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Abstract. In climate model development, “tuning” refers to
the important process of adjusting uncertain free parame-
ters of subgrid-scale parameterizations to best match a set
of Earth observations, such as the global radiation balance
or global cloud cover. This is traditionally a computation-
ally expensive step as it requires a large number of climate
model simulations. This step also becomes more challeng-
ing with increasing spatial resolution and complexity of cli-
mate models. In addition, the manual tuning relies strongly
on expert knowledge and is thus not independently repro-
ducible. To reduce subjectivity and computational demands,
tuning methods based on machine learning (ML) have be-
come an active research subject. Here, we build on these de-
velopments and apply ML-based tuning to the atmospheric
component of the Icosahedral Nonhydrostatic Weather and
Climate Model (ICON) at 80 km resolution. Our approach
follows a workflow similar to other proposed ML-based tun-
ing methods: (1) creating a perturbed parameter ensemble
(PPE) of limited size with randomly selected parameters,
(2) fitting an ML-based emulator to the PPE to generate a
large emulated ensemble with the emulator, and (3) shrinking
the parameter space to regions compatible with observations
using a method inspired by history matching. However, in
contrast to previous works, we apply a sequential approach:
the selected set of tuning parameters is updated in successive
phases depending on the results of a sensitivity analysis with
Sobol indices. We tune for global radiative properties, cloud
properties, zonal wind velocities, and wind stresses on the
ocean surface. With one iteration of this method, we achieve

a model configuration yielding a global top-of-atmosphere
net radiation budget in the range of [0, 1] W m−2, and global
radiation metrics and water vapour path consistent with the
reference observations. Furthermore, the resulting ML-based
emulator allows us to identify the parameters that most im-
pact the outputs that we target with tuning. The parameters
that we identified to be mostly influential for the physics out-
put metrics are the critical relative humidity in the upper
troposphere and the conversion coefficient from cloud wa-
ter to rain, influencing the radiation metrics and global cloud
cover, together with the coefficient of sedimentation veloc-
ity of cloud ice, having a strong non-linear influence on all
the physics metrics. The existence of non-linear effects fur-
ther motivates the use of ML-based approaches for parameter
tuning in climate models.

1 Introduction

Climate and Earth system models are developed and contin-
uously improved to understand the behaviour of the Earth
system and to project climate change (Tebaldi et al., 2021).
Due to their complexity, as well as constraints on compu-
tational resources, the resolution of climate models is rel-
atively coarse so that a number of key processes occur on
scales smaller than the model grid scale. These non-resolved
processes, such as convection, radiation, turbulence, cloud
microphysics, and gravity waves, are described statistically
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for each grid cell through so-called parameterizations, which
are a cause of biases and uncertainties in climate projections
(Gentine et al., 2021) due to uncertainties in their formula-
tion and in the selection of the underlying free parameters.
To constrain the values of the free parameters involved in the
parameterizations, tuning is an important step in the develop-
ment of climate models (Hourdin et al., 2017), where these
parameters are adjusted such that the outputs of the climate
model reproduce the observed states of the Earth system rea-
sonably well.

Model tuning is typically a very time-consuming and com-
putationally expensive step. It has to be conducted for all
components of a climate model (such as the atmosphere,
ocean, and land) and for the coupled model (see, for in-
stance, the tuning of the coupled Icosahedral Nonhydrostatic
Weather and Climate Model (ICON) Earth system model by
Jungclaus et al., 2022).

Traditionally, tuning in climate models is done manually;
i.e. the parameters are changed individually (or a few at a
time) in a sequential manner, with expert knowledge guid-
ing the successive choices in the tuning of the parameters
(Hourdin et al., 2017; Mauritsen et al., 2012; Schmidt et al.,
2017; Giorgetta et al., 2018; Mignot et al., 2021). Such man-
ual approaches may retain some form of subjectivity and are
therefore hard to replicate. There is also the risk of neglect-
ing interactions among the processes affected by the changed
parameters, which may lead to compensating errors; e.g. a
model’s low climate sensitivity might be paired with weak
aerosol cooling, resulting in an apparent match with histori-
cal data but potentially inaccurate future projections (see, for
example, Fig. 3 of Hourdin et al., 2017).

In this work we investigate how machine learning (ML)
techniques can help in addressing the aforementioned chal-
lenges faced in model tuning using the atmospheric compo-
nent of the ICON model (Giorgetta et al., 2018) as an exam-
ple. In recent years, ML-based “automatic” tuning methods
have been widely investigated. These methods intend to tune
the climate models in fewer manual steps for the user com-
pared to fully manual approaches and aim to improve the ac-
curacy and reproducibility of parameter tuning by giving it a
mathematical formulation amenable to numerical treatment.
The goal is to find the regions of parameter space for which
the model outputs are consistent with observation-based ref-
erence datasets (see Sect. 2.3), where consistency is defined
based on a suitably defined distance between outputs and
observations and accounts for a tolerance given by obser-
vational uncertainties and model structural errors. A num-
ber of mathematical tools have been developed to tackle in-
verse problems such as model tuning. The one we focus on
in this work belongs to the family of Bayesian approaches
(this is not the only possible choice; refer to Zhang et al.
(2015) for more details on other possibilities). In a Bayesian
setting, this is achieved by an iterative and efficient explo-
ration of the space of the parameters being tuned, which is
enabled by the construction of an ML-based surrogate or em-

ulator of the climate model that aims to approximate the cli-
mate model outputs at much lower computational costs. In
its most general formulation, this procedure consists of iter-
ating the following steps: (1) generate a perturbed parameter
ensemble (PPE), i.e. an ensemble of climate model simula-
tions obtained by sampling configurations of tuning param-
eters within the valid parameter ranges; (2) train a computa-
tionally cheap ML-based emulator on the PPE output to ap-
proximate the parameter-to-output relationship; and (3) use
the emulator for a denser sampling of the parameter space,
and shrink the space of the allowed parameter configurations
to the most promising one, i.e. the parameters most likely
to yield a tuned version of the climate model. A commonly
adopted method for selecting promising parameter configu-
rations is history matching (Williamson et al., 2013, 2017).
History matching aims to minimize the number of required
model simulations in the search for acceptable parameters
by balancing the sampling of unexplored parameter regions
with the sampling close to configurations found to be poten-
tially compatible with observations. This is achieved using a
metric that weights both the distance of the emulator pre-
dictions from the observational references (small meaning
close to observationally compatible configurations) and the
uncertainty of the emulator (high in unobserved parameter
regions). The three steps described above are repeated un-
til the model outputs used as tuning metrics converge to the
corresponding observational range, thus yielding one or mul-
tiple tuned parameter configurations or a distribution thereof
(Watson-Parris et al., 2021).

Several implementations of the ideas above have been
proposed for tuning models of different complexity. His-
tory matching has been implemented to constrain param-
eters in the coupled climate model HadCM3 (Williamson
et al., 2013) and to estimate parametric uncertainty in the
NEMO ocean model (Williamson et al., 2017). It has also
been used to tune parameters of the turbulence scheme of
a single-column-model version of ARPEGE-Climat 6.3 us-
ing large-eddy simulations as a reference (Couvreux et al.,
2021). History matching in combination with single-column
models was also employed to constrain convective param-
eters for their subsequent use in the LMDZ atmospheric
model of the IPSL Earth system model (Hourdin et al.,
2021). Furthermore, Hourdin et al. (2023) showed another
successful application to the IPSL model, finding an ensem-
ble of tuned parameter configurations as good as the man-
ually tuned version, IPSL-CM6A-LR, used for CMIP6. Be-
sides their use in history matching, ML-based emulators also
find applications in parameter tuning in combination with en-
semble methods (Cleary et al., 2021) (with test applications
on Lorenz ’63 and ’96 models (Cleary et al., 2021), convec-
tion schemes in idealized global circulation models (Dunbar
et al., 2021), and gravity wave parameterizations (Mansfield
and Sheshadri, 2022)) and with approximate Bayesian com-
putation (Watson-Parris et al., 2021).

Geosci. Model Dev., 18, 3681–3706, 2025 https://doi.org/10.5194/gmd-18-3681-2025



P. Bonnet et al.: Tuning the ICON-A 2.6.4 climate model with machine learning 3683

Building on these previous tuning efforts, here, we de-
sign a tuning approach assisted by history matching for the
atmospheric component of the Icosahedral Nonhydrostatic
Weather and Climate Model (ICON-A version 2.6.4) (ICON,
2015; Zängl et al., 2014). The model’s icosahedral grid has
a resolution of approximately 80 km (R2B5 grid), offering
an improvement in spatial detail compared to previous appli-
cations of these tuning approaches in global climate mod-
els. For instance, Williamson et al. (2013) used a resolu-
tion of 96× 73 grid points in latitude and longitude (ap-
proximately 417 km× 278 km at the Equator), while Hour-
din et al. (2021, 2023) utilized 144× 143 grid points (ap-
proximately 160 km at the Equator). From an algorithmic
perspective, a further distinctive feature of our ICON-A tun-
ing method is that we incorporate history matching in a se-
quential approach, where we separate tuning into phases in
which different sets of tuning parameters are sequentially
constrained with history matching. This approach reduces
the number of parameters being tuned in each phase and al-
lows us to reduce the required size of the PPEs and, therefore,
the computational costs, which is particularly relevant given
the total number of tuning parameters and the relatively high
resolution (approx. 80 km) we target here. In our sequen-
tial approach, we first focus on global radiative and cloud
properties, referred to as physics outputs (Giorgetta et al.,
2018), and then on outputs related to atmospheric-circulation
properties, referred to as dynamics outputs (Giorgetta et al.,
2018). For the physics tuning, we apply history matching
in the sequential manner explained before and show that
the ICON-A physics outputs converge towards observational
references in a few iterations. The ML-based tuning of the
physics outputs serves as the basis for the second step tar-
geting the dynamics outputs. For this step, we follow the ap-
proach of Giorgetta et al. (2018) by generating a PPE and
selecting the best-performing model configurations, where
our criteria for evaluating the model’s performance keep the
highest priority on achieving a nearly balanced global an-
nual net radiation flux at the top of the atmosphere (TOA)
while aiming to achieve a high performance in terms of the
dynamics outputs. Our results are compared to the manually
tuned version of the ICON-A model that was presented in
Giorgetta et al. (2018) and Crueger et al. (2018), with a grid
size of approximately 160 km (R2B4 grid), which is 2 times
coarser than the resolution we focus on in this paper (grid
size of approximately 80 km, R2B5 grid). In the remainder
of the paper, we refer to this manually tuned ICON version
as ICON-aes-1.3.

The article is organized as follows. We first introduce the
ICON-A model, the ML-based tuning method and the refer-
ence datasets used in this study in Sect. 2. We then present
the results of the ML-based tuning approach for ICON-A in
Sect. 3, an evaluation of our selected runs in Sect. 4, and con-
clude in Sect. 5, where we also discuss the potential issues of
our proposed approach and an outlook on how to possibly
overcome them.

2 Methods

2.1 ICON-A modelling framework

The Icosahedral Nonhydrostatic Weather and Climate
Model (ICON) is a modelling framework for climate and nu-
merical weather prediction developed jointly by the German
Weather Service (DWD) and the Max Planck Institute for
Meteorology (MPI-M) (ICON, 2015; Zängl et al., 2014). We
use ICON’s atmospheric component (ICON-A) (Zängl et al.,
2014; Giorgetta et al., 2018), version 2.6.4, and conduct
AMIP experiments with the icosahedral grid R2B5 (≈ 80 km
in the horizontal; for details, see Table 1 in Giorgetta et al.,
2018) with an implicitly coupled land model. The top height
of the atmospheric model is 83 km with 47 full vertical lev-
els and numerical damping starting at 50 km. Subgrid-scale
processes are described by parameterizations and include ra-
diative effects, moist convection, vertical diffusion, cloud mi-
crophysics, cloud cover, and orographic and non-orographic
gravity waves (Giorgetta et al., 2018). The time steps used
in the model simulations are 1 h for the radiation scheme
and 6 min for the atmospheric scheme. For our PPEs, we run
ICON-A for 1 year for spin-up (1979) and then for 1 year for
tuning physics outputs (1980). We then run the model for 1
year for spin up (1979) and then for 10 years (1980–1989) for
the dynamics outputs, as described in the following sections.

2.2 Parameters and outputs

The first step to ML-based tuning, as for manual tuning, is
to select the tuning parameters and output metrics that are to
be fitted. Our choice of the metrics is informed by the man-
ual tuning of the ICON model by Giorgetta et al. (2018) and
Crueger et al. (2018). There, the authors worked on model
versions preceding ICON-aes-1.3, which resulted from their
work, with a coarser-resolution R2B4 of ≈ 160 km; 47 verti-
cal layers, resolving the atmosphere up to a height of 83 km;
and time steps of 2 h for the radiation scheme and 10 min for
the atmospheric scheme.

Table 1 reports the output metrics and the corresponding
reference datasets and values that we focus on in this study,
representing global radiative and cloud properties and re-
ferred to as the physics outputs. These physics output metrics
are all global and multi-year averages. In particular, as shown
in Table 1, we use the annual average over 1980 in our PPEs
(apart from our last PPE, as discussed later) and compare it
with the multi-year averages of the reference datasets.

The output metrics related to atmospheric-circulation
properties, the dynamics outputs, are given in Table 2. There,
the zonal mean velocity at 60° N and S at 10 hPa serves as
a proxy for the representation of high-latitude jets. This is a
widely used target for evaluating simulations of the polar jets
in models resolving the stratosphere (e.g. as seasonal means
in Tripathi et al., 2014; Domeisen et al., 2020a, b; Rao et al.,
2020; Baldwin et al., 2021). The surface downward eastward
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Table 1. Physics outputs together with the respective observational datasets (CERES EBAF, NASA/LARC/SD/ASDC, 2019; ERA5, Dee
et al., 2011; CLARA-AVHRR, Karlsson et al., 2020; and ESA CCI Cloud, Stengel et al., 2017) and target ranges used in this work. All the
outputs in this table are globally averaged (for both the reference datasets and the ICON-A simulations we conduct). The averaging period
used for both reference datasets and our simulations (PPEs) is reported in the third column. TOA stands for top of the atmosphere.

Physics output Spatial average Averaging period Reference datasets Target range
metrics

TOA net shortwave Global (references 1980 Giorgetta et al. (2018) [240, 241]W m−2

(SW) radiation and PPEs)
(rsdt-rsut)

TOA net longwave Global (references 1980 Giorgetta et al. (2018) [−241, −240]W m−2

(LW) radiation (rlut) and PPEs)

TOA radiation Global (references 1980 Giorgetta et al. (2018) [0, 1]W m−2

balance (rsdt-rsut-rlut) and PPEs)

Cloud cover (clt) Global (references 1982–1991 CLARA-AVHRR V002 62.7 %
and PPEs)

1980–1989 ESA CCI Cloud AVHRR-AMPM-fv3.0 65.1 %
(1980 for PPEs)

Water vapour path Global (references 1980–1989 (1980 for ERA5 [24.1] kg m−2

(prw) and PPEs) PPEs)

wind stress means over the North Atlantic Ocean and the
Southern Ocean (defined in the AR6 database; Iturbide et al.,
2020) are proxies for the forcing on the ocean surface. These
dynamics output metrics are multi-year averages. In particu-
lar, as shown in Table 2, we use the average over the period
1980–1989 in our PPEs and compare it to the multi-year av-
erages of the reference datasets reported in Table 2. We use
different averaging periods for physics and dynamics outputs
because of the different year-to-year variability and equili-
bration times of the associated variables. As substantiated in
Sect. 3.3.1, the physics outputs have lower year-to-year vari-
ability compared to the dynamics ones, meaning that 1 sim-
ulated year is sufficient to obtain a representative value for
the annual averages. Conversely, for dynamics metrics, the
annual averages need to be estimated from multi-year simu-
lations due to their larger variability and sensitivity to geo-
graphic patterns.

Following Giorgetta et al. (2018), the parameterizations
we select for tuning the physics outputs are moist convec-
tion, vertical diffusion, cloud microphysics, and cloud cover.
In Table 3, we report the parameters from these parameteri-
zations (which we refer to as physics parameters) which we
select for our tuning experiment. The parameterizations we
select for tuning the dynamics outputs are the orographic and
non-orographic gravity wave schemes. In Table 4, we report
the parameters from these parameterizations (referred to as
dynamics parameters) which we select for our tuning exper-
iment.

2.3 Reference datasets

To tune ICON-A, we use reference values for the output met-
rics from Earth observations and reanalysis data. As in Gior-
getta et al. (2018), the main goal here is to obtain a slightly
positive global annual mean downward net radiation flux at
the top of the atmosphere (TOA), between 0 and 1 W m−2,
based on a net shortwave flux and an outgoing longwave ra-
diation close to observational estimates. For the two radia-
tion fields (rsdt-rsut) and rlut (see Table 1 for definitions),
the typical interval [240, 241 W m−2] is used as a reference
value, as estimated in Giorgetta et al. (2018), following ob-
servational datasets (CERES EBAF Ed4.0, 2000–2016) and
Kato et al. (2013) and Loeb et al. (2009). For cloud cover,
we use CLARA-AVHRR (Karlsson et al., 2020) and ESA
CCI CLOUD (Stengel et al., 2017), and for the water vapour
path, we use ERA5 (Hersbach et al., 2020) (see Sect. A in
the Appendix for time series of these observational datasets).
For the dynamics outputs, we use ERA5, ERA-Interim (Dee
et al., 2011), and MERRA2 (Gelaro et al., 2017). We refer
the reader to Appendix A for the time series of some of the
observational products used in this work.

2.4 ML-based tuning approach

Our ML-based tuning method is built on the history match-
ing technique (Williamson et al., 2013, 2017) and follows a
similar workflow to that in Couvreux et al. (2021); Hourdin
et al. (2021, 2023). The goal is to find a region in the parame-
ter space where the model outputs are compatible (within the
observational uncertainty) with the observational data (obser-
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Table 2. Dynamics outputs together with respective observational datasets (ERA5, Hersbach et al., 2020) used in this work. The North
Atlantic Ocean (NAO) region and the Southern Ocean (SOO) region are those defined in the AR6 database (Iturbide et al., 2020).

Dynamics output Spatial average Averaging period Reference datasets Target range
metrics

Zonal wind velocity (ua) 60° N at 10 hPa 1980–1989 ERA5, MERRA2, (10.94, 11.15,
(references and PPEs) (references and PPEs) ERA-Interim 10.94) m s−1

Zonal wind velocity (ua) 60° S at 10 hPa 1980–1989 ERA5, MERRA2, (32.77, 34.03,
(references and PPEs) (references and PPEs) ERA-Interim 33.15) m s−1

Surface downward North Atlantic Ocean (NAO) 1980–1989 ERA5, MERRA2, (2.947× 10−3, 5.395× 10−3,
eastward wind stress (tauu) (references and PPEs) (references and PPEs) ERA-Interim 3.645× 10−3) N m−2

Surface downward Southern Ocean (SOO) 1980–1989 ERA5, MERRA2, (0.1367, 0.1413,
eastward wind stress (tauu) (references and PPEs) (references and PPEs) ERA-Interim 0.1359) N m−2

Table 3. Tuning parameters related to physics parameterizations alongside the corresponding name in the ICON source code (second column
from left), the range of values tested (third column from left), and the corresponding parameterization scheme they belong to (right column).
The range of the parameters was inferred from the default value of the parameters given in the source code of ICON-A version 2.6.4.

Physics parameters with corresponding ranges Parameterization

Average entrainment rate for mid-level convection entrmid [2× 10−5, 3× 10−4] Moist convection
Average entrainment rate for penetrative convection entrpen [2× 10−5, 6× 10−4

] Moist convection
Average entrainment rate for cumulus downdrafts entrdd [5× 10−5, 6× 10−4

] Moist convection
Characteristic adjustment timescale [s] cmftau [2× 102, 1× 104

] Moist convection
Neutral-limit Prandtl number pr0 [5× 10−1, 1.2] Vertical diffusion
Critical relative humidity parameter in the upper troposphere crt [5× 10−1, 9× 10−1

] Cloud cover
Fractional convective mass flux across the top of cloud cmfctop [1× 10−2, 2× 10−1

] Moist convection
Coefficient for determining conversion from cloud water to rain cprcon [1.5× 10−5, 3.5× 10−4

] Moist convection
Coefficient of autoconversion of cloud ice to snow ccsaut [0.2, 4] Cloud microphysics
Minimum in-cloud water mass mixing ratio in mixed-phase clouds csecfrl [1.0× 10−5, 1.0× 10−4

] Cloud microphysics
Coefficient of sedimentation velocity of cloud ice cvtfall [0.2, 4] Cloud microphysics
Critical relative humidity at surface crs [7.26× 10−1, 9.9× 10−1

] Cloud cover
Lower limit of scaling factor for saturation mixing ratio in layer below inversion csatsc [0.35, 1.05] Cloud cover

Table 4. Tuning parameters related to dynamics parameterizations alongside the corresponding name in the ICON source code (second
column from left), the range of values tested (third column from left), and the corresponding parameterization scheme they belong to (right
column). SSO stands for subgrid-scale orography.

Dynamics parameters with associated ranges Parameterization

Coefficient for orographic gravity wave drag gkdrag [0.002, 0.28] Subgrid-scale orographic effects
Coefficient for low-level blocking gkwake [0.001, 0.09] Subgrid-scale orographic effects
Root mean square gravity wave wind at the emission level rmscon [0.647, 1.079] Atmospheric gravity wave effects
Minimum difference “SSO peak height – SSO mean height” [m] gpicmea [20, 60] Subgrid-scale orographic effects
Minimum standard deviation of SSO height [m] gstd [5, 15] Subgrid-scale orographic effects

vationally compatible). In performing this exploration, his-
tory matching aims to find a balance between exhaustively
exploring or sampling the parameter space and minimizing
the number of samples required for it. Since, in our case,
each sample corresponds to a computationally expensive cli-
mate model simulation, we consider this method to be partic-
ularly well suited to our tuning task. In tuning ICON-A, we
embed history matching in a sequential protocol, where, at

each step, we add or remove tuning parameters based on the
outcomes of the history matching iterations. We now start by
outlining the steps of the history-matching-inspired method
that constitutes the basis of our protocol (see also steps 1 to 4
in Fig. 1).

1. For a given set of tuning parameters P with K el-
ements, draw an initial Latin hypercube (LHC) sam-
pling of size N . Using LHC sampling, all parameters

https://doi.org/10.5194/gmd-18-3681-2025 Geosci. Model Dev., 18, 3681–3706, 2025



3686 P. Bonnet et al.: Tuning the ICON-A 2.6.4 climate model with machine learning

are simultaneously changed, and the different samples
fill the K-dimensional parameter space (within the al-
lowed ranges specified in Tables 3 and 4) approxi-
mately uniformly. Typically, N is chosen as N ≈ 10 K
(Loeppky et al., 2009). Using these selected parame-
ters, generate a PPE of ICON-A runs. The PPE con-
sists of N members or runs, one for each sampled pa-
rameter configuration xi (with i = 1, . . . ,N ). For each
run, we calculate all the output metrics described be-
fore. This results in sets of input–output training pairs
TY = {xi,Ymodel(xi)}i=1, ..., N , one set per output met-
ric Y (e.g. annual average of global TOA radiation bal-
ance).

2. Fit an emulator to the generated PPE, i.e. to the train-
ing sets TY for all the output metrics Y of interest. For
a given metric Y , the emulator evaluated based on a
configuration of tuning parameters x returns Yemul(x),
the approximation of the true model output metric
Ymodel(x). Our choice for the model emulator is Gaus-
sian process (GP) regression (Rasmussen and Williams,
2005). GPs are models typically used in Bayesian re-
gression tasks and are very well suited to our case since
(i) they have only a few parameters and hence require
relatively little training data for fitting, and (ii) they,
by construction, return the uncertainty associated with
their prediction, which is measured by the variance
Var(Yemu(x)). This is a central quantity used in the steps
below. Further details on the choice of the GP are given
in Appendix B. In our implementation, we train one GP
per model output.

3. Generate a large emulated metric ensemble of size M
(typically ranging from 105 to 106; here, M = 3× 105)
using the trained GP emulator. For each emulator run,
calculate the implausibility measure ρ for each met-
ric Y , with reference value Y 0 (from observations or
re-analysis data) as follows:

ρ
(
Yemul(x),Y

0
)
=
|Y 0
−Yemul(x)|

√
Var(Yemul(x))

. (1)

The idea behind this definition is that a small dis-
tance |Y 0

−Yemul(x)| or a large emulator variance
√

Var(Yemul(x)) (typically true when x is far from al-
ready sampled points) will lead to a small value of ρ,
hence balancing exploitation with exploration of the
parameter space. Note that, typically, a measure of
the observational uncertainty Var(Y 0) is included in
the denominator of the implausibility measure and de-
fines a tolerance for assessing the convergence of his-
tory matching. This is an important distinction between
traditional history matching and our implementation,
which we motivate in the next point. In our case, the
observational uncertainty is accounted for in the eval-
uation of the tuned model configurations, where we as-
sess whether the outputs of the parameter configurations

sampled with our procedure (see next points) are within
the spread of the observational datasets used as the ref-
erence. This is explained in Sect. 4.

4. Select N parameter configurations that satisfy the fol-
lowing constraints on the outputs (see Tables 1 and 2
for output definitions):

– ρ(Yemul(x),Y
0) < ρ1 (for the three physics metrics

of TOA shortwave radiation, TOA longwave radia-
tion, and TOA net incoming radiation)

– ρ(Yemul(x),Y
0) < ρ2 (for the two other physics

metrics of cloud cover and liquid water path and
the five dynamics metrics).

The choice of a smaller threshold for the three radiation
metrics is necessary in order to give a higher weight to
the constraint on the balanced TOA radiation than on
the other metrics. We use ρ2 = 2ρ1. The value of ρ1
is automatically adjusted in order to select only N pa-
rameter sets out of the ensemble of size M . Given that
we are interested in drawing parameter configurations
that are representative of the space of plausible tuned
parameters in only a few iterations, our choice of the
implausibility measure, as in Eq. (1), provides stricter
constraints on the selected parameters, with the obser-
vational means Y 0 being the target values for the corre-
sponding metrics.

5. Going back to step 1, generate a new PPE of size N
with ICON-A for the parameter ensemble defined in the
previous step, and repeat step 2 to step 4.

The iterations stop when one of the model configurations
generated in the PPEs is compatible with observations or
when a new set P of tuning parameters is used. Compatibil-
ity with observations is defined based on a weighted distance
of the model output metrics from their reference value, with
a tolerance given by the corresponding observational uncer-
tainty. The highest weight is given to the global TOA net
radiation balance, our main tuning goal. In general, in the
earlier iterations of history matching, not all the members of
the next round are expected to be compatible with the obser-
vational references. The configurations that are found to be
compatible with observations are considered to be represen-
tative of the space of plausible tuned parameters and are sub-
sequently evaluated based on additional evaluation metrics to
assess their quality as tuned configurations (see Sect. 4). The
parameter set P is changed when the spread of the PPE gen-
erated in the last history matching iteration is too far from the
observational range. The new parameter set consists of new
tuning parameters together with the most influential parame-
ters from the previous P for better steering the model outputs
towards the observational references. The influence of the pa-
rameters on the model outputs is estimated by performing an
emulator-based sensitivity analysis with Sobol indices, the
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details of which are provided in Sect. 3.2.2. This results in
a sequential tuning approach, integrating history matching
as its core component for constraining the parameters in the
sets P selected in the different phases. This is schematically
shown in Fig. 1.

This sequential approach incorporating the previously ex-
plained history-matching-inspired method is used for the tun-
ing of the physics outputs. The resulting model configura-
tion serves then as basis for the next step, which is the si-
multaneous tuning of physics and dynamics parameters and
metrics. Also, in this case, we use a sensitivity analysis to
select which physics parameters to keep in this next tuning
step. In this step for the tuning of physics and dynamics pa-
rameters and metrics, we follow the manual tuning approach
of Giorgetta et al. (2018). We generate a PPE and select
the best-performing model configurations, where our crite-
rion for evaluating the model’s performance keeps the high-
est priority on achieving a nearly balanced global annual net
radiation flux at the top of the atmosphere (TOA). Separat-
ing the tuning of physics-only metrics from that also involv-
ing dynamics outputs allows us to use different durations of
the ICON-A simulations for the two steps and to further re-
duce the computational costs. Specifically, as substantiated
in Sect. 3.3.1, the physics outputs have lower year-to-year
variability and shorter equilibration timescales compared to
the dynamics outputs. This means that, for physics outputs,
shorter simulations are needed for obtaining a representative
value for the annually averaged variables used as metrics.

Finally, before moving on to the Results section, we of-
fer a technical note on the construction and evaluation of the
GP emulators: we implemented the GP emulator in Python
using scikit-learn (https://doi.org/10.5281/zenodo.7711792,
Grisel et al., 2024) and used the built-in routines to optimize
the GP parameters at each iteration of the above procedure
(see details in Appendix B). In this work, we measure the
performance of the GP regression model via the R2 value,
which, for a given output Y , is defined as follows:

R2(Y )= 1−
(Yemul−Ymodel)

2

Var(Ymodel)
, (2)

where (Y emul−Ymodel)2 denotes the mean squared er-
ror of the emulator over a set of testing parameters, and
Var(Ymodel) denotes the variance of the true model output
over the same test set.

3 Results

3.1 Summary of the generated PPEs

The PPEs generated in this work are summarized in Table 5.
PPE1 to PPE4 are generated for the tuning of the physics
output metrics from single-year ICON-A runs (1980) after a
1-year spin-up. PPE1 is generated from an LHC sampling of
size 30 based on the (physics) parameter set:

Pp1 = {entrpen,entrmid,entrdd,cmftau,crt,pr0}, (3)

denoting the physics parameters used in Giorgetta et al.
(2018). PPE2 is produced by applying history matching to the
results of PPE1. After PPE2, a new phase of our sequential
approach starts: for PPE3, we perform a new LHC sampling
based on a modified parameter set,

Pp2 = {cmfctop,cprcon,ccsaut,csecfrl,cvtfall,crt,pr0}, (4)

in order to increase the globally averaged cloud cover, which
is consistently lower than the observational references in
PPE1 and PPE2. The parameters in Pp2 were selected from
those that, in the ICON-A manual tuning history (unpub-
lished), were deemed to be most influential for cloud cover.
Our criterion to decide which parameters to keep from Pp1
to Pp2 follows from the sensitivity analysis based on Sobol
indices, which we present later in Sect. 3.2.2. Specifically,
the parameters crt and pr0, associated with higher first and
total Sobol indices for the cloud and water vapour metrics,
have been kept from Pp1 to Pp2. For generating PPE3 and
PPE4, the values of the parameters in Pp1 that are not present
in Pp2 are fixed at their best value from PPE2 (see the right
column of Table 5 and the magenta star in Figs. 2 and 3).
The set Pp2 is used to generate PPE3, consisting of 30 sam-
ples sampled with LHC sampling. PPE4 is produced by ap-
plying history matching to the results of PPE3. The sizes of
the PPEs are chosen to be smaller than the typical value of 10
times the number of parameters (six parameters in Pp1 and
seven parameters in Pp2) (Loeppky et al., 2009). This size
allows a lower computational cost while being large enough
to train an emulator that allows convergence of the PPEs to-
wards reference observations, as explained in Sect. 3.2.1.

In PPE5, we then also address the tuning of dynamics out-
puts by varying physics and dynamics parameters simultane-
ously in the parameter set,

Ppd ={entrmid,cvtfall,crt,crs,csatsc, rmscon,gkdrag,

gkwake,gpicmea,gstd} , (5)

and keeping the other parameters fixed at their best values in
PPE2 (see the right column of Table 5 and the magenta star
in Figs. 2 and 3). Also, for Ppd, we follow the same strategy
and keep the parameters with the highest influence on the
radiation and water metrics, as can be seen from the Sobol
analysis in Sect. 3.2.2, with the addition of crs and csatsc
after further advice from ICON experts. The parameters rm-
scon, gkdrag, and gkwake are the same dynamics parameters
used in Giorgetta et al. (2018), and we added gpicmea and
gstd following advice from ICON expert knowledge. PPE5
consists of 10-year ICON-A simulations from 1980 to 1989
(after a 1-year spin-up).
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Figure 1. Schematic of the method used for the ML-based tuning of the physics parameters of ICON-A: history matching technique combined
with a sensitivity analysis and a sequential parameter selection. The first set of tuning parameters is chosen (A), and history matching is
employed to shrink the associated parameter space to an observationally compatible region (B). If the PPEs are far from observational
references, a new parameter set is chosen with the help of sensitivity analysis (C). The new parameter set (D) is used for a new phase of the
tuning experiment. When one or more of the model configurations generated in the last PPE are compatible with observations, the iterations
of this tuning approach stop. The model configurations compatible with observations are then evaluated.

Figure 2. Physics output variables for PPE1 (blue stars) and PPE2 (black squares) compared to ICON-aes-1.3 (orange triangle) and obser-
vational datasets (green). Signs of convergence of history matching are visible already after one iteration (the distribution of the members of
PPE2 is slightly shifted towards higher cloud cover values and is narrower). The magenta star marks the best-performing configuration from
PPE2 (see right column of Table 5) used in the generation of the subsequent PPEs.

3.2 ML-based tuning of physics outputs with history
matching

In this section, we present the results of the tuning of the
physics parameters. We start by considering PPE1 and PPE2.
As explained before, PPE2 is generated by applying history
matching after having trained a GP emulator on the out-
puts of PPE1. The constructed GP emulator, in this case,
has a good predictive performance (measured by an average
R2 score of 0.81, as discussed in more detail in Sect. 3.2.1
below) and can therefore accurately guide the parameter

choices for PPE2. Thanks to this, the application of only one
iteration of history matching to PPE1 is already sufficient to
generate configurations in PPE2 that achieve a balanced TOA
radiation. This is demonstrated in Fig. 2a, which shows the
net shortwave (SW) versus the net longwave (LW) TOA radi-
ation for PPE1 and PPE2. There, we can clearly see that, after
history matching based on PPE1, PPE2 can achieve configu-
rations that match or get close to the observational ranges de-
noted by the green triangle (and to ICON-aes-1.3). The con-
vergence of the output metrics towards their reference values
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Figure 3. Sampled parameter values for PPE1 (blue stars) and PPE2 (black squares) compared to ICON-aes-1.3 (orange triangle). For each
panel, two parameters are plotted on the two axes (see Table 3). Signs of convergence of history matching are visible already after one
iteration (in the distribution of the members of PPE2 being slightly shifted and narrower). The magenta star marks the best-performing
configuration from PPE2 (see also right column of Table 5 for values) used in the generation of the subsequent PPEs.

Table 5. Summary of perturbed parameter ensembles (PPEs) generated in this work. The PPEs have been sequentially generated from 1 to 5.
PPE3 is obtained from an LHC sampling of parameter set Pp2, where the parameters in Pp1 and not included in Pp2 are kept fixed at their
best values from PPE2 (listed in the right column), which are then used further in PPE4 and PPE5.

PPE Parameters changed Size Description Outputs Fixed parameters

PPE1 Pp1 = {entrpen, entrmid, 30 LHC sampling of Pp1 physics cmfctop (0.1), cprcon (2.5× 10−4),
entrdd, cmftau, ccsaut (2.0), csecfrl (1.5× 10−5),
crt, pr0} cvtfall (2.5), csatsc (0.7), crs (0.968)

(fixed from default configuration)

PPE2 Pp1 29 History matching physics
from PPE1

PPE3 Pp2 = {cmfctop, cprcon, 30 LHC sampling of Pp2 physics entrpen (9.295× 10−5), entrmid (2.2504× 10−4),
ccsaut, csecfrl, entrdd (1.766× 10−4), cmftau (2114.6),
cvtfall, crt, pr0} csatsc (0.7), crs (0.968)

(fixed from best configuration in PPE2)

PPE4 Pp2 30 History matching physics
from PPE3

PPE5 Ppd = {entrmid, cvtfall, crt, 80 LHC sampling of Ppd physics and entrpen (9.295× 10−5), entrdd (1.766× 10−4),
crs, csatsc, rmscon, dynamics cmftau (2114.6), pr0 (0.93168),
gkdrag, gkwake, ccsaut (2.0), csecfrl (1.5× 10−5)
gpicmea, gstd} (fixed from best configuration in PPE2)

can also be observed in Fig. 2b for the other two physics
output metrics (global cloud cover versus water vapour path)
for PPE1 and PPE2. There, the distribution of the PPE2 out-
puts converges towards the observational references (green
markers). The convergence of history matching towards the
observational references can also be seen in the distribution
of the sampled parameters for the two PPEs (Fig. 3). How-
ever, Fig. 2b shows that global cloud cover still remains lower
than the observational data (by approximately 1 % compared
to CLARA-AVHRR and 3 % compared to ESA CCI Cloud)
despite PPE2 yielding a slightly higher cloud cover (closer
to the observed range) than PPE1. In Fig. 2, the magenta
star marks the selected best-performing model configuration
in PPE2. Following Giorgetta et al. (2018), our criterion for
evaluating the model performance prioritizes the global ra-
diation metrics, particularly the net TOA radiation budget,

over cloud cover and water vapour path. The selected run is
the only one falling within the observational range for both
radiation metrics (green triangle in Fig. 2a).

ICON-aes-1.3 exhibits a higher value of global cloud
cover (orange triangle in Fig. 2b) than our PPE1 and PPE2.
The resolution of ICON-aes-1.3 (approximately 160 km) is
coarser than that of PPE1 and PPE2 (approximately 80 km).
The authors of Giorgetta et al. (2018) have investigated the
six tuning parameters used in Pp1. Here, with these six pa-
rameters, we are not able to reach a similar performance
for the cloud cover metric. This supports the fact that one
should repeat the tuning process when the model resolution
is changed (Crueger et al., 2018). Moreover, in addition to
the parameters in Pp1, the authors of Giorgetta et al. (2018)
explored other tuning parameters, and these results were not
published due to a negligible influence on their tuning pro-
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Figure 4. Physics output variables for PPE3 (red circles) and PPE4 (grey triangles) compared to ICON-aes-1.3 (orange triangle) and obser-
vational datasets. Signs of convergence of the outputs to their observational values can also be seen here (in the distribution of the members
of PPE4 being slightly shifted and narrower).

cess (as explained in their Sect. 5). In the next generation of
PPEs (the second phase of our sequential approach), we in-
vestigate the impact of some of these parameters. Therefore,
the parameter set Pp2 contains parameters that potentially
have a stronger effect on cloud cover at the present resolu-
tion.

Parameter set Pp2 is used to generate PPE3 with LHC sam-
pling. A GP emulator is then trained on the outputs of PPE3.
The constructed GP emulator in this case also has a good
predictive performance (measured by an average R2 score of
0.75, as discussed in more detail in Sect. 3.2.1 below), and
we therefore use it for performing history matching and gen-
erating PPE4. Also, in this case, history matching is shrink-
ing the space of promising parameter configurations and the
related output distribution. This can be seen in Fig. 4, where
we show the distribution of the radiation metrics (in Fig. 4a)
and that of global cloud cover versus water vapour path (in
Fig. 4b) for both PPE3 and PPE4 (we refer the reader to Ap-
pendix C for plots of the related parameter distributions).
While the new parameter set Pp2 allows us to reach a global
cloud cover consistent with observations, we also see that the
spread of the PPE outputs is more than doubled compared to
that of the previous PPEs (see yellow-shaded rectangles in
Fig. 4, showing the extent of Fig. 2). This increased spread
also potentially increases the number of history matching
iterations converging towards the observational references.
Given the high computational costs of generating these PPEs,
we use the best-performing model configuration sampled so
far, which belongs to PPE2.

3.2.1 Performance of the GP emulator

We now analyse the performance of the GP emulator for
the physics outputs considered. We refer the reader to
Appendix B for details on Gaussian processes and the
choice of the underlying hyperparameters. In Table 6, we
show the average performance (R2 score) of the GP em-

Table 6. Performance of the GP emulator based on PPE1 to PPE4.
The R2 value reported here is the average R2 of the emulators for
all physics variables (see Table 1). For each emulator, the R2 is cal-
culated via 5-fold cross-validation on the training set (PPE points).

PPE used for training GP emulator R2 score

PPE1 0.82
PPE1+PPE2 0.79
PPE3 0.75
PPE3+PPE4 0.81

ulators trained on the PPEs used for the tuning of the
physics parameters (corresponding to PPE1, PPE2, PPE3,
and PPE4). The value reported in Table 6 is the aver-
age R2 over all five of the physics output metrics (de-
fined in Table 1) and is computed using a 5-fold cross-
validation (https://doi.org/10.5281/zenodo.7711792, Grisel
et al., 2024). From these values, we conclude that the con-
structed emulators are indeed able to approximate the ICON-
A physics outputs, which is also reflected in the fact that his-
tory matching already shows signs of convergence after the
first iteration, as shown in the previous section. The number
of PPE samples required for the GP regression to achieve the
reported R2 score is shown in Fig. 5.

3.2.2 Sensitivity analysis for the physics parameters
and outputs

In this section, we show the sensitivity analysis for the
physics parameters and outputs, supporting our selection of
parameters in the subsequent steps of our sequential ap-
proach as presented in Sect. 3.1. The analysis presented here
is based on the calculation of Sobol indices, which, in turn,
are calculated using the emulator constructed in the previous
section. Generally speaking, Sobol indices quantify the im-
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Figure 5. Average R2 score of the physics output emulators as
a function of the size N of the PPE used for training. For each
N tested, 50 random samples of size N were drawn from the en-
tire set of ICON PPEs of size 60. The R2 score is calculated for
each size N sample, and the mean (solid lines) and standard devia-
tion (shaded areas) are estimated from these scores of the 50 sam-
ples. The red curve shows the R2 for emulators trained on PPE1
and PPE2, and the blue curve shows the R2 for emulators trained
on PPE3 and PPE4.

pact of one specific feature (tuning parameter, in our case) on
the overall variance of the model output (the output metrics,
in our case). Specifically, we focus on the first-order Sobol
index and on the total Sobol index. Given an emulator Yemul
for metric Y , the first-order and total Sobol indices for the
ith parameter xi are defined as follows (Saltelli et al., 2010):

S1,(i,Y ) =
1

Varx (Yemul)
Varxi

(
Ex∼i (Yemul|xi)

)
, (6)

Stot,(i,Y ) =
1

Varx (Yemul)
Ex∼i

(
Varxi (Yemul|x∼i)

)
, (7)

where Varx(Yemul) denotes the sample variance of the emula-
tor over the distribution of all parameters x, Varxi (·) denotes
the sample variance of the emulator over the distribution of
parameter xi , Ex∼i denotes the expected value over all pa-
rameters but xi , and Yemul|xi denotes the emulator function
with input parameter xi kept fixed. The first-order Sobol in-
dex S1,(i,Y ) corresponds to the effect of varying xi alone,
averaged over all other input (parameter) variations, while
Stot,(i,Y ) measures the total effect of varying xi , which in-
cludes the variance coming from interactions of xi with other
parameters. In Fig. 6, we show the S1,(i,Y ) (on the x axis) and
Stot,(i,Y ) (on the y axis) for the physics parameters and out-
puts. We use the GP emulator trained on PPE1 for Fig. 6a–e
and the one trained on PPE3 for Fig. 6f–j. The higher the val-
ues of the first-order and total Sobol indices for a parameter
and its corresponding output, the higher the influence of that
parameter on that output. Looking at Fig. 6d and e, we see
that the two most influential parameters in Pp1 in relation to
cloud cover and water vapour metrics are crt and pr0, which
are the ones we keep among the tuning parameters in Pp2.
In Fig. 6f–j, obtained from the emulator trained on PPE3, we

see that cvtfall has, overall, a large effect on all physics met-
rics and the largest effect on cloud cover, while crt has the
largest effect on the TOA net radiative budget; we therefore
decide to keep these tuning parameters in Ppd for PPE5.

3.2.3 Visualization of the parameter-to-output maps

The previously trained emulator can also be used for the vi-
sualization of the parameter-to-output dependencies. These
visualizations complement the sensitivity analysis presented
in the previous section and further helped us in the selec-
tion of the tuning parameters to be kept across the phases
of our sequential tuning approach. Generally, such visualiza-
tions are very useful for informing the user of the effect of
a parameter on the outputs: they can help in selecting the
most influential parameters and the corresponding plausible
ranges, potentially reducing the computational costs of tun-
ing exercises.

Here, we construct these parameter-to-output maps, simi-
larly to what has been done by Mauritsen et al. (2012), with
the important difference being that the use of GP emulators
in our case allows for a more extensive or denser explo-
ration of the selected parameter space. We exemplify such
visualizations in Fig. 7, constructed from GP emulators for
physics outputs trained on PPE1 and PPE2 in the first two
lines (Fig. 7a–h) and on PPE3 and PPE4 in the last two lines
(Fig. 7i–p). The parameters that are not being changed are
kept fixed at their best-performing value from PPE2 (marked
with the magenta star in Figs. 2 and 3 – although we empha-
size that, with the trained emulators, one can very quickly
generate new maps for different parameters). The red-shaded
areas in each plot denote the allowed output ranges from the
observational data. When the parameters from Pp1 are var-
ied, the value of global cloud cover (second row of Fig. 7)
remains below the lower bound given by the observational
data (at 62.7 %), which is consistent with our observations
in Fig. 2. This is the reason why we selected an increased
parameter set Pp2 for the next PPEs, which, indeed, had a
higher influence on the global cloud cover (fourth row of
Fig. 7). We refer the reader to Appendix E for the parameter-
to-output map constructed from PPE1 and PPE2, showing
the effect of the six parameters in Pp1 on all physics metrics
(Fig. E1). Likewise, the parameter-to-output map constructed
from PPE3 and PPE4, showing the effect of all parameters
in Pp2, is shown in Fig. E1.

Together with Sect. 3.2.2, these maps allow us to iden-
tify which parameters are likely to be the most influential for
our physics tuning metrics. The parameters that we identi-
fied as most influential for the physics output metrics are the
critical relative humidity in the upper troposphere (crt) and
the coefficient conversion from cloud water to rain (cprcon),
influencing the radiation metrics and global cloud cover, to-
gether with the coefficient of sedimentation velocity of cloud
ice (cvtfall). These parameters have a strong linear influ-
ence (crt in Fig. 7d and h) and non-linear influence (cprcon
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Figure 6. First-order Sobol index S1 (x axis) and total Sobol index Stot (y axis) for the physics parameters (in legend) and outputs: net SW
radiation at TOA (panels a and f), net LW radiation at TOA (panels b and g), net radiative budget at TOA (panels c and h), cloud cover
(panels d and i), and water vapour path (panels e and j). We use the GP trained on PPE1 for panels (a)–(e) and that trained on PPE3 for
panels (f)–(j). To calculate the Sobol indices, the sampling method of Saltelli et al. (2010) was used, with 70 000 samples, allowing for a
converged value of the indices.

and cvtfall in Fig. 7j and n and l and p, respectively) on
the physics metrics. Note that parameters governing cloud
microphysical processes (e.g. fall velocities such as cvtfall)
were identified as tuning parameters widely shared among
climate models in the synthesis paper of Hourdin et al. (2017)
(see Table ES4 therein).

3.3 Tuning of the dynamics outputs

We now discuss the simultaneous tuning of the physics and
dynamics outputs. Due to the expected large variability in dy-
namics outputs (see Sect. 3.3.1), which can potentially hinder
the training of regression models, we expect history matching
to require a large number of iterations and costly ICON sim-
ulations. Therefore, we adopt a similar approach to Giorgetta
et al. (2018) in that we generate a PPE (PPE5) and select the
best-performing model configurations. Also, in this case, our
criterion for evaluating the model performance gives a higher
importance to the global radiation metrics, which are our pri-
mary tuning goals, and puts less stringent requirements on
the other tuning metrics.

The ML-based tuning of the physics output metrics dis-
cussed in the previous section serves as a basis for the second
tuning step addressing the dynamics outputs. PPE5 is gener-
ated by simultaneously varying the parameters in the set Ppd
(with LHC sampling) while keeping the other parameters
fixed to their best configuration obtained with history match-
ing from PPE2 (see Table 5 and the magenta star in Figs. 2
and 3). The physics parameters in Ppd are selected based

on a sensitivity analysis with Sobol indices, as explained in
Sect. 3.2.2. The choice of the dynamics parameters follows
Giorgetta et al. (2018), with gkdrag and gkwake being cho-
sen for tuning the zonal wind stresses on the ocean surface
and rmscon affecting the zonal mean winds. In Fig. 8, we
show the physics (Fig. 6a and b) and the dynamics (Fig. 6c
and d) outputs from PPE5 and highlight the two model con-
figurations (the cyan and the red dots) which achieve the best
model performance within PPE5. The selected configurations
are those closest to the observational range in Fig. 8a, given
that achieving a balanced TOA radiation has higher impor-
tance in our tuning experiment (Giorgetta et al., 2018). The
values of the parameters for these two selected simulations
are given in Table 7. These also achieve results compara-
ble with the tuned ICON-aes-1.3, with the TOA radiation
balance being within the interval [0, 1] W m−2, where the
TOA longwave and shortwave radiation metrics are within
1 W m−2 from the observational range. Also, for the other
two physics output metrics, the performance of the two se-
lected configurations is comparable to ICON-aes-1.3 as they
show less than 1 % difference in global cloud cover compared
to the observational range and less than 0.5 kg m−2 differ-
ence in the water vapour path. The differences with respect
to reference data and ICON-aes-1.3 become more apparent
when looking at the dynamics metrics. In Fig. 8c and d, it
can indeed be seen that the values of these metrics from the
reference dataset are not covered by the generated PPE. For
most of the metrics, the differences in terms of the selected
configurations from the reference dataset remain comparable
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Figure 7. Parameter-to-output maps predicted with GP emulators trained on PPE1 and PPE2 (a)–(h) and GP emulators trained on PPE3 and
PPE4 (i)–(p). In the first and third rows (a–d and i–l) the net SW and LW radiation at the TOA are shown. In the second and fourth rows (e–h
and m–p) the global cloud cover is shown. Panels (a) and (e) show the effect of entrmid, (b) and (f) show that of entrpen, (c) and (g) show
that of pr0, (d) and (h) show that of crt, (i) and (m) show that of cmfctop, (j) and (n) show that of cprcon, (k) and (o) show that of ccsaut,
and (l) and (p) show that of cvtfall.

to those of ICON-aes-1.3, except for the mean zonal wind
stress over the Southern Ocean (tauu SOO – see Fig. 8c),
where the difference increased from roughly 0.005 N m−2 to
roughly 0.02 N m−2. The values of the parameters for these
two selected runs are given in Table 7. Given the different
settings used in the manual tuning for ICON-aes-1.3 (160 km
instead of the 80 km resolution used here, along with the dif-
ferent time steps used), the differences in the optimal model
configurations are not surprising. For instance, the model res-
olution strongly affects the parameters describing the unre-
solved orography and, thus, the values of the corresponding
parameters (Giorgetta et al., 2018).

In the next section, we analyse the variability of the dy-
namics outputs, and we identify a possible explanation for
the difficulty in matching them in our tuning. Afterwards, in
Sect. 4, we evaluate the results from PPE5 regarding model
outputs not targeted during the tuning experiment for a better

assessment of the results and a better comparison with the
previously tuned ICON-aes-1.3.

3.3.1 Analysis of output variability

We now use PPE5 to analyse the internal variability of the
investigated output metrics and compare them to the param-
eters’ effects. The year-to-year variability of the output met-
rics is shown in Fig. 9, where we plot the long- vs. short-time
averages of the considered outputs for 30 runs of PPE5. Ad-
ditional data complementing the information of Fig. 9 can
be found in Appendix D. In Fig. 9, it can be clearly seen
that the dynamics outputs (panels in the lower row) have a
larger variability across years compared to the physics ones
(upper row), which is apparent from the larger spread around
the diagonal (no spread would signify no variance) and the
larger error bar (which represents the standard deviation over
the yearly averages). In each panel, we also report the ra-
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Figure 8. Physics (a, b) and dynamics (c, d) output variables for PPE5 (blue triangles) compared to ICON-aes-1.3 (orange triangle) and
observational datasets. Two selected PPE members corresponding to the best-performing configurations are highlighted (cyan square and red
triangle). For comparison, two other runs are also highlighted (black circles).

Table 7. Values of the parameters for the two members of PPE5 yielding the best output metrics, shown as cyan square and red triangle in
Fig. 8. For comparison, the values of the parameters tuned by Giorgetta et al. (2018) are given as well.

Physics parameters First selected run Second selected run Giorgetta et al. (2018)

entrmid 2.8526× 10−4 2.6751× 10−4 2× 10−4

entrpen 9.2951× 10−5 9.2951× 10−5 2× 10−4

entrdd 1.7662× 10−4 1.7662× 10−4 4× 10−4

cmftau 2114.6 2114.6 3600
pr0 0.93168 0.93168 1
crt 0.81681 0.80417 0.8
cmfctop default value: 0.1 default value: 0.1
cprcon default value: 2.5× 10−4 default value: 2.5× 10−4

ccsaut default value: 2.0 default value: 2.0
csecfrl default value: 1.5× 10−5 default value: 1.5× 10−5

cvtfall 1.7479 2.00239
crs 0.88400 0.80222
csatsc 0.8700 0.64369

Dynamics parameters

gkdrag 0.17404 0.20595 0.1
gkwake 0.08262 0.087592 0.01
rmscon 0.91864 0.82209 0.87
gpicmea 28.375 53.976
gstd 8.40780 13.025
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Figure 9. The 10-year mean (1980–1989, y axis) against the mean of 1 particular year (here 1980, x axis) for the physics (top row, panels a–
d) and dynamics (bottom row, panels e–h) output variables for 30 runs of PPE5, represented by different colours. For each data point, the
dotted vertical line shows the spread of the annual mean across the 10 years (maximum and minimum values), and the solid vertical line
denotes 1 standard deviation, calculated based on the 1980–1989 period.

tio between the mean spread across years Syrs and the PPE
spread SPPE, which, for each output metric Y , are defined as
follows:

Syrs =

√√√√1
n

n∑
i=1

Varyears,i(Y ), (8)

SPPE =

√√√√1
n

n∑
i=1

(
Yi −Y

)2
, (9)

where n denotes the size of the PPE, Varyears,i(Y ) denotes
the variance of output Y over the simulated years for the
ith PPE member, Yi denotes the 10-year mean of output Y
for the ith PPE member, and Y denotes the average of Yi
over all PPE members. The ratio Syears/SPPE gives a quanti-
tative measure of the comparison between the yearly output
variability and the effects of changing parameters in the PPE.
It is clear that, for the dynamics outputs, especially the zonal
wind stresses on the ocean surface, this ratio is almost 1 order
of magnitude larger than for the physics ones.

An additional source of uncertainty in the dynamics out-
put metrics is their restricted geographical location, which
exposes them to biases in spatial patterns. The low variability
in the physics variables, which are global means, is consis-
tent with the common observation that, already, simulations
as short as 1 year can give good tuning results, though using
more years, for instance, a full decade, as used in Giorgetta
et al. (2018), has the benefit of including a larger variation
of prescribed boundary conditions, for example, El Niño,
La Niña, or neutral years.

The analysis shown in Fig. 9 shows that, for dynamics out-
puts, the internal variability is almost of the same order of

magnitude as the PPE variance and can therefore partly hide
the effects of changing parameters, as discussed above.

4 Evaluation of the selected runs

Now, we test our selected model configurations on different
variables that were not targeted during the tuning. We call
these “evaluation metrics”. Specifically, we assess whether
the outputs of our selected parameter configurations are also
compatible with the evaluation metrics, i.e. within the spread
of the reanalysis and observational datasets used as a refer-
ence. This evaluation step allows us to check whether the
tuning process has induced significant biases in metrics not
targeted during the tuning (i.e. over-tuning of the target met-
rics). The evaluation metrics that we inspect are the global
multi-annual averages (from 1980 to 1989) of the surface
temperature (ts), the total precipitation (pr), the pressure at
sea level (psl), the vertically integrated cloud ice (clivi),
and the vertically integrated cloud condensed-water con-
tent (clwvi). The results of this evaluation step are shown
in Fig. 10. For most of the computed evaluation metrics, our
selected model configurations are within the observational
range given by the spread of the reanalysis and observa-
tional datasets used as a reference (green symbols and lines
in Fig. 10), thus indicating that our tuning experiment had
a beneficial effect on the evaluation metrics that were not
targeted by the tuning. This is the case for the two selected
runs and the two highlighted runs from the ICON-A PPE5.
These selected model configurations show a slight positive
bias of< 0.1 °C in terms of the global average of the surface
temperature compared to the reference values. We conclude
that our tuning experiment successfully produced configura-
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tions largely comparable to ICON-aes-1.3, while it did not
show substantial improvement over the manually tuned ver-
sion, which is difficult to improve upon. We discuss the limi-
tations of our approach and propose potential improvements
in the next section.

5 Discussion and conclusions

In this work, we develop an ML-based tuning approach and
apply it to the atmospheric component of the ICON climate
model (ICON-A). Our approach is inspired by history match-
ing (Williamson et al., 2013, 2017), which balances an ex-
tensive exploration of the tuning parameter space with the
need to minimize the number of required ICON-A model
simulations. This exploration is aided by building and us-
ing emulators – here, Gaussian processes (GPs) – for each
of the considered output metrics. The emulator approximates
the climate model simulation outputs for arbitrary values of
the tuning parameters and can be used to create large em-
ulated metric ensembles at a much cheaper computational
cost. We integrate a history-matching-inspired method in a
sequential approach, where, in each phase, different param-
eter sets are sequentially constrained. We first apply our ap-
proach to the tuning of physics output metrics (globally av-
eraged radiation and cloud properties), and, in a second step,
we also tune for dynamics output metrics (related to geo-
graphically specific atmospheric-circulation properties) us-
ing a PPE consisting of 80 10-year ICON-A runs. The ML-
based tuning of physics parameterizations, with just one it-
eration and a total of 60 model simulations, is already suffi-
cient to achieve a model configuration yielding a global TOA
net radiation budget in the range of [0, 1] W m−2, global ra-
diation metrics and water vapour paths consistent with the
reference observations, and a globally averaged cloud cover
differing by only 2 % with respect to the observations. Note
that these results, particularly the number of iterations nec-
essary to converge with the observational range, generally
depend on the specific setup. Furthermore, we remark that
our approach presents some differences compared to tradi-
tional history matching implementations. While it allowed us
to draw some configurations with outputs compatible with
observations for some metrics, a thorough characterization
of the space of plausible parameters (the not-ruled-out-yet
space; Williamson et al., 2013) is beyond the scope of our
work and would require several iterations of standard history
matching.

In the simultaneous PPE-based tuning of physics and dy-
namics parameterizations, we achieve a TOA radiation bal-
ance within the interval [0, 1] W m−2, with TOA longwave
and shortwave radiation metrics that are within 1 W m−2 of
the targeted range, but we are not able to reduce the biases
in the dynamics output metrics with respect to the previ-
ously manually tuned ICON-aes-1.3. The PPE for this tun-
ing step allows us to perform an analysis of the physics and

dynamics output variability and a comparison with the pa-
rameters’ effects. This analysis reveals a larger year-to-year
variability in the dynamics compared to the physics output
metrics. This, combined with the sensitivity of the dynamics
metrics to geographic pattern, highlights potential limitations
that emulator-based approaches may face when tuning for
these dynamics metrics. This suggests, at the same time, that
metrics averaged over broader spatial regions may suffer less
from these issues and be more amenable to emulator-based
approaches, although too much averaging in space would
make the tuning target less characteristic. For the case of
the dynamics variables which are proxies for polar strato-
spheric vortices (zonal mean zonal wind, averaged at 60° N
and 60° S at 10 hPa over 10 years), a possible way to reduce
the noise would be to increase the simulation duration and
to average the field over only winter or summer months. A
further evaluation of the selected model configurations based
on metrics that were not targeted during tuning suggests that
our approach does not cause over-tuning in relation to the
tuning targets and, for our use case, results in a model config-
uration that can be considered to show similar performance
compared to the previously tuned ICON-aes-1.3.

Our sequential approach, in which, at each phase, only
a small subset of parameters is varied, allows us to keep
the costs of the PPEs relatively low (with 30 members, we
could reach good emulator accuracies) and to obtain ICON-A
model configurations showing an overall performance com-
parable to that of ICON-aes-1.3 for most of the selected tun-
ing metrics. However, such an approach may face the prob-
lem of neglecting some of the (non-linear) parameter interde-
pendencies and the possible feedbacks. In situations where
such parameter interactions and their hierarchy of impor-
tance are largely unknown, we would recommend simulta-
neously tuning all parameters when computationally feasi-
ble. Indeed, while, with our analysis, we are able to identify
which parameters are influential for the chosen metrics (see
Sect. 3.2.3), we cannot establish a clear hierarchy in terms
of which of these should be tuned in a sequential manner.
This is exemplified by Figs. 4 and 8, with the PPEs showing
a large spread in the global radiative metrics despite some
of the physics parameters being kept fixed. Furthermore, ac-
counting for all parameter dependencies and feedbacks could
be particularly important for tuning coupled models, e.g. for
properly accounting for the interactions between atmosphere
and ocean. The number of parameters that can be tuned si-
multaneously is ultimately limited by the available compu-
tational resources since the required size of the PPEs scales
with the size of the tuning parameter space. Therefore, sen-
sitivity analysis as presented here becomes a crucial tool to
identify and keep only the most important parameters in each
model component.

We also note that, even though history matching is con-
structed to minimize the number of climate model simula-
tions for the PPEs, this number is still the major computa-
tional bottleneck in tuning, which gets worse when tuning
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Figure 10. Five evaluation metrics averaged for the 1980–1989 (included) period for the PPE5 (blue, cyan, red, black, grey), ICON-aes-1.3
(orange triangle), and reanalysis datasets and observational datasets (green). For the datasets starting after 1980, the time period considered is
the earliest available 10 years: for CLARA (AVHRR) and ESA CCI Cloud (AVHRR-fv3.0), it is 1982–1991, and for MODIS, it is 2002–2011.

models at resolutions higher than the one considered here.
Again, including as much prior knowledge as possible in
the choice of the parameters, which, in a Bayesian setting
amounts to the selection of a prior distribution for the op-
timal parameter values, will be important. Such knowledge
of a prior distribution may, for instance, be obtained by the
computationally cheaper tuning of the same model at lower
resolutions, provided the same parameterization schemes are
used. Incorporating such prior knowledge could reduce the
size of the PPEs and the number of history matching itera-
tions required to converge with an optimal model configura-
tion (Fletcher et al., 2022), compared to starting from general
uninformative priors, as we did here (with LHC sampling).

Finally, while, here, we explored the feasibility of ML-
based tuning approaches to improve the tuning of climate
models, the seamless integration of such methods within the
specific climate modelling framework – to practically enable
an automatic application – is an aspect that needs to be ad-
dressed in further studies. Some aspects of model tuning,
such as the choice of tuning metrics, will remain subjective,
being highly dependent on the details and complexity of the
model, as well as on its intended uses. Other steps, however,
such as sensitivity analysis and selection of tuning parame-
ters, their exploration, and the evaluation of the outcomes,
could be incorporated, at least partly, in an automated ap-
proach. It is therefore important to understand which design
choices are best suited for such automatic approaches as we
foresee that these will lead to more accurate and potentially
computationally cheaper model tuning, also making this im-
portant step in climate model development more objective
and reproducible.

Appendix A: Times series of the observational products
used

Figure A1 shows the time series of the observational prod-
ucts used for the cloud cover and the water vapour path. The
10-year period of 1980–1989 was used for the tuning of the
dynamics outputs of ICON-A. For the cloud cover observa-
tional datasets, the earliest available year is 1982; therefore,
we added the years 1990–1991 into our tuning analysis. The
variability in the years illustrates the internal climate vari-
ability. We remark that other observational products exist for
these outputs but do not include the studied years. For ex-
ample, ESA CCI Water Vapour starts from the year 2002,
MODIS starts from the year 2002, and CloudSat starts from
the year 2006.
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Figure A1. Time series of the observational products used for the cloud cover and the water vapour path.

Appendix B: Details on GP emulators and choice of the
underlying hyperparameters

In this Appendix, we give a brief description of the Gaussian
process (GP) regression framework used to construct emu-
lators in this work and provide the relevant details regard-
ing the hyperparameters used in their implementation. Gaus-
sian processes are widely used in the context of Bayesian
optimization as they are a method for describing distribu-
tions over unknown functions and can be efficiently up-
dated or trained using samples from the ground-truth dis-
tribution (Rasmussen and Williams, 2005). In our case, the
function we want to approximate with GP regression is that
describing the dependence of a specific output Y of the
climate model on a set of tuning parameters x, which we
call Ymodel(x). The output of a Gaussian process trained on
set T = {xi,Ymodel(xi)}i of ground-truth samples (ICON-A
model runs, in our case) can be written as follows:

f (x)|T ∼ GP
(
µ(·),C·,·

)
, (B1)

where GP denotes the GP function distribution, with µ(x)
and C being, respectively, the mean function and the co-
variance matrix that implicitly depend on T , i.e. that have
been updated with the knowledge of the training data T us-
ing Bayes’ rule. Closed-form expressions for these functions
are available and can be found in Rasmussen and Williams
(2005). That is to say, given a new configuration x of tuning
parameters, a GP trained on an ICON-A PPE for a given vari-
able Y would output a normally distributed random variable
with mean µ(x) and variance σ 2(x) (which can also be ex-
plicitly calculated from the knowledge of the covariance ma-
trix C (Rasmussen and Williams, 2005)). We therefore inter-
pret µ(x) as our GP emulator prediction for Y and σ 2(x) as
the associated uncertainty and write

Yemul(x)≡ µ(x), (B2)

Var(Yemul(x))≡ σ
2(x), (B3)

which we use in Eq. (1) in the main text.

Importantly, the properties of the GP, particularly of the
covariance matrix C, depend on the choice of a kernel func-
tion k(x,x′), which describes how the predictions at points
x and x′ are correlated. Kernel functions may also contain
trainable hyperparameters, which are typically optimized by
maximizing the log-marginal likelihood with respect to the
training dataset (Rasmussen and Williams, 2005).

For our implementations, we used the GP regres-
sion library implemented in the scikit-learn package
(https://doi.org/10.5281/zenodo.7711792, Grisel et al.,
2024). We found Matèrn kernels to yield the highest predic-
tion accuracy (which we measure via the R2 coefficient).
Matèrn kernels have two hyperparameters: a length scale l
and a smoothness parameter ν. The length scale is typically
the distance at which one can extrapolate outside the training
data points: smaller values of l correspond to more rapidly
varying functions that the GP can fit. This hyperparameter,
together with the overall scale of the kernel, is optimized
using the L-BFGS-B optimization (Jorge Nocedal, 2006)
pre-implemented in scikit-learn. For the smoothness pa-
rameter ν, four values were tested: ν = 0.5 corresponds to
the absolute exponential kernel, ν = 1.5 corresponds to a
one-time differentiable function, ν = 2.5 corresponds to a
twice-differentiable function, and ν→∞ corresponds to a
radial basis function (RBF) kernel. These four values of ν al-
low for a computational cost that is around 10 times smaller
than that of the other values since they do not require us to
evaluate the modified Bessel function (Rasmussen, 2006).
The values of ν = 2.5 and ν→∞ yield large negative R2

scores and so are not represented here. In Fig. B1a, we
observe a comparable performance of the GP emulator for
ν = 0.5 (absolute exponential kernel) and ν = 1.5.

Other hyperparameters in the GP optimization are the
noise level α (which can be interpreted as the variance of
Gaussian noise added to the training data, with the aim of
increasing the numerical stability of GP evaluations) and the
number of random hyperparameter initializations for the log-
marginal likelihood optimization (denoted with n_restart).
Several values of α between 10−15 and 10−5 were tested. We
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show these tests in Fig. B1b. The values of α < 10−10 yield
large negative R2 scores. A change in α for 10−10 < α <

10−5 does not have a significant effect on the performance
of the GP emulator. Finally, we also tested several values of
n_restart, between 0 and 100, as shown in Fig. B1c. From the
tests presented in Fig. B1, the following values for the three
hyperparameters are chosen (which are also default values in
scikit-learn): ν = 1.5, α = 10−10, and n_restart= 0.

Figure B1. Performance (R2 coefficient, calculated with 5-fold cross-validation) of the GP emulator with Matèrn kernel trained on PPE1
and PPE2 for different choices of hyperparameters: (a) for different values of ν, (b) for different values of α, and (c) for different values
of n_restart.

Appendix C: Additional information on the generated
PPEs

In this Appendix, we show additional data for the PPEs we
generated in this work. Specifically, in Fig. C1, we show the
sampled parameter values for PPE3 (red circles) and PPE4
(grey triangles), where signs of (slow) convergence in his-
tory matching are already visible after one iteration (with the
distribution of the members of PPE4 being slightly shifted
and narrower). Figure C2 shows the sampled parameter val-
ues for PPE5 (blue triangles), with the cyan square and red
triangle marking the best-performing configurations reported
in Table 7 in the main text.
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Figure C1. Sampled parameter values for PPE3 (red circles) and PPE4 (grey triangles). For each panel, two parameters are plotted on the two
axes (see Table 3). The two PPEs are generated with parameter set Pp2. Signs of (slow) convergence of history matching are already visible
after one iteration (with the distribution of the members of PPE4 being slightly shifted and narrower). The extents of the plots includes all
the PPE4 values but not all of the PPE3 values.
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Figure C2. Sampled parameter values for PPE5 (blue triangles). For each panel, two parameters are plotted on the two axes (see Tables 3
and 4). The PPE is generated with parameter set Ppd. Two selected PPE members corresponding to the best-performing configurations are
highlighted (cyan square and red triangle).

Appendix D: Times series of the physics and dynamics
metrics

In this Appendix, we show additional information comple-
menting Fig. 9 in Sect. 3.2.1 in the main text. In Fig. D1, we
show the yearly averages of the physics (top row, Fig. D1a–
d) and dynamics (bottom row, Fig. D1e–h) output variables
for the 30 runs of PPE5 corresponding to Fig. 9. Also, in
these time series, the higher year-to-year variability in the
dynamics outputs compared to that in the physics ones can
be clearly seen.
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Figure D1. Time series (yearly averages) of the physics (top row, panels a–d) and dynamics (bottom row, panels e–h) output variables for
30 runs of PPE5 (each colour corresponds to one run). The values for the years 1980 and 1989 are connected with a dashed line to help the
reader identify the runs.

Appendix E: Additional information on
parameter-to-output maps

In this Appendix, we show additional information on the
parameter-to-output maps discussed in Sect. 3.2.3. In Fig.E1
(respectively, Fig. E2) we show the parameter-to-output map
predicted with the GP emulators trained on PPE1 and PPE2,
(respectively, PPE3 and PPE4) based on parameter set Pp1.
(respectively, Pp2). In Fig. E2o–u, we can see that param-
eter set Pp2 does indeed allow for a higher (and closer to
the observational values) global cloud cover compared to Pp1
(Fig. E1).
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Figure E1. Parameter-to-output maps predicted with the GP emulators trained on PPE1 and PPE2. Every column corresponds to one tuning
parameter being changed (see the list in Table 3), and every row corresponds to an output metric. The parameters that are not changed are
kept fixed at their best-performing value from PPE2 (marked with the magenta star in Figs. 2 and 3). The red-shaded areas in each plot denote
the allowed output ranges from the observational data. The other coloured lines in each plot denote the emulator predictions (for the first row,
dark and light blue denote the net longwave and shortwave radiation at TOA, respectively), with the corresponding uncertainty (1 standard
deviation) represented as the shaded area.

Figure E2. Parameter-to-output map predicted with the GP emulators trained on PPE3 and PPE4. Every column corresponds to one tuning
parameter being changed (see the list in Table 3), and every row corresponds to an output variable. The parameters that are not changed
are kept fixed at their best-performing value from PPE2 (marked with the magenta star in Figs. 2 and 3). The red-shaded areas in each plot
denote the allowed output ranges from the observational data. The other coloured lines in each plot denote the emulator predictions (for the
first row, dark and light blue denote the net longwave and shortwave radiation at TOA, respectively), with the corresponding uncertainty (1
standard deviation) represented as the shaded area.
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