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Abstract. Ground-level concentrations of particulate matter
(more precisely PM2.5) are a strong indicator of air quality,
which is now widely recognised to impact human health.
Accurately inferring or predicting PM2.5 concentrations is
therefore an important step for health hazard monitoring and
the implementation of air-quality-related policies. Various
methods have been used to achieve this objective, and neural
networks are one of the most recent and popular solutions. In
this study, a limited set of quantities that are known to impact
the relation between column aerosol optical depth (AOD) and
surface PM2.5 concentrations are used as input of several net-
work architectures to investigate how different fusion strate-
gies can impact and help explain predicted PM2.5 concen-
trations. Different models are trained on two different sets
of simulated data, namely, global-scale atmospheric com-
position reanalysis provided by the Copernicus Atmosphere
Monitoring Service (CAMS) and higher-resolution data sim-
ulated over Europe with the Centre National de Recherches
Météorologiques ALADIN model. Based on an extensive
set of experiments, this work proposes several models of
knowledge-inspired neural networks, achieving interesting
results from both the performance and interpretability points
of view. Specifically, novel architectures based on boundary
condition generative adversarial networks (BC-GANs, which
are able to leverage information from sparse ground obser-
vation networks) and on more traditional UNets, employing
various information fusion methods, are designed and eval-
uated against each other. Our results can serve as a baseline

benchmark for other studies and be used to develop further
optimised models for the inference of PM2.5 concentrations
from AOD at either the global or regional scale.

1 Introduction

Particulate matter (PM2.5), defined as fine airborne particles
with an aerodynamic diameter of less than 2.5 µm, serves as
a critical indicator of air quality. PM2.5 levels are strongly
associated with adverse health outcomes, including respira-
tory and cardiovascular diseases (Bose et al., 2015; Madrig-
ano Jaime et al., 2013; Neophytou et al., 2014). The Global
Burden of Disease study has recognised air pollution as the
fifth leading risk factor for mortality worldwide (Cohen et al.,
2017). Accurate estimation and prediction of PM2.5 concen-
trations are therefore essential for effective health hazard
monitoring.

Research on the health effects of PM2.5 is fundamental
for the development of air pollution management strategies.
Access to air pollution exposure data is also critical for as-
sessing the negative health impacts of ambient PM2.5. His-
torically, regional and national ground monitoring networks
have been the primary sources for PM2.5 data. However, the
establishment and maintenance of such networks are costly,
especially on a large scale, and may not be prioritised in some
countries. Martin et al. (2019) report how a substantial por-
tion of the world lacks adequate PM2.5 monitoring, with only
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10 % of countries having more than three monitors per 1 mil-
lion inhabitants and 60 % of countries not conducting rou-
tine PM2.5 monitoring. Furthermore, the scarcity of histor-
ical data impedes longitudinal health studies. For instance,
China’s or India’s PM2.5 nationwide monitoring networks
were only established respectively in late 2012 and 2015, re-
sulting in a lack of data prior to those dates (Ma et al., 2019;
Dey et al., 2020).

Networks of ground-based sensors monitoring PM2.5 con-
centration at surface level are instrumental but can only pro-
vide information for a few sparse locations. Obtaining com-
plete maps of PM2.5 values from satellite observations is
therefore an interesting and important task. Aerosol opti-
cal depth (AOD), a metric used to indicate aerosol load-
ing in the vertical column, has strong positive relationships
with ground-level PM2.5 concentrations (Engel-Cox et al.,
2004; Wang and Christopher, 2003; Mukai et al., 2006; Xin
et al., 2014). In recent decades, advanced space-borne sen-
sors have provided AOD measurements with broad spatial
coverage and high spatial resolution. This has enabled the
use of satellite-derived AOD products for a large-scale esti-
mate of mass concentration at ground level through more or
less complex AOD–PM2.5 conversion schemes and models
(van Donkelaar et al., 2006; Wu et al., 2016; Hu et al., 2014;
Chu et al., 2016; Di et al., 2019; Guo et al., 2021; Ma et al.,
2022; Gilik et al., 2022).

However, while space-borne observations of aerosol prop-
erties, such as AOD and the Ångström exponent, can provide
large-scale information, these quantities are not easily nor di-
rectly related to PM2.5 concentrations near the surface level.
This is because the PM2.5–AOD relationship can be a mul-
tivariate function of a wide range of influencing factors. For
the first order, AOD and aerosols properties (fine-mode frac-
tion, hygroscopicity) are indeed skilful predictors for near-
surface PM2.5 concentration. The literature, however, points
to a wide range of parameters that may also contribute pos-
itively to PM2.5 statistical prediction. Meteorological vari-
ables (wind speed and height of the planetary boundary layer
(HPBL), humidity, temperature and rainfall), surface con-
ditions (albedo and normalised difference vegetation index,
NDVI), distance to the ocean, road infrastructure, population
density, elevation or calendar month are regularly considered
useful influencing factors (Lary et al., 2015; Son et al., 2018;
Reid et al., 2021; Su et al., 2022).

Among the numerous studies aimed at retrieving PM2.5
concentrations from a satellite, we can generally identify
three main categories of methods. The first ones are based
on atmospheric chemical transport models (CTMs) and es-
tablish a scaling factor between simulated values of AOD
and PM2.5 (Lyu et al., 2022; Xiao et al., 2022). This fac-
tor can then be transferred to estimate ground level PM2.5
from satellite-derived AOD (van Donkelaar et al., 2006;
Geng et al., 2015). This method accuracy heavily depends
on the scaling factor spatiotemporal variability and there-
fore has clear limitations if the variability is not properly

accounted for and represented by the scaling model. The
second set of methods are directly data-driven and aim at
establishing a univariate or multivariate statistical relation-
ship between AOD, other influencing factors and ground-
level PM2.5 observed concentrations. While the initial stud-
ies proposed to use simple linear or generalised linear re-
gression models, more complex non-linear methods, such
as neural networks (Gupta and Christopher, 2009) or boost-
ing (Reid et al., 2015), have been applied since. Machine
learning (ML) techniques have developed rapidly (Irrgang
et al., 2021; Unik et al., 2023) and proven to be highly ef-
ficient for representing the non-linear relationships between
PM2.5 and multiple variables (Lee et al., 2022). Yet, per-
formances of machine-learning-based methods remain even-
tually affected by the distribution and density of ground
stations used to feed the regression algorithms (Gupta and
Christopher, 2009; Li et al., 2017). Finally, a third type of
approach combines physics-based explicit relations between
core aerosol properties (size distribution, hygroscopicity, op-
tical extinction efficiency) and PM2.5 concentrations. While
those also rely partly on empirical formulation for estab-
lishing some parameters (especially the link between opti-
cal properties and aerosols composition), they tend to pro-
vide a better physical interpretability than purely statistical
methods and are also more independent of ground station
observation specifics. Combining the interpretability advan-
tage of semi-physical empirical models with the strength of
machine-learning to improve the accuracy of physical param-
eters acquisition opens a clear path to obtain accurate PM2.5
concentration from satellite observations, as illustrated by Jin
et al. (2023a).

Machine learning has been increasingly used to develop
PM2.5 models and deep learning; in particular, deep con-
volutional neural networks (DCNNs) have recently revolu-
tionised many prediction-related application areas, including
diagnostics. Several recent and extremely thorough review
papers provide clear evidence for the exploding number of
studies in the field (Ma et al., 2022; Unik et al., 2023; Zhou
et al., 2024) and also illustrate the need for more standardised
comparison methodologies and metrics (Zhou et al., 2024).

While models tend to perform increasingly well, espe-
cially once optimised for a particular region (Chen et al.,
2024), they do not necessarily help us understand the rela-
tive importance of input parameters for the final decision. An
old and persistent criticism of neural networks (NNs) among
physicists is that they do often work at the expense of hid-
ing physical understanding, especially as NN-based models
tend to rely on increasingly complex architectures. Not sur-
prisingly, the general growing interest in so-called explain-
able AI is also echoed in the sciences (Beckh et al., 2021),
including atmospheric sciences, as the use of deep learning
creates paradigm shifts in atmospheric modelling. In that re-
spect, the study by Park et al. (2020) provides a valuable
approach to evaluate model sensitivity to predictors through
layer-wise relevance propagation (LRP) (Bach et al., 2015)
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but remains quite an exception among the ocean of PM2.5
models. Finally, while ML actually provides skilful mod-
els, there has been little work in the atmospheric sciences
to understand how 2D AOD distribution could actually in-
form about aerosol properties and be combined with col-
umn properties in order to improve AOD-to-PM2.5 scaling.
While some essential parameters are not easily handled or
predictable (boundary layer height, aerosol-type fine-mode
fraction and aerosol vertical profiles), they all strongly de-
pend on atmospheric dynamics and geographical location
which in turn is somehow translated in the 2D AOD dis-
tribution. CNNs have shown excellent generalisation capa-
bility for dealing with input data that have spatial auto-
correlation, such as images (Szegedy et al., 2016), and are
therefore potentially well suited to extract the information
on aerosol properties contained in their spatial distribution
(Marais et al., 2020).

Among the three different approaches often used to es-
timate PM2.5 from AOD observation, we explore here an
hybrid method for addressing the scaling approach. We use
DCNNs (deep convolutional neural networks) or DC-GANs
(deep convolutional generative adversarial networks) in or-
der to better capture the spatiotemporal heterogeneity of the
PM2.5–AOD relationship. We aim at testing different archi-
tectures and information fusion strategies in order to develop
a model for PM2.5 whose results and performances can be
better explained.

In previous work (Dabrowski et al., 2023), the AOD alone
was used for the inference of PM2.5, which leads to promis-
ing results, surpassing other methods such as polynomial
interpolation and the random forest machine learning algo-
rithm. However, other variables (such as the surface-level
wind speed and direction, temperature, pressure, humidity
and Ångström exponent) could be used as well as they are
known to strongly drive surface PM2.5 concentrations (Unik
et al., 2023). We evaluate in the present study if this addi-
tional information could enhance the inference performance
depending on the network architecture and information fu-
sion strategy.

The main contributions of this paper are

– a study on the appeal of several variables (Ångström
exponent, wind speed and direction, temperature, pres-
sure, humidity) for the prediction of surface PM2.5 con-
centration when used jointly with the AOD;

– a study on the best type of fusion method to use for
the prediction of surface PM2.5 concentration, depend-
ing on the variables used as input and on the type of
model used;

– a model architecture that is proposed based on the
knowledge from these studies along with a selection of
additional input variables to use.

The insights this study provides and the knowledge it repre-
sents help in building an efficient (and knowledge-inspired)

model. Indeed, based on a performance analysis, we propose
a combination of network architectures that appear most suit-
able for the application. We note here that our main objective
is not to develop an optimised network for a specific appli-
cation but rather to investigate whether certain types of net-
work architecture or fusion strategies may be more suitable
for leveraging information contained in 2D multi-component
atmospheric fields for aerosol characterisation.

This paper begins with an explanation of the experimental
approach chosen to investigate this problem in Sect. 2. Then,
Sect. 3 proposes a more in-depth description of the data used.
Section 4 is dedicated to describing the models and methods
proposed as solutions in this paper. A quick overview of sev-
eral relevant concepts from the fields of machine learning,
deep learning and computer vision is provided in Sect. 4.1,
followed by a more detailed explanation of the models of in-
terests. Indeed, some other methods are only used as a base-
line for comparison. A precise description of our experiments
is realised in Sect. 5 along with their results and interpreta-
tion in Sect. 6. Finally, Sect. 7 gives an overview of the main
findings and proposed solutions derived from this study.

2 Objective and approach

The purpose of the models designed in this paper is to in-
fer maps representing values of the PM2.5 concentration at
ground level from maps (of the same size) representing val-
ues of the AOD in conjunction with maps of other atmo-
spheric variables. To do this, NNs such as UNets and GANs
are used as their convolutional versions showed an ability to
take into account the spatial variability of the data they are
being presented with. In the case of convolutional neural net-
works (CNNs), these data mainly take the form of images or
matrices.

As further detailed in Sect. 3, we use different aerosol op-
tical properties in addition to AOD and meteorological quan-
tities that are known to characterise or drive the aerosol con-
centration as well. These are, namely, the wind speed and di-
rection, atmospheric pressure, temperature, relative humidity
(all five of these meteorological variables being measured at
surface level), and Ångström exponent.

An important number of experiments are conducted in or-
der to study the impact of these additional variables on the in-
ference performance for each network architecture. Further-
more, as stated in Sect. 4.3, there exist different strategies
to leverage several inputs at the same time and within the
same model. In this work, we test three different fusion tech-
niques, namely, feature fusion (FF), decision fusion (DF) and
channel concatenation (CC) (also called data fusion). These
strategies and their implementation are described in Sect. 4.3.
Experiments are performed to identify the best fusion strat-
egy depending on the network architecture and available in-
put variables considered for inference of PM2.5.
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More classical solutions, such as the kriging method or
even polynomial interpolation, are implemented as well to
serve as baseline for comparison of inference performances.
The expected outcome of this important number of experi-
ments is a performant NN architecture for the prediction of
PM2.5 concentration from complete and incomplete maps of
the AOD along with insights into the design process of this
type of model.

3 Data

In this work, we exclusively use data from simulations
(namely, from the Copernicus Atmosphere Monitoring Ser-
vice, CAMS, and ALADIN models) as they allow us to eas-
ily obtain all the necessary information. It also maintains the
possibility of selecting or sampling data to represent realis-
tic observation scenarios. The CAMS model provides maps
representing values of various meteorological quantities and
optical measurements, covering the entire world.

The ALADIN model provides the same type of maps, but
they cover Europe and the north of Africa instead of the en-
tire world and at a higher spatial and temporal resolution than
CAMS.

Even though we use simulated data, our objective remains
to simulate what could be obtained in a real situation. This
is why we come up with a scenario in which a part of the
data is simulated, and the most recent part is real, mea-
sured data. More precisely, in this hypothetic scenario, op-
tical sensors operating from geostationary satellites (Cea-
manos et al., 2021) allow us to obtain AOD values in near-
real-time. These satellites are, namely, two Meteosat Second
Generation (MSG) satellites, the Himawari satellite, and two
Geostationary Operational Environmental Satellites – New
Generation (GOESNG). They respectively cover Europe and
western Asia, eastern Asia, and the Americas. The cumulated
coverage of these geostationary satellites allows for the gen-
eration of complete (as opposed to sparse) maps of the AOD.
The PM2.5 concentration values at surface level are obtained
through photometers, lidar instruments, optical counting sen-
sors or even filters. Each of these sensors can only provide
concentration values for its own geographical location. This
is why this network of sensors can only provide sparse maps
of the PM2.5 concentration.

This means that, for a real-use-case scenario, no complete
ground truths are available in the measured data. Instead,
sparse ground truths are available. In order to reproduce that
scientific obstacle, we produce sparse maps of the PM2.5
concentration using the complete ones by randomly select-
ing pixels. For a part of the training set, we consider only
having access to these sparse maps instead of the complete
ones. This was suggested by the authors of Dabrowski et al.
(2023) as it allowed for some level of control over the spar-
sity of these sparse maps and therefore allowed for a study of
the impact of the sparsity of these maps over the results. We

use this method too in order to be able to compare the results
of this paper to ours.

The aerosol optical depth, expressed for a wavelength of
550 nm, is our main input and is used systematically. Apart
from it, six other quantities that are either routinely observed
or modelled can be used as additional inputs. Five of them
are meteorological quantities: wind speed and direction, rel-
ative humidity, temperature, and pressure, all of which are
measured at surface level. These quantities are known to
drive aerosol concentration and their size distribution. The
last quantity, the Ångström exponent (AE), is actually an op-
tical quantity that is derived from AOD at two different wave-
lengths. It characterises the spectral variation in the AOD
and is related to aerosol particle size distribution such that
aerosols with a dominance of fine particles tend to exhibit
larger AE. This is therefore an important parameter in aerosol
modelling and potentially an important predictor of PM2.5
(Jin et al., 2023b).

Links to the data and code used in this article are available
in the “Code and data availability” section, just after Sect. 7.

4 Models

4.1 Background

The task of inferring maps of PM2.5 at ground level from
maps of AOD combined with one or several other variables
can be seen as a regression problem, or as what is known
in the field of computer vision as an image-to-image transla-
tion problem. Indeed, we want to infer an output image from
a different input image (or from a number of them). In the
literature, one can find several methods used to solve this
kind of task, such as the polynomial interpolation, kriging
method (Matheron, 1963), machine learning (Ho, 2018) and
deep learning algorithms (Goodfellow et al., 2020). The most
relevant algorithms in our context is briefly described below.
Details can be found in Appendix A.

Kriging (Matheron, 1963) is a spatial interpolation and
extrapolation method governed by prior covariances. It per-
forms better with important volumes of data and when es-
timated values follow a normal distribution. For each infer-
ence, a new kriging model is built, which leads to longer in-
ference times compared to other methods used in this paper.
This method is described in greater detail in Appendix A4.

UNets (Ronneberger et al., 2015) represent a type of neu-
ral network (NN) architecture known for its performances,
particularly in the field of computer vision. The architecture
is typically composed of an encoder and a decoder, and the
main idea behind UNets is to add skip connections linking
the outputs of each layer in the encoder to a corresponding
layer in the decoder. This makes it possible to reduce dimen-
sionality without the risk of losing relevant information in
the process. Figure 1 gives an example of a model with this
type of architecture.
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Figure 1. Architecture of a UNet with both convolutional and feed-forward layers. Here, the encoder and decoder are symmetrical.

GANs (Goodfellow et al., 2020) are a type of NN that ac-
tually consist of two networks. One is called the generator,
and the other is the discriminator. The role of the discrimina-
tor is to distinguish between real data and data generated by
the generator. The purpose of the generator is to produce out-
put close enough to the real data that the discriminator labels
them as real. These two networks learn competitively: the
higher the loss of the generator, the lower the loss of the dis-
criminator, and inversely. This allows such models to show
interesting performances in the context of semi-supervised
learning. They are also highly efficient for image-to-image
translation tasks. The learning process of the type of GAN
that will be used in this paper is described in Dabrowski et al.
(2023), in Fig. 1 of that article.

4.2 Relevant deep learning models and architectures

Different types of models are implemented, trained and
tested on our data. We use as the baseline for comparison
the random forest algorithm (a machine learning algorithm),
a polynomial interpolation method (of degree 3), and a krig-
ing algorithm as described in Sect. 4.1.

Two deep convolutional neural network architectures, UN-
ets and BC-GANs (Dabrowski et al., 2023), are the basic
components of the models we propose in this paper. The first
one is a purely supervised UNet and the second one a semi-
supervised BC-GAN as described in Sect. 2. The architec-
ture of the generator of these BC-GANs will each time cor-
respond to the architecture of the corresponding purely su-
pervised UNet. As for the architecture of the discriminators,
they are described in Appendix B.

These models allow one to leverage sparse ground truth
when complete ones are unavailable, which increases perfor-
mance (compared to classical GANs) in the context of semi-
supervised learning.

Indeed, we do not have access to complete ground truths
for the whole training set. For a part of it, we only have ac-

cess to sparse ground truths. The authors of Dabrowski et al.
(2023) were mainly interested in how these sparse ground
truths and the information they represent could be leveraged
in order to ease the training and obtain better results. They
proposed a method to leverage those sparse ground truths
based on the literature around physics-informed networks
that implied seeing those sparse ground truths as bound-
ary conditions (BCs), hence giving it the name BC-informed
GAN. The authors of Dabrowski et al. (2023) illustrated this
method in Fig. 2 of their article. It includes the design of an
additional loss function in order to train the model to respect
the BCs. This essentially allows for localised supervision.

4.3 Information fusion strategies

All our models have in common that they use as input one
or several variables to produce the same type of output. It is
therefore necessary to merge these variables together during
this process. This also ensures the production of the output
makes use of all these pieces of information.

Fusion strategies are therefore an important aspect of the
architecture definition, and eventually the performance, of
the model. They represent different methods that can be
applied to leverage several sources of data (several inputs)
within the same NN. They can be applied on models such as
UNets as well as GANs. There are three main different fusion
strategies according to Mangai et al. (2010), namely, data fu-
sion, feature fusion and decision fusion. Section 4.3.1, 4.3.2
and 4.3.3 describe (respectively) each of these approaches
and the way we use them.

4.3.1 Data fusion (channel concatenation)

The general idea behind this strategy is to use several pieces
of raw data to build a new, more complete and useful, piece
of raw data.
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As our data consist of images, the simplest way to do data
fusion is to realise channel concatenation: in other words, to
use our different inputs as if they were different channels of
one single image. For this reason, this method is also called
channel concatenation throughout this paper. This approach
if the most straightforward of the three.

In terms of architecture of our neural networks, this sim-
ply implies using more convolutional filters. The UNet’s ar-
chitecture with data fusion is illustrated by Fig. 2. GAN’s
discriminator’s architecture with data fusion is illustrated by
Fig. B1 in Appendix B.

In terms of interpretation, this architecture relies on the
local (rather than global) relationships between the different
quantities used as input. We believe this architecture to work
better if local patterns in one input image correspond to local
patterns in other input images.

4.3.2 Feature fusion

One of the most common architectures in neural networks
for computer vision tasks is the encoder–decoder. The gen-
eral idea is that the encoder generates what is called a feature.
This feature is usually a vector but can technically also be a
matrix (although the idea is for it to be of smaller dimensions
than the input). It is supposed to contain all the relevant in-
formation from the input with regard to the task at hand. In
other words, it describes the input well enough so that only
this feature is needed for the task. During the next step, the
decoder uses the feature as input and produces the output.

Feature fusion methods are often applied to computer vi-
sion tasks, for example, when dealing with complex hyper-
spectral images (Song et al., 2018). The idea behind them is
to obtain a feature for each input and use them to obtain one
super-feature (for example by simply concatenating the var-
ious features). According to the authors of Sun et al. (2005),
two interesting ways to fuse feature vectors are the serial fea-
ture fusion (based on an union vector) and the parallel fea-
ture fusion (based on a complex vector), although the same
authors actually propose a new method based on canonical
correlation analysis (CCA).

This unique feature is then used by the decoder to produce
the output. In terms of architecture, this implies having as
many encoders as inputs, but only one decoder (since there is
only one output). The UNet’s architecture with feature fusion
is illustrated by Fig. 3.

The UNet architecture is a specific type of encoder–
decoder, in which a specific type of connection, called skip
connection, can be found. It is also often symmetric (in the
sense that the decoder’s layers mirror the encoder’s one). Af-
ter each layer in the encoder, the obtained feature is sent to
the corresponding layer in the decoder. This allows for the
decoder to have access to several features rather than simply
the smallest one.

Implementing feature fusion with a UNet is therefore non-
trivial: among all the features obtained for each input, which

ones should be sent to the decoder through skip connections?
We choose to apply what we call multiple-feature fusion. The
principles of feature fusion are applied to a feature of each
and every scale, and those merged features are sent to the
corresponding layer of the decoder through skip connections.

In terms of interpretation, this architecture relies on the
global relationships between the inputs. As obtaining fea-
tures relies on dimension reduction, those features represent
the input in a more global way and do not necessarily rep-
resent local patterns. The smaller the scale of these features
(and the deeper their corresponding layers are), the truer it
is. This architecture relies on the idea that each of the input
images contains a global, non-localised piece of information
that can be useful in order to estimate the aerosol concentra-
tion. Again, the global or non-localised aspect of each of the
features actually depends on its scale or depth in the network.

GAN’s discriminator’s architecture with feature fusion is
illustrated by Fig. B2 in Appendix B.

4.3.3 Decision fusion

The idea behind decision fusion is to use a separate model for
each input, obtain an output for each of them, and then merge
those outputs together to obtain a final decision, which is sup-
posedly better. In classification tasks, decisions represent the
predicted class. In regression tasks, like the one considered in
this paper, they represent the estimated quantity. Losses are
computed using the final output. The backpropagation pro-
cess takes place through the entire model (and the smaller
models that compose it).

There exist several ways to fuse decisions, such as the
linear or log opinion pool (corresponding respectively to a
weighted sum or product) (Sinha et al., 2008). Voting algo-
rithms can even be used for classification tasks (Sinha et al.,
2008). In this article, a linear opinion pool approach is cho-
sen: we apply a weighted mean of all the outputs to obtain
the final one. The weights are learnable parameters, which
allows the model to learn which outputs are most relevant.

This principle relies on the idea that each of the inputs can
individually be used to produce an estimation of the aerosol
concentration but that these estimation may be flawed and
that the best estimation can be obtained through a combina-
tion (here a weighted mean) of these flawed estimations. In
other words, it is possible to correct the estimation produced
with an input using the estimation produced with another in-
put. Since the model can learn which inputs are the most rel-
evant to produce the desired output, we expect this approach
to provide the best inference when all inputs are used.

The architecture of GAN’s discriminator with decision fu-
sion is, in principle, very similar to the architecture of our
UNet with decision fusion. The main difference is the type of
output, as the discriminator outputs a single scalar for each
iteration, while the UNet outputs images. It is illustrated by
Fig. B3 in Appendix B.
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Figure 2. Architecture of the UNet with the data fusion approach. Also corresponds to the architecture of GAN’s generator.

Figure 3. Architecture of the UNet with the feature fusion approach. It also corresponds to the architecture of GAN’s generator.

4.3.4 Hybrid fusion models

The physical nature of PM2.5 predictors obviously has an
impact on the non-linear function linking AOD and PM2.5.
While AOD is directly linked to total column aerosol con-
centration at a given location, surface pressure can indirectly
be linked to PM2.5 through accumulation in the atmospheric
boundary layer under stable conditions, while wind speed
can influence PM2.5 concentration over a longer range in
space and time. Therefore we can distinguish “state” vari-
ables that can directly link PM2.5 to AOD through an inte-

gral expression over the atmospheric column and “indirect
predictors” that act on PM2.5 concentrations over different
space and timescales. In our current analysis, the wind vari-
ables (speed and direction) stand out as they describe the at-
mosphere dynamics, while the AOD and Ångström exponent
are clearly state variables regarding the inference of PM2.5
concentration. Humidity, pressure and temperature variables
can be considered primarily state variables as they strongly
impact the particle size distribution through aerosol hygro-
scopicity but can also indirectly influence near-surface PM2.5
concentrations by favouring accumulation under stable atmo-
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Figure 4. Architecture of the UNet with the decision fusion approach. It also corresponds to the architecture of GAN’s generator.

spheric conditions or, on the contrary, by the removal of at-
mospheric particles through dry deposition or wet scaveng-
ing.

The performance of networks and their robustness to noise
are known to be impacted by their architecture, and network
performances can be improved upon state-of-the-art (SOTA)
when the network is well aligned with the target function (Li
et al., 2021). We hypothesise here that for atmospheric appli-
cations, the optimal alignment of network architecture with
the target function may depend on the nature of variables
used as input and on the fusion strategy used for merging
information carried by those variables. Through this hypoth-
esis, we ask whether there is an advantage in applying differ-
ent fusion strategies for different types of input variables.

Based on this insight, we propose two hybrid models using
different fusion strategies depending on the variable consid-
ered. The idea is to use data fusion (channel concatenation)
for the AOD and all other input variables, except for the wind
and temperature, for which feature fusion is used. Figures 5
and 6 describe these two models more precisely. Section 6.5
shows and discusses the results obtained by these models.

5 Methodology

In order to find the best way to handle our variety of input
quantities, we propose to study the three main fusion ap-

proaches described in Sect. 4.3. Each fusion method is ex-
perimented on using two types of models: a purely super-
vised UNet and a BC-GAN using sparse measurements of
the aerosol concentration at ground level as boundary con-
ditions. Experiments on the hybrid approaches proposed in
Sect. 4.3 are realised as well.

The goal is also to understand which input quantities have
the most important impact on our results, in other words,
which additional variables actually help our models to better
predict PM2.5 at surface level. This is why, for each distinct
model architecture, experiments are realised with different
combinations of additional variable to study their impact on
the results.

5.1 Learning and validation protocol

Experiments are conducted on CAMS and ALADIN
datasets. AOD is systematically used as input in all our ex-
periments. In addition, six other variables are also considered
(wind speed and direction, relative humidity, atmospheric
pressure, temperature, and Ångström exponent) in order to
evaluate their impact on the results. It is important to spec-
ify that the wind speed and direction are always used jointly
to describe the wind state variable. With this rule in mind,
experiments are performed with all possible combinations of
these six variables (including using none of them and all of
them). The AOD is also used in all cases.
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Figure 5. The first proposed hybrid model using both data fusion and feature fusion.

Figure 6. The second proposed hybrid model using both data fusion and feature fusion.

For both CAMS and ALADIN datasets, we always con-
sider the same type of scenario, shown by Fig. 7. In this
scenario, we have access to a dataset with complete ground
truths, corresponding to a period of 11 months. We also have
access to a second dataset with sparse ground truths, which

can therefore only be used in the context of semi-supervised
(as opposed to purely supervised) learning, corresponding to
a period of 1 month. These sparse ground truths will be used
as boundary conditions as stated in Sect. 2. They contain a
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number of pixels corresponding to 5 % of the pixels avail-
able in complete ground truths.

For the CAMS dataset, one sample is generated every 3 h.
Samples take the form of matrices of size 241×480. Depend-
ing on the chosen number of input modalities, each model
input can be composed of one to seven of these matrices.
The training set therefore contains 2680 of these inputs, the
sparse training set (with sparse ground truths) 240 inputs and
the test set 2920 inputs.

For the ALADIN datasets, one sample is generated every
hour. The size of the matrices is 405×613. Again, depending
on the chosen number of input variables, each model input
can be composed of one to seven of these matrices. The train-
ing set therefore contains 8040 of these inputs and the sparse
training set (with sparse ground truths) 720 inputs. For the
test set, we only use one image for every 3 h so that it con-
tains as many samples as the CAMS test set. Therefore it also
contains 2920 inputs.

An exhaustive study on our two models (UNets and
GANs), three fusion strategies and six input variables (and all
possible combinations of these) is conducted on the CAMS
dataset. This corresponds to 192 different experiments. Only
experiments that lead to the best performances on the CAMS
dataset are conducted on the ALADIN dataset. The aim is
to provide an insight into the impact of the characteristics of
each dataset on the results, as shown in Sect. 6.2.

Then, experiments are realised on the hybrid approaches,
but only on UNet models, and always with all six addi-
tional input variables. These experiments are realised on both
datasets as well.

5.2 Data pre-processing

All values of AOD inferior to 0.005 can be considered noise.
They are therefore set to 0 before being used, be it for training
or prediction.

In order to speed up the convergence of the models,
we equalise the PM2.5 and AOD distributions by applying
the function ln(1+ x) to those values. The inverse function
exp(x)−1 is then simply applied to inferred outputs in order
to obtain actual concentration values (in µg m−3) and ease
the interpretation of our results. In our context, polluted re-
gions (with high aerosol concentration values) are our areas
of main interest. Therefore, filtering very low aerosol con-
centration values in our ground truths and predictions allows
us to better evaluate the model performance in these areas.
Specifically, values inferior to 1 µg m−3 are set to 0 µgm−3.
This is done before computation of the evaluation metrics.

These previous pre-processing protocols are based on the
protocols proposed by Dabrowski et al. (2023).

The data give us access to values of both eastward and
northward wind speeds. Instead of using them as such, we ap-
ply the transformation described by Eq. (1) to instead obtain
two different matrices. In this equation, U and V respectively
represent the eastward and northward wind speeds. The first

one contains values of the wind speed norm (regardless of
direction) and the second one values of the direction (in de-
grees) of the wind. Each time wind values are used in an
experiment, both of these matrices are used.

norm=
√
U2+V 2

direction=arctan
(

V
U

)
.

(
180
π

)
(1)

Our data do not originally contain values of the Ångström ex-
ponent, but it is easily possible to compute them using values
from the AOD measured at two different wavelengths and
Eq. (2). In this equation, λ1 represents the wavelength of the
original AOD, which is 550 nm, and λ2 is the wavelength of
the second AOD, used simply to compute the Ångström ex-
ponent. When using data from the CAMS model, this second
wavelength is 865 nm, while with the ALADIN model, it is
1000 nm.

angstrom(λ1,λ2)=−
ln
(

AOD(λ2)
AOD(λ1)

)
ln
(
λ2
λ1

) (2)

Pressure values are converted from pascals to atmospheres,
and temperature values from kelvins to Celsius degrees.

5.3 Metrics and losses

During training, depending on the type of model, different
losses can be used. For our GANs, the adverse loss is used
(to train both the generator and the discriminator), as well as
the boundary condition loss (which is essentially a localised
mean squared error (MSE), as stated in Sect. 2). This last loss
is described by Eq. (3), where y is the ground truth, ŷ repre-
sents the output of the model, and BC is a matrix containing
1 at the location of known values of y and 0 elsewhere.

BCloss(BC, ŷ,y)=MSE(BC · ŷ,BC · y) (3)

For our supervised UNets, we use the MSE loss function as
well as the feature similarity (FSIM) (Zhang et al., 2011),
which is also used as a metric and described in this section.

Four metrics are used to evaluate the models during test-
ing: the mean absolute error (MAE), the mean bias er-
ror (MBE) and the quantised error (QE), as proposed by
Dabrowski et al. (2023), as well as a metric proposed by
Zhang et al. (2011) called the FSIM. The MAE and MBE
are expressed in µg m−3 (the unit of aerosol concentration)
and in percentages (for their relative versions).

In the following equations, y represents the ground truth,
yi its elements and y its average. ŷ is the output of the model
and ŷi its elements. The number of elements in either matrix
is N .

– Mean absolute error (MAE). It is the most widely used
of these metrics; it represents the error of the models in
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Figure 7. Representation of the datasets used for our experiments. The text in grey specifies the corresponding periods of time for the datasets
built with the data from the ALADIN model instead of the CAMS model.

a general sense (Wang and Lu, 2018). It is described by
Eq. (4), in which y is the ground truth, ŷ represents the
output of the model, and N represents the number of
pixels in y.

MAE(ŷ,y)=
∣∣∣∣y− ŷ
N

∣∣∣∣ (4)

Equation (5) describes the way the rMAE is computed
from the MAE using y, the average of the ground truth
y.

rMAE(ŷ,y)=
MAE(ŷ,y)

y
(5)

– Mean bias error (MBE). It represents the model’s ten-
dency to overestimate or underestimate the values to
predict. A model with poor performance can, however,
still have a low bias as it is not the only aspect of its per-
formance. This error can sometimes be used to correct
the bias of the model. It is described by Eq. (6), which
uses the same notation as Eq. (4).

MBE(ŷ,y)=
y− ŷ
N

(6)

Equation (7) describes the way the rMBE is computed
from the MBE using y, the average of the ground truth
y.

rMBE(ŷ,y)=
MBE(ŷ,y)

y
(7)

– Quantised error (QE). This metric is used to quantise
the prediction as well as the ground truth before com-
paring them. The quartiles of the ground truth values
distribution (q1, q2, q3 and q4) are used to define four
classes for this quantisation process, which is described
by Eq. (8). In this same equation,Mi,j represents a pixel
of coordinates (i,j) from the unquantised matrix M.
Ci,j represents the pixel with these same coordinates in
the corresponding quantised matrix C.

Ci,j =


0 if Mi,j ≤ q1

1 if Mi,j ∈ (q1,q2]
2 if Mi,j ∈ (q2,q3]
3 if Mi,j > q3

(8)

This process allows us to obtain a quantised ground
truth Cgt and a quantised prediction Cpred. The quan-
tised error is computed from these matrices following
Eq. (9). N represents the number of pixels in matrix Cgt
in this equation.

QE=
|Cgt−Cpred|

N
(9)

This type of metric is usually better suited for classifi-
cation or segmentation tasks. However, the air quality is
often represented as indexed values and involves thresh-
olds corresponding to different levels of health hazards
(or policy alerts): this metric is therefore more closely
related to this representation. It is also more sensitive
than the MAE to very localised errors. It is, on the other
hand, less suited to represent tendencies to generally
overestimate or underestimate the values to predict than
the MBE.

– Feature similarity index (FSIM). This metric has been
proposed by the authors of Zhang et al. (2011) as an
image quality assessment metric. It relies on the con-
cepts of phase congruency and gradient magnitude (in
the sense of image gradients). The phase congruency
is also used to weigh the contribution of each pixel to
the similarity between two images. This leads to a sig-
nificant weight being given to edges, shapes and other
structures in the images.

5.4 Scores

As a great number of experiments were realised during this
work, we can not easily compare them all in a table. We de-
cide to present an overview of these results through charts
and to select a few experiments to compare in a table. Since
a lot of different metrics are used, a protocol is needed to
select the experiences to compare. Three different scores,
computed from the previously described metrics, are used.
This allows us to select experiments that lead to good overall
results rather than experiments that performed well on one
metric and poorly on all others, for example. These scores
are exclusively used for this selection process and do not in-
tervene further when interpreting and analysing our results.
For this reason, and to avoid overloading our result tables,
the score values are not presented in these same result tables.
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– Total score. This score is computed using all of our met-
rics at the same time, including the inference time. It
follows Eq. (10). rMAE and rMBE represent the rela-
tive counterparts of MAE and MBE and are expressed
in percentages instead of in µg m−3. Regarding the in-
ference time, the threshold of 0.05 s is used as it is the
maximum inference time among our experiences with
our deep learning models.

Total score=

0.05 s-Inference time
0.05 s + (1− rMAE)

+
3−QE

3 + (1− rMBE)+ (1−FSIM)
5

(10)

– Timeless score. This score is very similar to the first one
but does not include the inference time metric. This al-
lows for the identification of the best-performing mod-
els for a situation in which the inference time is not a
predominant factor. It follows Eq. (11).

Timeless score=

(1− rMAE)+ 3−QE
3

+(1− rMBE)+ (1−FSIM)
4

(11)

– Reduced score. This score is computed using only
rMAE and FSIM. These two metrics are the most rel-
evant ones in the computer vision domain. This score
therefore allows for a comparison of the models and ex-
periments from this point of view only. It also does not
make use of the inference time. It follows Eq. (12).

Reduced score=
(1− rMAE)+ (1−FSIM)

2
(12)

5.5 Methodology and data summary

In order to ease the comparison of this work to other models
using a scaling approach for inference of PM2.5 from AOD,
we provide hereafter in Table 1 a summary of our methodol-
ogy as well as some characteristics of the dataset and meth-
ods used in this paper. It follows the standard proposed by
the authors of Zhou et al. (2024).

6 Results

We start with a general overview of our results. The next step
is to identify the best-performing and most interesting results
and models among the experiments realised on the CAMS
dataset. This allows us to reproduce these experiments on the
ALADIN dataset in order to compare the results and better
understand the impact of the characteristics of these datasets
(namely, spatial domain and resolution) on the results.

6.1 Overview

We choose to summarise our results in the form of radar
charts, with five metrics represented on these charts: the in-
ference time t , rMAE, QE, rMBE and FSIM. The values of

these metrics were normalised the same way they are when
used to compute our scores, which allows us to represent
them on the same scale. High values of these normalised ver-
sions of our metrics represent high performance. Lines made
up of cyan dots represent both the maximum and minimum
performances for each metric, and are linked by a light cyan
area that gives an overview of the performance range on each
radar graph. Blue dashes and dashed–dotted purple lines rep-
resent respectively the median and average performance for
each metric among all results presented on this radar graph.
Out of these same results, the experiments that lead to the ob-
tention of the best total score are represented with a plain red
line on the graph. The relative values (in percentages) of each
metric for these experiments (the ones leading to the best
score) are also systematically represented by yellow boxes
on the graph.

Figure 8 gives an overview of the performance of each
couple model-fusion strategy. It shows that, on average, mod-
els using decision fusion have the longest inference time,
while models using data fusion are the fastest, and those us-
ing feature fusion are in the middle. This is expected as it
correlates with the number of parameters of each model, as
illustrated by Fig. C1.

It also shows that GANs seem to generally suffer from
poorer rMAE and rMBE scores than UNets. Our interpre-
tation is that the proportion of the training set reserved for
strictly supervised training is important enough for purely
supervised methods to perform well. The appeal of GANs
lies in their ability to realise semi-supervised training. In
our case, it also corresponds to their ability to make use of
the portion of our dataset that only contains sparse ground
truths. This portion is small, which therefore makes the ap-
peal of GANs (and arguably semi-supervised methods) lim-
ited in this case. In comparison, the authors of Dabrowski
et al. (2023) show the efficiency of their GANs in a con-
text where only half of the dataset contains complete ground
truths. It is interesting to note that the FSIM and QE metrics
do not seem to be affected by this in the same way or, at least,
not as intensely.

Finally, the data fusion or channel concatenation (CC in
the figure) strategy seems to be leading to more stable re-
sults than the other two fusion strategies. This may also be
linked to the difference in model complexity, as shown in
Appendix C.

Figure 9 shows the evolution of the performances of our
UNet when we increase the number of input variables. It
shows that, when increasing the number of input variables,
the average inference time increases. This is expected, as
Fig. C1 shows that the models grow in complexity with
the number of input variables. Other metrics, and especially
rMAE, show on average an increase in performance when
adding more input variables. However, this increase in per-
formance is not linear, and when deciding to add an input
variable to a given experiment, we are not guaranteed to ob-
tain better results. We can also note that, when comparing
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Table 1. Characteristics of the dataset, method and experiments used in this paper in the standard proposed by the authors of Zhou et al.
(2024). Indicators in italic represent subgroups of indicators belonging to the standard on the left.

Standard Indicator Description

Dataset Open source Yes. For more information, see the “Code and data availability” section, just after Appendix D.
Data feature
Predict step Single step.
Time resolution Every 3 h for CAMS, every hour for ALADIN.
Data size CAMS: 5840 samples. ALADIN: 11 680 samples.

Data dimensions Up to eight matrices per sample. Shape for CAMS: 241× 480. For ALADIN: 405× 613.

Dataset split Training set and test set both span over a year.
Test set always contains 2920 samples out of the total.

Pre-processing
Missing value Handled by CAMS and ALADIN models.
Conversions Pressure: Pa to atm. Temperature: K to °C.
Filtering AOD with a threshold of 0.005.
Normalising Function ln(1+ x) applied to AOD and PM2.5
Others Computing the Ångström exponent out of AOD values.

Extracting the wind speed norm and direction from its northward and eastward speeds.

Method Open source Yes. For more information, see the “Code and data availability” section, just after Appendix D.

Architecture UNet, inspired from (Ronneberger et al., 2015). GAN, inspired from (Goodfellow et al., 2020).
Implementation of data fusion, feature fusion and decision fusion methods.

Training process Optimiser: Adam. Loss functions: MSE and FSIM (UNet), adversarial and based on BC (GAN).
500 epochs.

Visual analysis Available in Figs. 10 and 12.
Novelty Implementation of a hybrid fusion method.

Study of the impact of several meteorological variables on the results.

Experiments Experimental setting
Model configuration Encoder kernel sizes: 9, 7, 7, 3. Decoder kernel sizes: 3, 7, 7, 9. Size of latent vector: 128.
Computation setup GPU NVIDIA Tesla A100 with 80 Go of V-RAM.

Result metrics MAE, MBE, FSIM and QE (non-classical, see Sect. 5.3).

Parameters Depending on models, between 10 and 250 millions of trainable parameters. See Fig. C1.

Comparison with SOTAs Model outperforms the kriging method, Polynomial Regression of Degree 3,
and random forest algorithms.

Ablation study Yes. Several models with several information fusion methods are tested.
Experiments are realised with different numbers of meteorological variables as input.

experiments with two additional input variables to those with
three, we observe less stable rMBE values even though the
number of experiments for these two categories is the same.
Finally, these charts also show that, regardless of the fusion
method used, experiments realised using all five input vari-
ables tend to produce the best results (apart from the point of
view of the inference time).

6.2 Best results on the CAMS dataset

Table 2 shows the best results according to each of the three
scores. The first line is the result with the best total score,
the second line is the best timeless score, and the third line is
the best reduced score. Figure 10 shows the output of these
models for one given sample.

This table shows that using more variables as input seems
to generally lead to the best results, except for the Ångström
exponent on the last line. It also shows that decision fusion
methods suffer from larger inference times, especially com-
pared to data fusion. These results lead to three main recom-
mendations depending on the context and the desired perfor-
mances. If the MBE (or bias) of the output is not an impor-
tant factor, then the recommended model is a UNet using the
data fusion strategy, as well all proposed input variables, ex-
cept for the Ångström exponent. If the inference time is not
an important factor, then the use of a UNet model with the
decision fusion strategy and all proposed input variables is
advised. Finally, a UNet with the data fusion strategy as well
as all proposed variables gives the most balanced results.
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Figure 8. Overview of each model – fusion strategy couple. Regarding the fusion type, CC stands for channel concatenation or data fusion,
FF stands for feature fusion, and DF stands for decision fusion. Cyan dots: maximum and minimum, with a cyan area in between. Blue
dashes: median. Dashed–dotted purple lines: average. Solid red line: best total score (corresponds to annotated values).

Figure 9. Overview of the evolution of our UNet’s performances when increasing the number of input variables. The wind is counted as one
variable even though it contains two channels (one for wind speed and a second one for direction). Cyan dots: maximum and minimum, with
a cyan area in between. Blue dashes: median. Dashed–dotted purple line: average. Plain red line: best total score (corresponds to annotated
values).

Looking at the left column Fig. 10 gives us a bit more in-
sight into the results. On this sample, it seems that the model
using data fusion and all variables except the Ångström expo-
nent is the one providing the best prediction for area no. 2 in
the image. Other models overestimate the aerosol concentra-
tion in this area. The fact that this model has the worst MBE
and that it is negative could shows a tendency to underesti-
mation. The observations made using this sample are coher-
ent with this assumption. The model using data fusion and

all variables, however, provides good estimations for these
two areas. Finally, the model using decision fusion (and all
variables) underestimates the concentration in area no. 1 and
overestimates it in areas no. 2 and 3. This model has the best
MBE but not the best MAE. Our hypothesis is that it over-
estimates certain areas and underestimates others, which by
compensation leads to a small bias.
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Table 2. Best results on CAMS dataset. In the column Variables used, we put the initial of each used variable: W for wind, H for humidity,
P for pressure, T for temperature and A for Ångström exponent. The AOD is always used as input. The column Fusion type contains data
for data fusion, feature for feature fusion and decision for decision fusion. The first line is the result with the best total score, second line is
the best timeless score, and third line is the best reduced score. For each metric column, the best value is formatted in bold.

Model type Fusion type Variables used Inference time MAE QE MBE FSIM

UNet Data W , H , P , T , A 0.0077 4.38 0.29 −0.13 3.10 %
UNet Decision W , H , P , T , A 0.0341 4.33 0.29 0.05 2.95 %
UNet Data W , H , P , T 0.0086 4.04 0.26 −2 2.8 %

Figure 10. Outputs of the best models on both datasets for one given
sample. The pink circles and numbers have been added afterwards
to attract the reader’s attention to some details of the image.

6.3 Comparison between the CAMS and ALADIN
datasets

Table 3 shows the results obtained for the same models as in
Sect. 6.2 but on the ALADIN dataset, and the right column
of Fig. 10 shows their outputs for one given sample.

The table shows an important difference between the re-
sults obtained on the CAMS and the ALADIN datasets.
However, even though the same metrics are used, these sets
of results are not easily comparable to each other as they
are obtained on different data. Indeed, the ALADIN dataset

contains images of much higher resolution than the CAMS
dataset; these images do not represent the same geograph-
ical domain (Europe for ALADIN, the world for CAMS),
and these datasets do not correspond to the same time pe-
riod (July 2020 to June 2022 for CAMS, July 2019 to
June 2021 for ALADIN). This explains why, in the CAMS
dataset, the aerosol concentration values are between 0 and
34 425 µg m−3, with an average of 11.02 µg m−3, while in the
ALADIN dataset, they are between 0 and 6774 µg m−3, with
an average of 23.17 µg m−3.

Figure 10 also shows a difference between results using
the CAMS and ALADIN datasets. The model using data fu-
sion with all variables underestimates the aerosol concentra-
tion in areas no. 1 and 3, which is consistent with the fact that
this model has the lowest MBE out of the three. The model
using data fusion and all variables except the Ångström ex-
ponent also underestimates concentration in these areas but
less so. This is coherent with the fact that of all three models,
this one has the second-lowest MBE. The model using deci-
sion fusion does not underestimate concentration in areas no.
1, underestimates the concentration in area no. 3 as all other
models, and overestimates the concentration in area no. 2. It
is also the model with the highest MBE and the best MAE
out of all three.

Comparison between results on our two datasets does
remain interesting as the best-performing methods on the
CAMS dataset do not seem to correspond to the best-
performing ones on the ALADIN dataset. For example, let
us look at the results from the table obtained with the data
fusion strategy. One of these results is obtained while using
all available variables as input, and the other is obtained us-
ing all variables except the Ångström exponent. Based solely
on these two results, on the CAMS dataset, it would seem
that using the Ångström exponent as part of the input vari-
ables leads to a smaller MBE, but we obtain higher values
for all other metrics (except the inference time). On the AL-
ADIN dataset the same situation and decision (of using the
Ångström exponent) seem to lead to opposite results (higher
MBE, smaller rest of the metrics). This also shows that the
impact of the use of one specific input variable on the results
of our models can not easily be interpreted. This is due to
the interaction between the input variables themselves and
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Table 3. Results on ALADIN dataset. In the column Variables used, we put the initial of each used variable: W for wind, H for humidity, P
for pressure, T for temperature and A for Ångström exponent. The AOD is always used as input. The column Fusion type contains data for
data fusion, feature for feature fusion and decision for decision fusion. For each metric column, the best value is formatted in bold.

Model type Fusion type Variables used Inference time MAE QE MBE FSIM

UNet Data W , H , P , T , A 0.0064 8.37 0.35 −3.92 4.37 %
UNet Decision W , H , P , T , A 0.0364 8.29 0.34 1.65 3.97 %
UNet Data W , H , P , T 0.0075 8.76 0.37 –1.04 4.64 %

the very nature of the neural networks, which are often de-
scribed (with reason) as black boxes.

6.4 Interpretation of the impact of the Ångström
exponent

Let us look at Fig. 11 to try and understand the impact of
using the Ångström exponent on our results on the CAMS
dataset. This figure shows that the two metrics that are im-
pacted the most by the use of the Ångström exponent are the
MAE and the MBE (and their relative counterparts). Using
the Ångström exponent seems to lead to a higher minimum
value for the MAE. In other words, it helps to avoid our worst
results (with respect to the MAE). The best MBE values are
obtained when using the Ångström exponent. Using it there-
fore seems to lead to a lower bias.

Once again, these observations are valid for the CAMS
dataset and for the chosen periods. We can not make a gen-
eral conclusion on the use of the Ångström exponent as an
input variable based on these observations alone. In particu-
lar, these observations are consistent with the results shown
in Table 2 (obtained with the CAMS dataset) but not with
those in Table 3 (obtained with the ALADIN dataset). This
shows that our observations (about the Ångström exponent)
on the CAMS dataset can not automatically be assumed to be
true for the ALADIN dataset too.

6.5 Results of hybrid fusion method

Tables 4 and 5 shows the results of the two hybrid models
described in Sect. 4.3.4 on the CAMS and ALADIN datasets
respectively. Figure 12 shows the outputs of these models on
one given sample.

These results show that, from an artificial vision point of
view, the second proposed hybrid model is better. However,
the first model appears to be more balanced and is recom-
mended in any situation where the MBE and inference time
are important metrics.

These models, while showing satisfying performance,
show poorer performances than some of the results presented
in Table 2. Therefore, we do not recommend the use of these
hybrid models with the CAMS dataset.

The left column of Fig. 12 shows that both hybrid models
produce a relatively adequate estimation for area no. 3, un-
derestimate concentration in area no. 1, and overestimate it

in area no. 2. This is coherent with both models having rel-
atively close metric values and having MBE values close to
0.

These results show that, on the ALADIN dataset, the first
proposed hybrid model leads to better results than the second
regarding all metrics (except the inference time).

The results obtained with this model are also better than
all results presented in Table 3. However, the model that was
tested on the ALADIN dataset only corresponds to the model
that produced the best performances on the CAMS dataset.
This means that we can not conclude from these results that
the hybrid models work better than other models on the AL-
ADIN dataset. To arrive to such a conclusion, we would need
to realise an exhaustive study on our three fusion strategies,
two models (GAN and UNet) and six input variables.

The right column of Fig. 12 shows that the first hybrid
model slightly underestimates concentration in areas no. 1
and that the second hybrid model underestimates it more.
The first model slightly overestimates concentration in area
no. 2, while the second model provides a more accurate es-
timation. These observations are coherent with both models
having a low MBE and the second model having the lowest
of the two. Interestingly enough, both of these hybrid mod-
els seem to propose a better estimation of area no. 3 than the
models shown in Fig. 10.

6.6 Comparison with SOTA

Table 6 shows a comparison of our best results with a few
methods used as baseline on the CAMS dataset. It is impor-
tant to note that the polynomial interpolation and random for-
est algorithm only use the AOD as input, while the kriging
method only uses sparse values of the aerosol concentration
(which represent our boundary conditions) as input.

The polynomial interpolation method has a significantly
smaller inference time than any other method discussed in
this paper. However, this is the only metric on which one of
the baseline methods outperforms our best results. Indeed,
our models outperform the chosen baselines by a large mar-
gin in all metrics except this one. Our hybrid models do not
appear in Table 6 as they are outperformed by the models
presented in this table. However, as stated in Sect. 6.5, their
performances remain comparable. In other words, our hybrid
models are outperformed by the models presented in Table 6,
but not by a large margin.
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Figure 11. Overview of our experiments with (first line) and without (second line) the Ångström exponent as an input variable. Regarding
the fusion type, CC stands for channel concatenation or data fusion, FF stands for feature fusion, and DF stands for decision fusion. Cyan
dots: maximum and minimum, with a cyan area in between. Blue dashes: median. Dashed–dotted purple lines: average. Plain red line: best
total score (corresponds to annotated values).

Table 4. Results of hybrid models on the CAMS dataset. The column Fusion type contains Hybrid1 for the model represented by Fig. 5 and
Hybrid2 for the model represented by Fig. 6. For each metric column, the best value is formatted in bold.

Model type Fusion type Inference time MAE QE MBE FSIM

UNet Hybrid1 0.0098 4.39 0.28 0.2 2.96 %
UNet Hybrid2 0.0116 4.1 0.27 −0.86 2.9 %

It has already been stated that, in a context where ground
truths are less available, GANs outperform UNets. Indeed,
their usefulness for this problem lies in their ability to realise
semi-supervised learning. It is also interesting to note that
generally speaking, all models would probably benefit from a
larger amount of data as long as the training set remains rep-
resentative of the actual data in a real-case scenario. The rep-
resentativity of the dataset is paramount as it helps avoiding
the overfitting problem often encountered in machine learn-
ing. More specifically, our deep learning models are the ones
that would benefit the most from a larger amount of accessi-
ble data as they contain more parameters.

7 Conclusion

In this paper, we perform an extensive study on the use of
several meteorological variables and column aerosol optical
properties as inputs for a deep learning model to infer PM2.5
concentrations from AOD using a scaling approach appli-
cable globally. We tested different network architectures as
well as the use of three different fusion strategies for the ex-
ploitation of these inputs in order to investigate the optimal
way of fusing those information for our specific application.

Hybrid methods of fusion have been proposed, implemented
and studied as well. Our experiments were conducted exten-
sively on CAMS data in order to assess model performances
at global scale. We also performed a limited experiment us-
ing the ALADIN dataset (instead of CAMS) over a large re-
gion covering Europe and the Mediterranean basin to study
the impact of the datasets’ characteristics on our results, es-
pecially its spatial resolution and geographic spatial cover-
age.

Based on five metrics used throughout to evaluate different
models performances, our experiments have shown the supe-
riority of UNets over BC-GANs in our context, as is shown
by Fig. 8. However the sparse training set is, in our context,
significantly smaller than the complete set. We suggest in
Sect. 6.1 that this induces a reduced need for semi-supervised
learning and explains the difference in performance between
UNets and GANs. The authors of Dabrowski et al. (2023)
show the superiority of their BC-GANs over UNets in their
context, which includes sparse and complete training sets of a
more comparable size. This shows that the difference in per-
formance between BC-GANs and UNets is not inherent to
these models themselves. Therefore, we recommend the use
of a UNet in our context of semi-supervised learning, with
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Table 5. Results of hybrid models on the ALADIN dataset. The column Fusion type contains Hybrid1 for the model represented by Fig. 5
and Hybrid2 for the model represented by Fig. 6. For each metric column, the best value is formatted in bold.

Model type Fusion type Inference time MAE QE MBE FSIM

UNet Hybrid1 0.0108 7.69 0.33 –1.42 4 %
UNet Hybrid2 0.0103 7.9 0.33 −2.87 4.2 %

Table 6. Comparison of baseline models with our best results on the CAMS dataset. Our best results on the CAMS dataset are those presented
in Table 2. Poly. interp. stands for polynomial interpolation, ord. for ordinary and HE for hole effect. For each metric column, the best value
is formatted in bold.

Model type Fusion type Variables used Inference time MAE QE MBE FSIM

Poly. interp. of degree 3 AOD only 0.0007 6 0.41 −3 4.96 %
Random forest algorithm AOD only 1.1535 6.01 0.41 −2.63 4.95 %
Ord. kriging with HE variogram BC only 40.3732 6.03 0.38 −2.99 7.67 %
UNet Data W , H , P , T , A 0.0077 4.38 0.29 −0.13 3.10 %
UNet Decision W , H , P , T , A 0.0341 4.33 0.29 0.05 2.95 %
UNet Data W , H , P , T 0.0086 4.04 0.26 −2 2.8 %

Figure 12. Outputs of hybrid models on both datasets for one given
sample. The pink circles and numbers have been added afterwards
to attract the reader’s attention on some details of the image.

our sparse training set being significantly smaller than our
complete training set. It remains difficult to deduce superior-
ity of one model over the other in the general sense from our
experiments. The comparison between our results and the re-
sults of Dabrowski et al. (2023) does show that the quantity
of sparse data has a significant impact on the performances of
these two models. Therefore, this context parameter must be

taken into account when recommending one of these models
over the other.

Our results have also illustrated that increasing the num-
ber variables as input tends to augment model performances.
This is not surprising as the limited set of variables we used
were selected for their known influence on PM2.5 surface
concentration. This remains a tendency, however, and not a
guarantee as some exceptions have been observed where, de-
pending on network architecture and fusion strategy, adding
a variable may degrade performance. This is interesting be-
cause it is counter-intuitive to the general belief that using
more (relevant) data in deep learning yields better results and
emphasises in particular the interest in studying the impact of
network architecture for atmospheric applications.

Our experiments have also shown in Sect. 6.3 the impor-
tance of the dataset’s characteristics (here spatial resolution
and coverage) and its impact on not only the results but also
the conclusions that can be drawn from them as well. This is
especially important in atmospheric sciences because geo-
physical variables have different scales of variability, and
network architecture should ideally be aligned with the spa-
tial characteristics of input fields. Our work suggests that
more work is needed to understand the impact of networks’
architecture on their ability to fully capture spatial features
that are specific to atmospheric sciences.

While identifying precisely the impact of each variable on
the models’ performances would be useful, the observations
made in Sect. 6.4, and drawn from our results, highlight the
difficulty of such a task.

The two fusion strategies that lead to our best results
(shown in Sect. 6.2) are the data and decision fusion ones.
According to our experiments, the data fusion strategy also
seems to lead to more stable results. Moreover, it allows for
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building smaller models, which in turn leads to shorter infer-
ence times and training times.

Our experiments on hybrid models did not show clear ev-
idence of their advantage compared to other models even
though they do present comparable performances, as shown
in Sect. 6.5. Based on these conclusions, the data fusion strat-
egy is the one we would recommend in a general case when
all input variables are available at the same resolution and
over the same area. Of course, this recommendation depends
on general context and more specifically on the definition of
the desired outcome. For example, using different metrics to
measure performance might lead to a different recommenda-
tion.

Finally, our objective was not to develop a single and op-
timised model for PM2.5 inference from AOD but rather to
study how multiple PM2.5 predictors could be used in or-
der to best align the network architecture with the seek in-
ference function. However, while we did not try to conduct
specific optimisation and used only a limited set of predic-
tors, we propose several architectures that yield PM2.5 in-
ference performances comparable to other tailored models
found in the literature (Ma et al., 2022; Unik et al., 2023).
The demonstrated performances obtained here should only
be interpreted as baseline capabilities of the proposed mod-
els that could most likely be improved by extending further
the time coverage of the learning database. As suggested by
Zhou et al. (2024), we also strongly encourage a more sys-
tematic evaluation of models against a common test dataset
and using standardised metrics. Since the code and data used
for this article are both available, we suggest that our cur-
rent results be seen as a benchmark for the task and context
presented in this paper. Such a benchmark could be used as
common ground for the evaluation of newly developed mod-
els of PM2.5 inference AOD data, therefore facilitating their
comparison.

As stated before, the experiments realised in this paper
clearly illustrate the appeal of using additional, carefully cho-
sen, input variables in order to augment the performance
of a scaling model to infer PM2.5 from AOD. Here we se-
lect a limited number of meteorological variables and op-
tical properties that are well known to drive surface level
PM2.5 concentration. These variables are typically useful for
establishing the link between PM2.5 and AOD through a
purely physics-based model, and, not surprisingly, our results
demonstrate they are useful to establish this link through an
artificial neural network. Based on this insight, an interesting
possibility of future work consists of applying the concept
of physics-informed neural networks (described in detail in
Appendix A) to this problem and study depending of the fu-
sion strategy used, at which level the incorporation of physics
equations would be most relevant.

Appendix A: Related works

A1 Generative adversarial networks (GANs)

Since the authors of Goodfellow et al. (2020) proposed this
type of model, the popularity of GANs has increased consis-
tently. They rely on the training of two networks: a genera-
tor and a discriminator. The discriminator is presented with
samples which can be either taken from the original data dis-
tribution or generated (by the generator). Its main task is to
differentiate between these two kinds of inputs. On the other
hand, if the discriminator makes an error and classifies a gen-
erated sample as real, then the generator is getting closer to
its goal. The discriminator and generator’s losses are built in
such a way that when one increases, the other decreases, and
reversely. This why they are called adversarial networks.

Convolutional GANs are known for their ability to pro-
duce realistic images, which can fool both their discrimina-
tor but also, in some cases, humans. They have also shown
interesting performance in image-to-image translation tasks
(Wang et al., 2019, 2020; Zhu et al., 2017b). This type of task
is usually categorised as paired image translation, such as in
Isola et al. (2017), or unpaired image translation, such as in
Zhu et al. (2017a). In this article, our image translation task
is a paired one.

A2 Explainable artificial intelligence (XAI)

Even though this work can not be classified as belonging
to the field of XAI, the terminology this field proposes re-
mains interesting in the context of this work. The general
idea behind XAI is to build models that can be understood
by their users or whose results can. While this field has ex-
isted for several decades (Confalonieri et al., 2021), its recent
growth in popularity can be seen as a response to concerns
about the black-box aspect of some neural networks mod-
els. This growth has been particularly remarkable in appli-
cations fields like finance, medicine, law and even scientific
production (Beckh et al., 2021; Murdoch et al., 2019; Belle
and Papantonis, 2021; Roscher et al., 2020). In those fields,
the ability to explain a model and its results can represent
the ability to ensure safety, fairness or scientific rigour. In a
more general sense, it makes it easier for the user to trust the
model.

According to Roscher et al. (2020), in the context of XAI,
there are three important elements to consider when evaluat-
ing the explainability of a model.

1. Transparency. A model is transparent if the processes
that extract model parameters from training data and
generate labels from testing data can be described and
motivated by its designer.

2. Interpretability. It is the ability to generally understand
what the model bases its decisions on. Some approaches
for interpretable models are based on decision trees as
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they can allow for an intuitive look at the decision-
making process of a model.

3. Explainability. An explanation is the collection of fea-
tures of the interpretable domain that have contributed
to a given example to produce a decision. For a model
to be explainable, it generally needs to be possible to
understand why the model’s decision for a given datum
A is different than for a given datum B.

It is interesting to note that domain knowledge can be used
to enhance the explainability of a model (Beckh et al., 2021).
In this sense, physics-informed neural networks can be seen
as a type of XAI.

A3 Physics-informed neural networks (PINNs)

Physics-informed learning, introduced by the authors of
Raissi et al. (2019), can be considered today to be its own
research field. The term informed networks suggests that the
method makes use of prior information about some speci-
ficity of the problem, for example, its geometry. Physics-
informed networks specifically make use of the physics of
the problem to enhance their performances. This is usually
done through the design of a physics-informed loss function,
used during the training of the model. This loss function is
often based on a differential equation that is verified by the
data the model is using. As it can sometimes guide the train-
ing in a non-data-oriented way, the use of this loss function
reduces the need of these networks for labelled data, making
them especially suitable for semi-supervised learning.

In physics, it is often necessary to use initial and boundary
conditions (BCs) to solve a given problem. In the literature
around physics-based learning methods, two methods to take
these BCs into account during training can be found. The
soft constraint (or method) proposes to train the model to
respect the BCs through the use of an additional, tailored loss
function. The hard constraint (or method) works through the
transformation of the model outputs to enforce the respect
of the BCs and relies on pre-existing loss functions. When it
comes to PINNs, the authors of Sun et al. (2020) show that
the hard constraint performs better than the soft one.

Several authors have proposed to leverage the advantages
shown by both adversarial and physics-informed approaches
(Thanasutives et al., 2021; Nie et al., 2021), often calling
these new models PI-GANs (Yang et al., 2019, 2020).

A4 Kriging method

This spatial interpolation and extrapolation method was for-
malised by the author of Matheron (1963). In the statistical
interpretation of the term, it is the optimal estimation method
according to Gratton (2002). It is mathematically described
by Eq. (A1).

F(xp)=

m∑
i=1

Wi ·F(xi) (A1)

F(xp), the value of function F at point xp can be estimated
thanks to m surrounding points xi as the value of F at these
points is known. However, it remains necessary to determine
the weight Wi of these points. The kriging method proposes
to realise this through the estimation of what is called a var-
iogram. To compute it, values of the variance of two points,
and of the distance between them, are needed.

This method has been described as performing better when
provided with a significant volume of data and when the val-
ues to estimate are following a normal distribution.

For each inference, a new point xi is used. As these points
are the basis for the building of the kriging model, a new one
is built for each inference. Because of this, kriging suffers
from a long inference time when compared to other methods
presented in this article.
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Appendix B: Details of the approach

The purpose of this section is to show the architecture of
GAN’s discriminator with our three main fusion strategies.

B1 Data fusion/channel concatenation

Figure B1 shows GAN’s discriminator’s architecture with the
data fusion strategy.

Figure B1. Architecture of GAN’s discriminator with data fusion approach.
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B2 Feature fusion

Figure B2 shows GAN’s discriminator’s architecture with the
feature fusion strategy.

Figure B2. Architecture of GAN’s discriminator with feature fusion
approach.

B3 Decision fusion

Figure B3 shows GAN’s discriminator’s architecture with the
data fusion strategy.

Figure B3. Architecture of GAN’s discriminator with decision fu-
sion approach.
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Appendix C: Model complexity

Figure C1 shows the number of parameters of our models
depending on the fusion method and the number of input im-
ages used. They correspond to the number of parameters for
our UNets and BC-GANs, with both ALADIN and CAMS
data.

Figure C1. Number of parameters of each of our models depending
on the number of input variables.

Appendix D: Training loss, test loss and convergence

Figure D1 provides a graph of training loss values over iter-
ations, clearly showing the convergence of the model. This
corresponds to the training of a UNet model using exclu-
sively the AOD as input. In this experiment, as in all other
experiments presented in this article, the models are trained
on 500 epochs.

Figure D2 gives, for the same model, an overview of the
MAE values for the different test samples. A few test sam-
ples stand out as having a significantly worse MAE than oth-
ers, but the maximum MAE for these samples remains below
3 µg m−3, which is satisfying.

Figure D1. Graph of training loss during supervised learning over
iterations.

Figure D2. Graph of MAE values during testing over sample date.
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Code and data availability. The code used for these experiments
is available in a Zenodo archive (Dabrowski, 2024a, https://doi.
org/10.5281/zenodo.13920070). The data from the CAMS model
used during these same experiments are available in a differ-
ent Zenodo archive (Dabrowski, 2024b, https://doi.org/10.5281/
zenodo.13929498). The data from the ALADIN model were ex-
tracted from the dataset proposed by Mallet and Nabat (2024)
(https://doi.org/10.25326/703).
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