Articles | Volume 18, issue 12
https://doi.org/10.5194/gmd-18-3681-2025
https://doi.org/10.5194/gmd-18-3681-2025
Development and technical paper
 | 
20 Jun 2025
Development and technical paper |  | 20 Jun 2025

Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching

Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring

Related authors

Representing Subgrid-Scale Cloud Effects in a Radiation Parameterization using Machine Learning: MLe-radiation v1.0
Katharina Hafner, Sara Shamekh, Guillaume Bertoli, Axel Lauer, Robert Pincus, Julien Savre, and Veronika Eyring
EGUsphere, https://doi.org/10.48550/arXiv.2510.05963,https://doi.org/10.48550/arXiv.2510.05963, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Data-driven equation discovery of a sea ice albedo parametrisation
Diajeng W. Atmojo, Katja Weigel, Arthur Grundner, Marika M. Holland, Dmitry Sidorenko, and Veronika Eyring
EGUsphere, https://doi.org/10.5194/egusphere-2025-3556,https://doi.org/10.5194/egusphere-2025-3556, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Causal inference for stratospheric chemistry: insights into tropical middle stratospheric ozone variability
Evgenia Galytska, Birgit Hassler, Carlo Arosio, Martyn P. Chipperfield, Sandip S. Dhomse, Kimberlee Dubé, Wuhu Feng, Fernando Iglesias-Suarez, and Jakob Runge
EGUsphere, https://doi.org/https://doi.org/10.21203/rs.3.rs-6426983/v2,https://doi.org/https://doi.org/10.21203/rs.3.rs-6426983/v2, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Understanding European Heatwaves with Variational Autoencoders
Aytaç Paçal, Birgit Hassler, Katja Weigel, Miguel-Ángel Fernández-Torres, Gustau Camps-Valls, and Veronika Eyring
EGUsphere, https://doi.org/10.5194/egusphere-2025-2460,https://doi.org/10.5194/egusphere-2025-2460, 2025
Short summary
Global ocean and sea ice variability simulated in eddy-permitting climate models
Yushi Morioka, Eric Maisonnave, Sébastien Masson, Clement Rousset, Luis Kornblueh, Marco Giorgetta, Masami Nonaka, and Swadhin K. Behera
EGUsphere, https://doi.org/10.5194/egusphere-2025-2258,https://doi.org/10.5194/egusphere-2025-2258, 2025
Short summary

Cited articles

Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton‐Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden Stratospheric Warmings, Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020rg000708, 2021. a
Bonnet, P.: Paulinebonnet111/bonnet24_gmd_automatic_tuning_ atm_paper: Automatic tuning code after 1st review (Version Dec2024), Zenodo [code], https://doi.org/10.5281/zenodo.14267203, 2024. (code is also available at: https://github.com/EyringMLClimateGroup/bonnet24gmd_automatic_tuning_atm, last access: 17 June 2025) a, b
Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T., and Stuart, A. M.: Calibrate, emulate, sample, J. Comput. Phys., 424, 109716, https://doi.org/10.1016/j.jcp.2020.109716, 2021. a, b
Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V., Villefranque, N., Rio, C., Audouin, O., Salter, J., Bazile, E., Brient, F., Favot, F., Honnert, R., Lefebvre, M.-P., Madeleine, J.-B., Rodier, Q., and Xu, W.: Process-Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement, Journal of Advances in Modeling Earth Systems, 13, https://doi.org/10.1029/2020ms002217, 2021. a, b
Crueger, T., Giorgetta, M. A., Brokopf, R., Esch, M., Fiedler, S., Hohenegger, C., Kornblueh, L., Mauritsen, T., Nam, C., Naumann, A. K., Peters, K., Rast, S., Roeckner, E., Sakradzija, M., Schmidt, H., Vial, J., Vogel, R., and Stevens, B.: ICON-A, The Atmosphere Component of the ICON Earth System Model: II. Model Evaluation, J. Adv. Model. Earth Syst., 10, 1638–1662, https://doi.org/10.1029/2017ms001233, 2018. a, b, c
Download
Short summary
Tuning a climate model means adjusting uncertain parameters in the model to best match observations like the global radiation balance and cloud cover. This is usually done by running many simulations of the model with different settings, which can be time-consuming and relies heavily on expert knowledge. To make this process faster and more objective, we developed a machine learning emulator to create a large ensemble and apply a method called history matching to find the best settings.
Share