Articles | Volume 18, issue 10
https://doi.org/10.5194/gmd-18-2891-2025
https://doi.org/10.5194/gmd-18-2891-2025
Development and technical paper
 | 
19 May 2025
Development and technical paper |  | 19 May 2025

Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares

Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez

Model code and software

bsapper77/ew_rhals: EW_RHALS_2 (v2.0.0) Benjamin Sapper https://doi.org/10.5281/zenodo.7963474

Download
Short summary
Positive matrix factorization (PMF) has been used by atmospheric scientists to extract underlying factors present in large datasets. This paper presents a new technique for error-weighted PMF that drastically reduces the computational costs of previously developed algorithms. We use this technique to deliver interpretable factors and solution diagnostics from an atmospheric chemistry dataset.
Share