Articles | Volume 18, issue 10
https://doi.org/10.5194/gmd-18-2891-2025
https://doi.org/10.5194/gmd-18-2891-2025
Development and technical paper
 | 
19 May 2025
Development and technical paper |  | 19 May 2025

Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares

Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez

Related authors

Investigating fire-induced ozone production from local to global scales
Joseph O. Palmo, Colette L. Heald, Donald R. Blake, Ilann Bourgeois, Matthew Coggon, Jeff Collett, Frank Flocke, Alan Fried, Georgios Gkatzelis, Samuel Hall, Lu Hu, Jose L. Jimenez, Pedro Campuzano-Jost, I-Ting Ku, Benjamin Nault, Brett Palm, Jeff Peischl, Ilana Pollack, Amy Sullivan, Joel Thornton, Carsten Warneke, Armin Wisthaler, and Lu Xu
Atmos. Chem. Phys., 25, 17107–17124, https://doi.org/10.5194/acp-25-17107-2025,https://doi.org/10.5194/acp-25-17107-2025, 2025
Short summary
A nitrate photolysis source of tropospheric HONO is incompatible with current understanding of atmospheric chemistry
Matthew J. Rowlinson, Lucy J. Carpenter, Mat J. Evans, James D. Lee, Simone T. Andersen, Tomas Sherwen, Anna B. Callaghan, Roberto Sommariva, William Bloss, Siqi Hou, Leigh R. Crilley, Klaus Pfeilsticker, Benjamin Weyland, Thomas B. Ryerson, Patrick R. Veres, Pedro Campuzano-Jost, Hongyu Guo, Benjamin A. Nault, Jose L. Jimenez, and Khanneh Wadinga Fomba
Atmos. Chem. Phys., 25, 16945–16968, https://doi.org/10.5194/acp-25-16945-2025,https://doi.org/10.5194/acp-25-16945-2025, 2025
Short summary
A simple, versatile approach for coupling a liquid chromatograph and chemical ionization mass spectrometer for offline analysis of organic aerosol
Andre F. Schaum, Kelvin H. Bates, Kyung-Eun Min, Faith Myers, Emmaline R. Longnecker, Manjula R. Canagaratna, Mitchell W. Alton, and Paul J. Ziemann
Aerosol Research, 3, 557–568, https://doi.org/10.5194/ar-3-557-2025,https://doi.org/10.5194/ar-3-557-2025, 2025
Short summary
Global CO emissions and drivers of atmospheric CO trends constrained by MOPITT satellite observations
Zhaojun Tang, Panpan Yang, Kazuyuki Miyazaki, John Worden, Helen Worden, Daven K. Henze, Dylan B. A. Jones, and Zhe Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-5432,https://doi.org/10.5194/egusphere-2025-5432, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Particulate Matter Concentrations Derived from Airborne High Spectral Resolution Lidar Measurements Using Machine Learning Regression
Richard Ferrare, Johnathan Hair, Taylor Shingler, Chris Hostetler, Amin Nehrir, Marta Fenn, Amy Jo Scarino, Sharon Burton, Marian Clayton, James Collins, Laura Judd, James Crawford, Katherine Travis, Travis Toth, Pablo Saide, Jose Luis Jimenez, Pedro Campuzano-Jost, Guy Symonds, Richard Moore, Luke Ziemba, Michael Shook, Glenn Diskin, Joshua P. DiGangi, Ryan Bennett, Chia-hsiang Ho, Lim-seok Chang, Adisak Aiampisanuvong, and Ittipol Pawarmart
EGUsphere, https://doi.org/10.5194/egusphere-2025-4812,https://doi.org/10.5194/egusphere-2025-4812, 2025
Short summary

Cited articles

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y.: Theano: A CPU and GPU math compiler in Python, Proceedings of the 9th Python in Science Conference, 18–24, https://doi.org/10.25080/Majora-92bf1922-003, 2010. a
Boutsidis, C. and Gallopoulos, E.: SVD based initialization: A head start for nonnegative matrix factorization, Pattern Recognition, 41, 1350–1362, https://doi.org/10.1016/j.patcog.2007.09.010, 2008. a, b
Cichocki, A. and Phan, A.-H.: Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations, IEICE Transactions, 92-A, 708–721, https://doi.org/10.1587/transfun.E92.A.708, 2009. a
Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S.-I.: Alternating Least Squares and Related Algorithms for NMF and SCA Problems, in: Nonnegative Matrix and Tensor Factorizations, chap. 4, John Wiley & Sons, Ltd, 203–266, ISBN 9780470747278, https://doi.org/10.1002/9780470747278.ch4, 2009. a
Eckart, C. and Young, G.: The approximation of one matrix by another of lower rank, Psychometrika, 1, 211–218, https://doi.org/10.1007/BF02288367, 1936. a
Download
Short summary
Positive matrix factorization (PMF) has been used by atmospheric scientists to extract underlying factors present in large datasets. This paper presents a new technique for error-weighted PMF that drastically reduces the computational costs of previously developed algorithms. We use this technique to deliver interpretable factors and solution diagnostics from an atmospheric chemistry dataset.
Share