by the end of century with a mean precipitation reduction accompanied, over Italian Peninsula, by a strong increase in the intensity of extreme precipitation events, particularly relevant for the high emissions scenario during autumn
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
EGUsphere, https://doi.org/10.5194/egusphere-2024-4086, https://doi.org/10.5194/egusphere-2024-4086, 2025
Short summary
Short summary
Climate model simulations of the response to human and natural influences together, natural climate influences alone, and greenhouse gases alone, among others, are key to quantifying human influence on the climate. The last set of such coordinated simulations underpinned key findings in the last Intergovernmental Panel on Climate Change (IPCC) report. Here we propose a new set of such simulations to be used in the next generation of attribution studies, and to underpin the next IPCC report.
Katherine Grayson, Stephan Thober, Aleksander Lacima-Nadolnik, Ehsan Sharifi, Llorenç Lledó, and Francisco Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2025-28, https://doi.org/10.5194/egusphere-2025-28, 2025
Short summary
Short summary
To provide the most accurate climate adaptation information, climate models are being run with finer grid resolution, resulting in larger data output. This paper presents intelligent data reduction algorithms that act on streamed data, a novel way of processing climate data as soon as it is produced. Using these algorithms to calculate statistics, we show that the accuracy provided is well within acceptable bounds while still providing memory savings that bypass unfeasible storage requirements.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Cited articles
Assel, A. A.: An ice-cover climatology for Lake Erie and Lake Superior for the winter seasons 1897–1898 to 1982–1983, Int. J. Climatol., 10, 731–748, 1990.
Assel, R. A.: Classification of Annual Great Lakes Ice Cycles: Winters of 1973–2002, J. Climate, 18, 4895, https://doi.org/10.1175/JCLI3571.1, 2005.
Ballentine, R. J., Stamm, A. J., Chermack, E. E., Byrd, G. P., and Schleede, D.: Mesoscale model simulation of the 4–5 January 1995 lake-effect snowstorm, Weather Forecast., 13, 893–920, 1998.
Bennington, V., Notaro, M., and Holman, K. D.: Improving Climate Sensitivity of Deep Lakes within a Regional Climate Model and Its Impact on Simulated Climate, J. Climate, 27, 2886–2911, https://doi.org/10.1175/jcli-d-13-00110.1, 2014.
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res.-Oceans, 104, 15669–15677, 1999.
Blanken, P. D., Spence, C., Hedstrom, N., and Lenters, J. D.: Evaporation from Lake Superior: 1. Physical controls and processes, J. Great Lakes Res., 37, 707–716, 2011.
Briley, L. and Jorns, J.: Great Lakes Climate Modeling Workshop report. Great Lakes Integrated Sciences and Assessments (GLISA), University of Michigan, https://glisa.umich.edu/project/2021-great-lakes-climatemodeling-workshop/ (last access: 12 July 2025), 2021.
Briley, L. J., Rood, R. B., and Notaro, M.: Large lakes in climate models: A Great Lakes case study on the usability of CMIP5, J. Great Lakes Res., 47, 405–418, https://doi.org/10.1016/j.jglr.2021.01.010, 2021.
Brown, L. C. and Duguay, C. R.: The response and role of ice cover in lake-climate interactions, Prog. Phys. Geogr., 34, 671–704, 2010.
Bryan, A. M., Steiner, A. L., and Posselt, D. J.: Regional modeling of surface-atmosphere interactions and their impact on Great Lakes hydroclimate, J. Geophys. Res.-Atmos., 120, 1044–1064, https://doi.org/10.1002/2014JD022316, 2015.
Bullock, O. R., Alapaty, K., Herwehe, J. A., Mallard, M. S., Otte, T. L., Gilliam, R. C., and Nolte, C. G.: An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing, J. Appl. Meteorol. Clim., 53, 20–33, 2014.
Cannon, D., Wang, J., Fujisaki-Manome, A., Kessler, J., Ruberg, S., and Constant, S.: Investigating Multidecadal Trends in Ice Cover and Subsurface Temperatures in the Laurentian Great Lakes Using a Coupled Hydrodynamic–Ice Model, J. Climate, 37, 1249–1276, https://doi.org/10.1175/JCLI-D-23-0092.1, 2024.
Changnon Jr., S. A. and Jones, D. M. A.: Review of the influences of the Great Lakes on weather, Water Resour. Res., 8, 360–371, https://doi.org/10.1029/WR008i002p00360, 1972.
Chen, C., Beardsley, R. C., Cowles, G., Qi, J., Lai, Z., Gao, G., Stuebe, D., Xu, Q., Xue, P., Ge, J., and Ji, R.: An unstructured-grid, finite-volume community ocean model: FVCOM user manual, Cambridge, MA, USA, Sea Grant College Program, Massachusetts Institute of Technology, https://web.archive.org/web/20161229211546id_/http://fvcom.smast.umassd.edu/wp-content/uploads/2013/11/MITSG_12-25.pdf (last access: 10 July 2025), 2012.
Chin, M., Rood, R. B., Lin, S. J., Müller, J. F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res.-Atmos., 105, 24671–24687, 2000.
Chuang, H.-Y. and Sousounis, P. J.: The impact of the prevailing synoptic situation on the lake-aggregate effect, Mon. Weather Rev., 131, 990–1010, 2003.
CoastWatch Great Lakes Node: Sea surface temperature (SST) from Great Lakes Surface Environmental Analysis (GLSEA), geodetic coordinate system (LAT, LON), 1995–2023, NOAA Great Lakes Environmental Research Laboratory [data set], https://apps.glerl.noaa.gov/erddap/files/GLSEA_GCS/ (last access: 14 July 2024), 2024a.
CoastWatch Great Lakes Node: Ice concentration from Great Lakes Surface Environmental Analysis (GLSEA) and NIC, geodetic coordinate system (LAT, LON), 1995–present, NOAA Great Lakes Environmental Research Laboratory [data set], https://apps.glerl.noaa.gov/erddap/files/GL_Ice_Concentration_GCS/ (last acces: 14 July 2024), 2024b.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S. J., and Zhang, M.: Description of the NCAR community atmosphere model (CAM 3.0), NCAR Tech. Note NCAR/TN-464+ STR, 226, 1326–1334, 2004.
Colucci, S. J.: winter cyclone frequencies over the eastern United States and adjacent western Atlantic, 1964–1973: Student paper – First place winner of The Father James B. Macelwane Annual Award in Meteorology, announced at the Annual Meeting of the AMS, Philadelphia, Pa., 21 January 1976, B. Am. Meteorol. Soc., 57, 548–553, 1976.
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017.
Crossman, E. J. and Cudmore, B. C.: Biodiversity of the fishes of the Laurentian Great Lakes: a great lakes fishery commission project, Ital. J. Zool., 65, 357–361, 1998.
Delaney, F. and Milner, G.: The State of Climate Modeling in the Great Lakes Basin – A Synthesis in Support of a Workshop held on June 27, 2019 in Arr Arbor, MI, https://climateconnections.ca/app/uploads/2020/05/The-State-of-Climate-Modeling-in-the-Great-Lakes-Basin_Sept132019.pdf (last access: 13 July 2025), 2019.
Eichenlaub, V. L.: Weather and climate of the Great Lakes region [USA], University of Notre Dame Press, ISBN 978-0268019303, 1978.
EPA (Environmental Protection Agency): State of the Great Lakes 2011. EPA 950-R-13-002, available at: https://archive.epa.gov/solec/web/pdf/sogl-2011-technical-report-en.pdf (last access: 14 July 2025), 2014.
Fang, X. and Stefan, H. G.: Long-term lake water temperature and ice cover simulations/measurements, Cold Reg. Sci. Technol., 24, 289–304, https://doi.org/10.1016/0165-232X(95)00019-8, 1996.
Gao, G., Chen, C., Qi, J., and Beardsley, R. C.: An unstructured-grid, finite-volume sea ice model: Development, validation, and application. J. Geophys. Res.-Oceans, 116, C00D04, https://doi.org/10.1029/2010JC006688, 2011.
Gao, Y., Fu, J. S., Drake, J., Liu, Y., and Lamarque, J.-F.: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system, Environ. Res. Lett., 7, 044025, https://doi.org/10.1088/1748-9326/7/4/044025, 2012.
Gerbush, M. R., Kristovich, D. A., and Laird, N. F.: Mesoscale boundary layer and heat flux variations over pack ice–covered Lake Erie, J. Appl. Meteorol. Clim., 47, 668–682, 2008.
Giorgi, F. and Gutowski Jr., W. J.: Regional Dynamical Downscaling and the CORDEX Initiative, Annu. Rev. Environ. Resour., 40, 467–490, https://doi.org/10.1146/annurev-environ-102014-021217, 2015.
GLEN – Great Lakes Evaporation Network: GLEN Level 1 eddy covariance data for Lake Superior, Superior Watershed Partnership, https://superiorwatersheds.org/GLEN/ (last access: 13 June 2024), 2024.
GLSEA (NOAA Great Lakes Surface Environmental Analysis): Sea Surface Temperature (SST) from Great Lakes Surface Environmental Analysis (GLSEA) [data set], https://coastwatch.glerl.noaa.gov/erddap/files/GLSEA_GCS/ (last access: 9 November 2023), 2023.
Goudsmit, G. H., Burchard, H., Peeters, F., and Wüest, A.: Application of k-ϵ turbulence models to enclosed basins: The role of internal seiches, J. Geophys. Res.-Oceans, 107, 23-21–23-13, 2002.
Gu, H., Jin, J., Wu, Y., Ek, M. B., and Subin, Z. M.: Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model, Climatic Change, 129, 471–483, 2015.
Hanrahan, J., Langlois, J., Cornell, L., Huang, H., Winter, J. M., Clemins, P.J., Beckage, B. and Bruyère, C.: Examining the Impacts of Great Lakes Temperature Perturbations on Simulated Precipitation in the Northeastern United States, J. Appl. Meteorol. Clim., 60, 935–949, 2021.
Holman, K. D., Gronewold, A., Notaro, M., and Zarrin, A.: Improving historical precipitation estimates over the Lake Superior basin, Geophys. Res. Lett., 39, L03405, https://doi.org/10.1029/2011GL050468, 2012.
Hostetler, S. W. and Bartlein, P. J.: Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon, Water Resour. Res., 26, 2603–2612, https://doi.org/10.1029/WR026i010p02603, 1990.
Huang, C.: Lake model code for the manuscript “On the Importance of Coupling a 3D Hydrodynamic Model with a Regional Climate Model in Simulating the Great Lakes Winter Climate”, Zenodo [software], https://doi.org/10.5281/zenodo.12746348, 2024a.
Huang, C.: NU-WRF (v11) code for the manuscript “On the Importance of Coupling a 3D Hydrodynamic Model with a Regional Climate Model in Simulating the Great Lakes Winter Climate”, Zenodo [software], https://doi.org/10.5281/zenodo.12746306, 2024b.
Hunke, E. C. and Dukowicz, J. K.: An elastic–viscous–plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S.: Cice: the los alamos sea ice model documentation and software user's manual version 4.1 la-cc-06-012, T-3 Fluid Dynamics Group, Los Alamos National Laboratory, 675, 500, 2010.
Hutson, A., Fujisaki-Manome, A., and Lofgren, B.: Testing the Sensitivity of a WRF-based Great Lakes Regional Climate Model to Cumulus Parameterization and Spectral Nudging, J. Hydrometeorol., 25, 1007–1025, https://doi.org/10.1175/JHM-D-22-0234.1, 2024.
Kain, J. S.: The Kain–Fritsch convective parameterization: an update, J. Appl. Meteorol., 43, 170–181, 2004.
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802, 1990.
Kayastha, M. B., Huang, C., Wang, J., Pringle, W. J., Chakraborty, T. C., Yang, Z., Hetland, R. D., Qian, Y., and Xue, P.: Insights on Simulating Summer Warming of the Great Lakes: Understanding the Behavior of a Newly Developed Coupled Lake-Atmosphere Modeling System, J. Adv. Model. Earth Sy., 15, e2023MS003620, https://doi.org/10.1029/2023MS003620, 2023.
Kristovich, D. A. R. and Laird, N. F.: Observations of Widespread Lake-Effect Cloudiness: Influences of Lake Surface Temperature and Upwind Conditions, Weather Forecast., 13, 811–821, https://doi.org/10.1175/1520-0434(1998)013<0811:Oowlec>2.0.Co;2, 1998.
Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden, S., Lighty, L., Eastman, J. L., Doty, B., Dirmeyer, P., and Adams, J.: Land information system: An interoperable framework for high resolution land surface modeling, Environ. Modell. Softw., 21, 1402–1415, 2006.
Launder, B. E. and Spalding, D. B.: The numerical computation of turbulent flows, Comput. Meth. Appl. Mech. Eng., 3, 269–289, https://doi.org/10.1016/0045-7825(74)90029-2, 1974.
Lenters, J., Anderton, J., Blanken, P., Spence, C., and Suyker, A.: Assessing the Impacts of Climate Variability and Change on Great Lakes Evaporation. 2011 Project Reports, edited by: Brown, D., Bidwell, D., and Briley, L., Great Lakes Integrated Sciences and Assessments (GLISA) Center, https://glisa.umich.edu/wp-content/uploads/2021/02/GLISA_Lake_Evaporation_Lenters_Final.pdf (last access: 14 July 2025), 2013.
Leon, L. F., Lam, D., Schertzer, W., and Swayne, D.: Lake and climate models linkage: a 3-D hydrodynamic contribution, Adv. Geosci., 4, 57–62, https://doi.org/10.5194/adgeo-4-57-2005, 2005.
Leon, L. F., Lam, D. C. L., Schertzer, W. M., Swayne, D. A., and Imberger, J.: Towards coupling a 3D hydrodynamic lake model with the Canadian regional climate model: simulation on Great Slave Lake, Environ. Modell. Softw., 22, 787–796, 2007.
Lofgren, B. M.: Simulation of atmospheric and lake conditions in the Laurentian Great Lakes region using the Coupled Hydrosphere-Atmosphere Research Model (CHARM), NOAA Technical Memorandum GLERL-165 [Technical memorandum], NOAA Great Lakes Environmental Research Laboratory. https://repository.library.noaa.gov/view/noaa/11169, (last access: 14 July 2025), 2014.
Mallard, M. S., Nolte, C. G., Spero, T. L., Bullock, O. R., Alapaty, K., Herwehe, J. A., Gula, J., and Bowden, J. H.: Technical challenges and solutions in representing lakes when using WRF in downscaling applications, Geosci. Model Dev., 8, 1085–1096, https://doi.org/10.5194/gmd-8-1085-2015, 2015.
Mallard, M. S., Nolte, C. G., Bullock, O. R., Spero, T. L., and Gula, J.: Using a coupled lake model with WRF for dynamical downscaling, J. Geophys. Res.-Atmos., 119, 7193–7208, 2014.
Martynov, A., Sushama, L., and Laprise, R.: Simulation of temperate freezing lakes by one-dimensional lake models: performance assessment for interactive coupling with regional climate models, Boreal Environ. Res., 15, 143–164, 2010.
Martynov, A., Sushama, L., Laprise, R., Winger, K., and Dugas, B.: Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America, Tellus A, 64, 16226, https://doi.org/10.3402/tellusa.v64i0.16226, 2012.
Matsui, T., Iguchi, T., Li, X., Han, M., Tao, W. K., Petersen, W., L'Ecuyer, T., Meneghini, R., Olson, W., Kummerow, C. D., and Hou, A. Y.: GPM satellite simulator over ground validation sites, B. Am. Meteorol. Soc., 94, 1653–1660, 2013.
Matsui, T., Santanello, J., Shi, J. J., Tao, W. K., Wu, D., Peters-Lidard, C., Kemp, E., Chin, M., Starr, D., Sekiguchi, M., and Aires, F.: Introducing multisensor satellite radiance-based evaluation for regional Earth system modeling, J. Geophys. Res.-Atmos., 119, 8450–8475, 2014.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, https://doi.org/10.1029/RG020i004p00851, 1982.
Minallah, S. and Steiner, A. L.: The effects of lake representation on the regional hydroclimate in the ECMWF reanalyses, Mon. Weather Rev., 149, 1747–1766, 2021.
Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., and Terzhevik, A.: Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO, Boreal Environ. Res., 15, 218–230, 2010.
Mitchell, K.: The community Noah land-surface model (LSM) user's guide: Public release version 2.7.1, NOAA Technical Memorandum GLERL-165 [Technical memorandum], NOAA Great Lakes Environmental Research Laboratory, https://ral.ucar.edu/document-or-file/noah-lsm-users-guide (last access: 14 July 2025), 2005.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Mooney, P., Mulligan, F., and Fealy, R.: Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of Europe over the period 1990–1995, J. Climate, 26, 1002–1017, 2013.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes, Mon. Weather Rev., 137, 991–1007, 2009.
Moukomla, S. and Blanken, P. D.: The estimation of the North American Great Lakes turbulent fluxes using satellite remote sensing and MERRA reanalysis data, Remote Sens., 9, 141, https://doi.org/10.3390/rs9020141, 2017.
Nakanish, M.: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data, Bound.-Lay. Meteorol., 99, 349–378, 2001.
Nakanishi, M. and Niino, H.: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog, Bound.-Lay. Meteorol., 119, 397–407, 2006.
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure model for the atmospheric boundary layer, J. Meteorol. Soc. Jpn. Ser. II, 87, 895–912, 2009.
Niziol, T. A., Snyder, W. R., and Waldstreicher, J. S.: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow, Weather Forecast., 10, 61–77, 1995.
Notaro, M., Bennington, V., and Vavrus, S.: Dynamically Downscaled Projections of Lake-Effect Snow in the Great Lakes Basin*, J. Climate, 28, 1661–1684, https://doi.org/10.1175/JCLI-D-14-00467.1, 2015.
Notaro, M., Holman, K., Zarrin, A., Fluck, E., Vavrus, S., and Bennington, V.: Influence of the Laurentian Great Lakes on Regional Climate, J. Climate, 26, 789–804, https://doi.org/10.1175/jcli-d-12-00140.1, 2013a.
Notaro, M., Zarrin, A., Vavrus, S., and Bennington, V.: Simulation of Heavy Lake-Effect Snowstorms across the Great Lakes Basin by RegCM4: Synoptic Climatology and Variability*, Mon. Weather Rev., 141, 1990–2014, https://doi.org/10.1175/mwr-d-11-00369.1, 2013b.
Notaro, M., Zhong, Y., Xue, P., Peters-Lidard, C., Cruz, C., Kemp, E., Kristovich, D., Kulie, M., Wang, J., Huang, C., and Vavrus, S. J.: Cold Season Performance of the NU-WRF Regional Climate Model in the Great Lakes Region, J. Hydrometeorol., 22, 2423–2454, https://doi.org/10.1175/JHM-D-21-0025.1, 2021.
Oleson, K., Lawrence, D., and Bonan, G. B.: Technical description of version 4.5 of the Community Land Model (CLM), Ncar Tech. Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, 2013.
Perroud, M., Goyette, S., Martynov, A., Beniston, M., and Annevillec, O.: Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one-dimensional lake models, Limnol. Oceanogr., 54, 1574–1594, 2009.
Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden, S., Lighty, L., Doty, B., Dirmeyer, P., Adams, J., and Mitchell, K.: High-performance Earth system modeling with NASA/GSFC's Land Information System, Innovations in Systems and Software Engineering, 3, 157–165, 2007.
Peters-Lidard, C. D., Kemp, E. M., Matsui, T., Santanello Jr., J. A., Kumar, S. V., Jacob, J. P., Clune, T., Tao, W. K., Chin, M., Hou, A., and Case, J. L.: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales, Environ. Modell. Softw., 67, 149–159, 2015.
Petterssen, S. and Calabrese, P. A.: On some weather influences due to warming of the air by the Great Lakes in winter, J. Atmos. Sci., 16, 646–652, 1959.
Rau, E., Vaccaro, L., Riseng, C., and Read, J. G.: The Dynamic Great Lakes Economy Employment Trends from 2009 to 2018, https://repository.library.noaa.gov/view/noaa/38612 (last access: 14 July 2025), 2020.
Riley, M. J. and Stefan, H. G.: MINLAKE: A dynamic lake water quality simulation model, Ecol. Model., 43, 155–182, 1988.
Schwab, D. J., Leshkevich, G. A., and Muhr, G. C.: Automated Mapping of Surface Water Temperature in the Great Lakes, J. Great Lakes Res., 25, 468–481, https://doi.org/10.1016/S0380-1330(99)70755-0, 1999.
Scott, R. W. and Huff, F. A.: Impacts of the Great Lakes on Regional Climate Conditions, J. Great Lakes Res., 22, 845–863, https://doi.org/10.1016/S0380-1330(96)71006-7, 1996.
Sharma, A., Hamlet, A. F., Fernando, H. J. S., Catlett, C. E., Horton, D. E., Kotamarthi, V. R., Kristovich, D. A. R., Packman, A. I., Tank, J. L., and Wuebbles, D. J.: The Need for an Integrated Land-Lake-Atmosphere Modeling System, Exemplified by North America's Great Lakes Region, Earth's Future, 6, 1366–1379, https://doi.org/10.1029/2018ef000870, 2018.
Shi, J. J., Matsui, T., Tao, W. K., Tan, Q., Peters-Lidard, C., Chin, M., Pickering, K., Guy, N., Lang, S., and Kemp, E. M.: Implementation of an aerosol–cloud-microphysics–radiation coupling into the NASA unified WRF: Simulation results for the 6–7 August 2006 AMMA special observing period, Q. J. Roy. Meteor. Soc., 140, 2158–2175, 2014.
Shi, Q. and Xue, P.: Impact of Lake Surface Temperature Variations on Lake Effect Snow Over the Great Lakes Region, J. Geophys. Res.-Atmos., 124, 12553–12567, https://doi.org/10.1029/2019jd031261, 2019.
Smagorinsky, J.: General Circulation Experiments with the Primitive Equations: I. The Basic Experiment, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:Gcewtp>2.3.Co;2, 1963.
Song, Y., Semazzi, F. H., Xie, L., and Ogallo, L. J.: A coupled regional climate model for the Lake Victoria basin of East Africa, Int. J. Climatol., 24, 57–75, 2004.
Spence, C., Blanken, P. D., Hedstrom, N., Fortin, V., and Wilson, H.: Evaporation from Lake Superior: 2. Spatial distribution and variability, J. Great Lakes Res., 37, 717–724, https://doi.org/10.1016/j.jglr.2011.08.013, 2011.
Spence, C., Blanken, P. D., Lenters, J. D., and Hedstrom, N.: The importance of spring and autumn atmospheric conditions for the evaporation regime of Lake Superior, J. Hydrometeorol., 14, 1647–1658, https://doi.org/10.1175/JHM-D-12-0170.1, 2013.
Spero, T. L., Nolte, C. G., Bowden, J. H., Mallard, M. S., and Herwehe, J. A.: The impact of incongruous lake temperatures on regional climate extremes downscaled from the CMIP5 archive using the WRF model, J. Climate, 29, 839–853, 2016.
Stepanenko, V. and Lykossov, V.: Numerical modeling of heat and moisture transfer processes in a system lake-soil, Russ. Meteorol. Hydro., 3, 95–104, 2005.
Stepanenko, V., Machul'Skaya, E., Glagolev, M., and Lykossov, V.: Numerical modeling of methane emissions from lakes in the permafrost zone, Izv. Atmos. Ocean. Phy., 47, 252–264, 2011.
Stepanenko, V. M., Goyette, S., Martynov, A., Perroud, M., Fang, X., and Mironov, D.: First steps of a lake model intercomparison project: LakeMIP, Boreal Environ. Res., 15, 191–202, 2010.
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1, J. Adv. Model. Earth Sy., 4, M02001, https://doi.org/10.1029/2011MS000072, 2012.
Sun, L., Liang, X.-Z., and Xia, M.: Developing the Coupled CWRF-FVCOM Modeling System to Understand and Predict Atmosphere-Watershed Interactions Over the Great Lakes Region, J. Adv. Model. Earth Sy., 12, e2020MS002319, https://doi.org/10.1029/2020MS002319, 2020.
Todorovich, P.: America's emerging megaregions and implications for a national growth strategy, International Journal of Public Sector Management, 22, 221–234, 2009.
Turuncoglu, U. U., Giuliani, G., Elguindi, N., and Giorgi, F.: Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results, Geosci. Model Dev., 6, 283–299, https://doi.org/10.5194/gmd-6-283-2013, 2013.
Vaccaro, L. and Read, J.: Vital to Our Nation's Economy: Great Lakes Jobs, https://www.michiganseagrant.org/wp-content/uploads/2018/10/11-203-Great-Lakes-Jobs-report.pdf (last access: 14 July 2024), 2011.
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013.
Wang, J., Bai, X., Hu, H., Clites, A., Colton, M., and Lofgren, B.: Temporal and Spatial Variability of Great Lakes Ice Cover, 1973–2010*, J. Climate, 25, 1318–1329, https://doi.org/10.1175/2011jcli4066.1, 2012.
Wang, J., Xue, P., Pringle, W., Yang, Z., and Qian, Y.: Impacts of Lake Surface Temperature on the Summer Climate Over the Great Lakes Region, J. Geophys. Res.-Atmos., 127, e2021JD036231, https://doi.org/10.1029/2021JD036231, 2022.
Woolway, R. I., Anderson, E. J., and Albergel, C.: Rapidly expanding lake heatwaves under climate change, Environ. Res. Lett., 16, 094013, https://doi.org/10.1088/1748-9326/ac1a3a, 2021.
Xiao, C., Lofgren, B. M., Wang, J., and Chu, P. Y.: Improving the lake scheme within a coupled WRF-lake model in the Laurentian Great Lakes, J. Adv. Model. Earth Sy., 8, 1969–1985, https://doi.org/10.1002/2016MS000717, 2016.
Xue, P., Schwab, D. J., and Hu, S.: An investigation of the thermal response to meteorological forcing in a hydrodynamic model of Lake Superior, J. Geophys. Res.-Oceans, 120, 5233–5253, https://doi.org/10.1002/2015JC010740, 2015.
Xue, P., Pal, J. S., Ye, X., Lenters, J. D., Huang, C., and Chu, P. Y.: Improving the Simulation of Large Lakes in Regional Climate Modeling: Two-Way Lake–Atmosphere Coupling with a 3D Hydrodynamic Model of the Great Lakes, J. Climate, 30, 1605–1627, https://doi.org/10.1175/jcli-d-16-0225.1, 2017.
Xue, P., Ye, X., Pal, J. S., Chu, P. Y., Kayastha, M. B., and Huang, C.: Climate projections over the Great Lakes Region: using two-way coupling of a regional climate model with a 3-D lake model, Geosci. Model Dev., 15, 4425–4446, https://doi.org/10.5194/gmd-15-4425-2022, 2022.
Yang, T. Y., Kessler, J., Mason, L., Chu, P. Y., and Wang, J.: A consistent Great Lakes ice cover digital data set for winters 1973–2019, Sci. Data, 7, 259, https://doi.org/10.1038/s41597-020-00603-1, 2020.
Ye, X., Chu, P. Y., Anderson, E. J., Huang, C., Lang, G. A., and Xue, P.: Improved thermal structure simulation and optimized sampling strategy for Lake Erie using a data assimilative model, J. Great Lakes Res., 46, 144–158, https://doi.org/10.1016/j.jglr.2019.10.018, 2020.
Yeates, P. and Imberger, J.: Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs, Int. J. River Basin Manage., 1, 297–319, 2003.
Zhong, Y., Notaro, M., Vavrus, S. J., and Foster, M. J.: Recent accelerated warming of the Laurentian Great Lakes: Physical drivers, Limnol. Oceanogr., 61, 1762–1786, https://doi.org/10.1002/lno.10331, 2016.
Short summary
This study introduces a new 3D lake–ice–atmosphere coupled model that significantly improves winter climate simulations for the Great Lakes compared to traditional 1D lake model coupling. The key contribution is the identification of critical hydrodynamic processes – ice transport, heat advection, and shear-driven turbulence production – that influence lake thermal structure and ice cover and explain the superior performance of 3D lake models to their 1D counterparts.
This study introduces a new 3D lake–ice–atmosphere coupled model that significantly improves...