Articles | Volume 18, issue 12
https://doi.org/10.5194/gmd-18-3707-2025
https://doi.org/10.5194/gmd-18-3707-2025
Development and technical paper
 | 
23 Jun 2025
Development and technical paper |  | 23 Jun 2025

Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network

Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat

Data sets

Knowledge-inspired fusion strategies for the inference of PM2.5 values with a Neural Network - CAMS data for experiments Matthieu Dabrowski https://doi.org/10.5281/zenodo.13929498

CNRM-ALADIN64 - Regional climate simulation over the Euro-Mediterranean region Marc Mallet and Pierre Nabat https://doi.org/10.25326/703

Model code and software

Knowledge-inspired fusion strategies for the inference of PM2.5 values with a Neural Network - code for experiments Matthieu Dabrowski https://doi.org/10.5281/zenodo.13920070

Download
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Share