Articles | Volume 18, issue 12
https://doi.org/10.5194/gmd-18-3707-2025
https://doi.org/10.5194/gmd-18-3707-2025
Development and technical paper
 | 
23 Jun 2025
Development and technical paper |  | 23 Jun 2025

Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network

Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat

Related authors

Tropospheric-stratospheric chemistry in the CNRM climate model ARPEGE-climat 7.0.1
Martin Cussac, Martine Michou, Pierre Nabat, Béatrice Josse, and Sophie Pelletier
EGUsphere, https://doi.org/10.5194/egusphere-2025-1933,https://doi.org/10.5194/egusphere-2025-1933, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Saharan dust impacts on the surface mass balance of Argentière Glacier (French Alps)
Léon Roussel, Marie Dumont, Marion Réveillet, Delphine Six, Marin Kneib, Pierre Nabat, Kevin Fourteau, Diego Monteiro, Simon Gascoin, Emmanuel Thibert, Antoine Rabatel, Jean-Emmanuel Sicart, Mylène Bonnefoy, Luc Piard, Olivier Laarman, Bruno Jourdain, Mathieu Fructus, Matthieu Vernay, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-1741,https://doi.org/10.5194/egusphere-2025-1741, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
How well are aerosol–cloud interactions represented in climate models? – Part 2: Isolating the aerosol impact on clouds following the 2014–15 Holuhraun eruption
George Jordan, Florent Malavelle, Jim Haywood, Ying Chen, Ben Johnson, Daniel Partridge, Amy Peace, Eliza Duncan, Duncan Watson-Parris, David Neubauer, Anton Laakso, Martine Michou, and Pierre Nabat
EGUsphere, https://doi.org/10.5194/egusphere-2025-835,https://doi.org/10.5194/egusphere-2025-835, 2025
Short summary
Regional modeling of surface solar radiation, aerosol, and cloud cover spatial variability and projections over northern France and Benelux
Gabriel Chesnoiu, Isabelle Chiapello, Nicolas Ferlay, Pierre Nabat, Marc Mallet, and Véronique Riffault
Atmos. Chem. Phys., 25, 1307–1331, https://doi.org/10.5194/acp-25-1307-2025,https://doi.org/10.5194/acp-25-1307-2025, 2025
Short summary
Radiative and climate effects of aerosol scattering in long-wave radiation based on global climate modeling
Thomas Drugé, Pierre Nabat, Martine Michou, and Marc Mallet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3659,https://doi.org/10.5194/egusphere-2024-3659, 2024
Short summary

Related subject area

Atmospheric sciences
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025,https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary

Cited articles

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek, W.: On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation, PLOS ONE, 10, e0130140, https://doi.org/10.1371/journal.pone.0130140, 2015. a
Beckh, K., Müller, S., Jakobs, M., Toborek, V., Tan, H., Fischer, R., Welke, P., Houben, S., and von Rueden, L.: Explainable Machine Learning with Prior Knowledge: An Overview, arXiv [preprint], https://doi.org/10.48550/arXiv.2105.10172, 2021. a, b, c
Belle, V. and Papantonis, I.: Principles and Practice of Explainable Machine Learning, Front Big Data, 4, 688969, https://doi.org/10.3389/fdata.2021.688969, 2021. a
Bose, S., Hansel, N., Tonorezos, E. S., Williams, D. L., Bilderback, A., Breysse, P. N., Diette, G. B., and McCormack, M. C.: Indoor Particulate Matter Associated with Systemic Inflammation in COPD, J. Environ. Protect., 6, 566–572, https://doi.org/10.4236/jep.2015.65051, 2015. a
Ceamanos, X., Six, B., and Riedi, J.: Quasi-Global Maps of Daily Aerosol Optical Depth From a Ring of Five Geostationary Meteorological Satellites Using AERUS-GEO, J. Geophys. Res.-Atmos., 126, e2021JD034906, https://doi.org/10.1029/2021JD034906, 2021. a
Download
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Share