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Abstract. Weighted positive matrix factorization (PMF) has
been used by scientists to find small sets of underlying factors
in environmental data. However, as the size of the data has
grown, increasing computational costs have made it imprac-
tical to use traditional methods for this factorization. In this
paper, we present a new external weighting method to dra-
matically decrease computational costs for these traditional
algorithms. The external weighting scheme, along with the
randomized hierarchical alternating least squares (RHALS)
algorithm, was applied to the Southern Oxidant and Aerosol
Study (SOAS 2013) dataset of gaseous highly oxidized mul-
tifunctional molecules (HOMs). The modified RHALS algo-
rithm successfully reproduced six previously identified in-
terpretable factors, with the total computation time of the
nonoptimized code showing potential improvements of the
order of 1 to 2 orders of magnitude compared to competing
algorithms. We also investigate rotational ambiguity in the
solution and present a simple “pulling” method to rotate a
set of factors. This method is shown to find alternative solu-
tions and, in some cases, lower the weighted residual error of
the algorithm.

1 Introduction

1.1 Problem statement

Low-rank matrix factorization has been widely used in data
science to explain underlying factors in large datasets (Xie
et al., 1998; Kim and Hopke, 2007; Wei et al., 2016). The
process considers a data matrix, A, of size m× n, which is
decomposed into two smaller matrices, W of size m× k and
H of size k× n, where k�min(m,n) and A≈WH. Tra-
ditionally, principal component analysis (PCA) and singular
value decomposition (SVD) have been used to find these fac-
tors (Kumar, 2017; Wei et al., 2016). PCA finds the eigen-
vectors of the covariance matrix ATA, which are called the
principal components, representing the directions of maxi-
mum variance in the data. The vectors are ordered by how
much variance they explain, and only the most important vec-
tors are kept, which are identified as the underlying factors
in the data. Closely related, the SVD finds the factorization
A= USVT , where U and V contain the left and right singu-
lar vectors, respectively, and S is a diagonal matrix contain-
ing the singular values of A in decreasing order. Thus, to find
a low-rank approximation of A, one could keep only the k
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most significant singular values and vectors to form the trun-
cated SVD, UkSkVTk . Mathematically, the truncated SVD is
the most optimal rank k factorization of A for minimizing
squared error (Eckart and Young, 1936). However, the SVD
is not appropriate for all factorization problems for several
reasons (Paatero and Tapper, 1994):

1. The SVD produces factors with negative values. For
some factor analysis problems, such as finding chemical
sources for air pollution data, SVD results can be diffi-
cult to interpret as chemical concentrations can only be
nonnegative.

2. The SVD produces orthogonal factors. Many factor
analysis problems are not constrained by requirements
of orthogonality between factors.

3. The SVD is not fit to solve the following weighted
least squares problem. Suppose that accompanying the
dataset A is an equally sized (m× n) matrix 6 with
6ij = σij representing the uncertainty of the measure-
ment for Aij . If rank(6) > 1, the SVD cannot be scaled
to find a solution minimizing the weighted residual er-

ror, which is defined as
∑m
i=1
∑n
j=1

(Aij−
∑k
l=1WilHlj )

2

σ 2
ij

(Paatero and Tapper, 1994).

Positive matrix factorization (PMF) was introduced by
Paatero and Tapper (1993) to address these concerns.
Weighted PMF attempts to find two factor matrices, W and
H, by minimizing the equation

||(A−WH)�6||2F with W≥ 0,H≥ 0. (1)

In Eq. (1),� represents elementwise division, the norm ||·||F
is the Frobenius norm, and all elements of W and H are con-
strained to be nonnegative. Further, we note that for consis-
tency with nomenclature in the literature related to the use
of this algorithm for factorization of real-time atmospheric
mass spectrometry datasets, we refer to this approach as
“positive” matrix factorization (i.e., PMF) while recogniz-
ing that a more precise name would be nonnegative matrix
factorization (NMF).

Traditional factor analysis methods are known to be com-
putationally expensive. Steps to speed up factor analysis have
been explored, such as randomization and the use of graph-
ical processing units (GPUs) (Halko et al., 2011; Tan et al.,
2018). Developing efficient algorithms is especially critical
in atmospheric mass spectrometry, as improvements in in-
strumentation and increases in the duration of their use in
field campaigns have led to intractably large datasets. Cur-
rently, analysis of these datasets requires sacrificing data res-
olution or extensive manual preprocessing to operate within
existing PMF software tools, and full analysis can routinely
take days or weeks of computation time (Hopke et al., 2023).
As a result, a variety of approaches have emerged for effi-
cient source apportionment of atmospheric mass spectrom-
etry data. Algorithms to solve the nonconvex optimization

posed by PMF range from gradient descent and block coordi-
nate descent to projected gradient methods (Guo et al., 2024).
Attempts at using supervised ensemble machine learning ap-
proaches have been shown to be capable of replicating re-
sults from traditional (unsupervised) factorization methods
while reducing computation time (Zhang et al., 2025). Re-
cently, Erichson et al. (2018) applied randomization to PMF
and introduced a new method, randomized hierarchical alter-
nating least squares (RHALS), to solve the unweighted PMF
problem. In this paper, we test the application of RHALS
to atmospheric concentration data that contain uncertainties.
Accounting for these uncertainties as regression weights, we
introduce a method of externally weighting and unweighting
the data, which to our knowledge is novel in its application to
RHALS. We consider the accuracy and the reduced compu-
tational costs compared to other PMF algorithms commonly
used in the field of atmospheric science.

1.2 Background

1.2.1 PMF2 and Paatero

The first widely accepted algorithm for PMF was derived in
Paatero (1997) using the Gauss–Newton method. This algo-
rithm, called PMF2, is commonly used with environmental
data (Kim and Hopke, 2007; Ulbrich et al., 2009; Massoli
et al., 2018). Paatero (1997) defines an enhanced objective
function and attempts to find factor matrices W and H that
minimize the cost function Q in

Q=

m∑
i=1

n∑
j=1

(Aij −
∑k
l=1WilHlj )

2

σ 2
ij

−α

m∑
i=1

k∑
l=1

log(Wil)−β

k∑
l=1

n∑
j=1

log(Hlj )

+ γ

m∑
i=1

k∑
l=1

W2
il + δ

k∑
l=1

n∑
j=1

H2
lj . (2)

In Eq. (2), logarithmic penalty terms are added to penalize
factor values that become too close to zero (and therefore po-
tentially negative), and L2 regularization is added to smooth
out the factors and avoid overfitting (Paatero, 1997). Here, α
and β control the strength of the penalty terms, while γ and
δ control the strength of L2 regularization. To date, Paatero’s
exact algorithmic approach to solving Eq. (2) remains unpub-
lished. However, pseudo-code for using the Gauss–Newton
method to solve Eq. (2) is detailed in Lu and Wu (2004).

1.2.2 Multiplicative update

An alternative method for PMF was developed in Lee and Se-
ung (1999). The multiplicative update (MU) method utilizes
a special case of gradient descent where the learning rates are
chosen to avoid subtraction in the gradient (Gillis, 2020). A
multiplicative update estimate of a parameter θ (either W or
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H) is found by updates of the form (Gillis, 2020)

θ = θ � (∇−θ Q(θ)�∇
+

θ Q(θ)), (3)

where Q(θ) is a cost function to be minimized, ∇−θ consists
of the negative terms of the gradient of the cost function,
∇
+

θ consists of the positive terms of the gradient, and � de-
notes elementwise multiplication. Here, θ is initialized with
all positive entries as the MU cannot update an entry θ ij if
it is equal to zero (Gillis, 2020). As the data matrix A, the
uncertainties (σij ), and the factor matrices are all nonnega-
tive at each step of this algorithm, the factor matrices in the
subsequent step are guaranteed to be positive because Eq. (3)
only deals with the multiplication and division of positive
numbers.

It is possible to perform PMF using other forms of gradient
descent – for example, the projected gradient method (PGM)
sets the step size to the inverse of the maximum eigenvalue
of the Hessian of the cost function and may lead to faster
convergence than MU (Gillis, 2020). However, we choose to
only test MU due to its widespread use and flexibility (Gillis,
2020).

1.2.3 Alternating least squares and hierarchical ALS

Alternating least squares (ALS) methods solve for the factor
matrices W and H by iteratively updating each matrix un-
til convergence is reached (Cichocki et al., 2009). The cost
functionQ, containing ||(A−WH)�6||2F , is minimized by
setting the partial derivatives ∂Q

∂W and ∂Q
∂H to zero and solving

for W and H. To satisfy the positivity constraint, negative
elements in the factors are set to zero.

Nonnegative ALS has no theoretical convergence guaran-
tee and, in some problems, may fail to converge to a fea-
sible solution (Gillis, 2020). For this reason, the alternating
nonnegative least squares (ANLS) method and the alternat-
ing direction method of multipliers (ADMM) are interesting
alternatives. In ANLS, indices of an “active set” are set to
zero, and the rest are updated via an unconstrained optimiza-
tion (Kim and Park, 2011). The active set is then updated to
contain the indices with the new negative factor elements. In
ADMM, an auxiliary factor matrix Y is formed, and an ad-
ditional term is added to the cost function, which penalizes
the distance between the target factor matrix (W or H) and
Y (Gillis, 2020). Both of these methods may lead to faster
and better convergence than nonnegative ALS (Gillis, 2020).
However, we find that the simple nonnegative ALS almost al-
ways converges to feasible solutions for our dataset, and we
do not explore these alternative methods.

In recent years, hierarchical alternating least squares
(HALS) has become increasingly popular as an efficient
method for PMF (Cichocki and Phan, 2009). Instead of min-
imizing with respect to the entire factor matrices W and
H, HALS minimizes the cost function with respect to one
block, or an outer product, of individual factors at a time.
The main component of the cost function is redefined as

Qj = ||(Rj −W(:,j)H(j,:))�6||
2
F , where W(:,j) and H(j,:)

are the j th factors.Qj can be minimized for each factor j by
setting the partial derivatives ∂Qj

∂W(:,j)
and ∂Qj

∂H(j,:)
to zero and

solving for W(:,j) and H(j,:).
The derivation of the ALS update rules is detailed in Ap-

pendix A, while the derivation of HALS is detailed in Sect. 2.

1.3 Random projections

To reduce the computational costs of a matrix factorization
algorithm for large datasets, randomization methods have
been used as a dimension reduction technique (Erichson
et al., 2018; Halko et al., 2011; Kaloorazi and Chen, 2019).
Below, we present a brief overview of the theory and results
laid out in Halko et al. (2011).

When performing randomization techniques, we hope that
much of the relevant information about the column space of
the data matrix A can be stored in a much smaller subset of
vectors that we can sample. This is only true if the “effective
rank” of A is low (A only has a few nonnegligible singu-
lar values), but that is generally assumed to be the case in
any PMF problem (Erichson et al., 2018). Mathematically,
we seek the approximation

A≈ PPTA, (4)

where the relatively small number of columns in the matrix P
are orthonormal and form an approximate basis of A. Choos-
ing the columns of P to be the left singular vectors of A
would minimize the L2 error: if the first k singular vectors
were chosen, the error term ||A−PPTA||2 = σk+1, with σk+1
being the singular value of A with index (k+1) (Halko et al.,
2011). However, random sampling from the column space of
A can also produce a suitable basis.

The assumption that there are k underlying factors within
A implies that the effective rank of A is k. It then appears
reasonable to use k random samples from the column space
of A to form a basis. However, with underlying uncertainties,
we can write A= B+E, where B is the rank kmatrix spanned
by the factors for which we wish to find a basis, and E is a
perturbation matrix filled with the noise in A (Halko et al.,
2011). Suppose we were to sample from the column space of
A – that is, form the vector y = Aω = Bω+Eω. Each vector
y is slightly pushed out of the column space of B by the term
Eω. Thus, to increase the likelihood of spanning the column
space of B, an additional p vectors are sampled from A. In
practice, choosing p to be 10 or 20 is sufficient (Erichson
et al., 2018).

To construct this low-rank approximation, k+p random
normal samples, stored as columns of the matrix � (dimen-
sions n× (k+p)) of the column space of A, are taken and
stored in Y:

Y
m×(k+p)

= A
m×n
· �
n×(k+p)

. (5)
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Next, the columns of Y are orthonormalized using a QR de-
composition to form our projection matrix P. The algorithm
can now be run on the lower dimensional matrix B= PTA.

1.4 Nonuniqueness of solutions

Unlike the SVD, there is no guarantee of uniqueness for the
factor matrices W and H in PMF. That is, the factorization
A=WH can also be expressed as A=WTT−1H, where T
is a “rotational” matrix and Ŵ=WT and Ĥ= T−1H are the
new rotated factors. We note that T does not necessarily rep-
resent a true rotation in a mathematical form, which would
require T to be orthogonal. To span the space of feasible so-
lutions, previous approaches such as PMF2 have aimed to
find new solutions Ŵ and Ĥ by varying T (Paatero, 1997) or
varying initializations (Ulbrich et al., 2009).

The rotational matrix T is a k×k matrix where tii , a diago-
nal element of T, represents a scaling of the ith factor, and tij
represents a rotation of the j th factor towards the ith factor
in W and a rotation of the ith factor away from the j th factor
in H. For example, consider the elementary rotation matrices
(Paatero et al., 2002)

TE =


1 0 0 · · · 0
0 1 r · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ,

T−1
E =


1 0 0 · · · 0
0 1 −r · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 . (6)

All factors remain the same, except Ŵ(:,3) =W(:,3)+rW(:,2)

and Ĥ(2,:) =H(2,:)− rH(3,:).
Regardless of whether r is positive or negative, values in

either W or H will be pulled towards negative values. Thus if
a large proportion of the factors are filled with zeros, there
may be little to no pure rotations or rotations that do not
change the residual ||A−WH||2F . Algorithms such as those
developed by Paatero, where a logarithmic penalty term is
added to push factor values to be more positive, will have
few zeros in the factor matrices and will thus have more ro-
tational ambiguity (Paatero et al., 2005). However, RHALS
enforces nonnegativity merely by setting negative elements
to zero, and thus many values in the factor matrices may end
up being zero. Thus for RHALS, a perfect rotational matrix T
will almost certainly not exist, and only “approximate” rota-
tions can be studied, in which the rotation will alter the value
of the weighted error.

It is not feasible to span all possible variants that T can
take. Thus, the problem is often simplified to considering
only positive rotations (values of T greater than zero) and

negative rotations (values of T less than zero). A rotational
program in PMF2 called FPEAK uses the parameter φ to
denote the rotation strength, with positive values leading to
positive rotations in W (Paatero, 1997). Paatero further im-
proved this method in the multilinear engine (ME) algorithm,
where the strength of rotation is allowed to vary between fac-
tors (Paatero and Hopke, 2009). The pulling algorithm pre-
sented in Paatero and Hopke (2009) is a sophisticated rota-
tional method; more rudimentary pulling methods that mimic
varying the regularization of the factor matrices are presented
in Paatero (1997) and Paatero et al. (2002). Recent attempts
at controlling for rotational ambiguity have involved addi-
tional factorization of the time-series matrix W into a matrix
incorporating shape regularization to reflect known diurnal
patterns of factors and a diagonal scaling matrix (Nanra et al.,
2024).

1.5 Scaling with uncertainties

Recall that to account for inaccuracies in real data, we mea-
sure the squared error Q of the algorithm by dividing the
residual by the standard deviation of the uncertainty of each
measurement:

Q=

m∑
i=1

n∑
j=1

(
Aij −

∑k
l=1WilHlj

σij

)2

. (7)

To account for these uncertainties, one could incorporate
them into each update rule of the factor matrices, as is done in
PMF2 (Paatero, 1997). In this paper, we refer to this as “inter-
nal weighting”. However, this is computationally expensive
due to repeated elementwise operations with the uncertainty
matrix 6. Elementwise operations of large arrays are inef-
ficient processes compared to other operations of the same
computational complexity, such as matrix–vector multiplica-
tion, due to the large allocation of memory towards interme-
diary results (Jia et al., 2020). We thus introduce an alternate
approach to weighted PMF where the data are prescaled by
the uncertainty matrix, the unweighted algorithm is applied
to the scaled data, and the converged factors are scaled by
the uncertainties. This approach, which we refer to as “ex-
ternal weighting”, dramatically reduces computational costs
and allows for dimensionality reduction as weights are not
included in the update rules.

It is noted in Paatero and Tapper (1993) that if the weight-
ing matrix is rank 1, that is if 1

σij
= B(i,:)C(:,j) for vec-

tors of B and C, then an optimal scaling can be found.
By forming the diagonal matrices DL (with the elements of
B(i,:)) and DR (with the elements of C(:,j)), if A=WH+E,
then DLADR = DLWHDR +DLEDR = ŴĤ+ Ê. Thus, by
first finding Â= DLADR and then running a PMF algo-
rithm without weights on Â, one can produce estimated fac-
tor matrices Ŵ and Ĥ, where the unscaled estimates are
W= D−1

L Ŵ and H= ĤD−1
R .
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If the weighting matrix 6 is not rank 1 – which is likely
for environmental data – and 1

σ i,j
cannot be estimated as the

outer product of two vectors, there is no scaling of the previ-
ous form that can be applied to the data matrix A (Paatero and
Tapper, 1993). To address this, Paatero and Tapper (1993)
presented a simple algorithm to find an approximate rank 1
factorization of 6. We present a different method where the
data are scaled by the full-rank matrix 6 and then unscaled
after the algorithm is complete. This algorithm is described
in detail in Sect. 2.3.

Expectation maximization

The expectation maximization (EM) approach was first de-
signed for matrix factorization problems associated with
missing entries (Zhang et al., 2006). Specifically, if Ao is the
observed data and Au is the unknown data within A, then the
EM approach seeks to find factors W and H that satisfy the
following (Zhang et al., 2006):

argmaxWHE(log(P(Ao,Au|WH))|Ao,WH(t−1)), (8)

where WH(t−1) is the product of the previous estimates of W
and H and P is a probability measure. This problem is equiv-
alent to running a PMF algorithm on the following adjusted
matrix (Zhang et al., 2006):

A1 = C�A+ (1−C)�WH(t−1), (9)

with Cij = 1 if Aij is known and Cij = 0 if Aij is unknown,
and 1 is a matrix of ones.

Recent work has looked into expanding on this approach
to continuous weights, as seen in most PMF problems of
real-time atmospheric mass spectrometry data (Yahaya et al.,
2019; Yahaya, 2021; Yahaya et al., 2021). To handle the con-
tinuous case, a variation of Eq. (8) is maximized (Yahaya
et al., 2019):

argmaxWHE(log(P(C�A, (1−C)

�Atheo|WH))|C�A,WH(t−1)), (10)

where C is now a weight matrix containing estimates of con-
fidence as a value between 0 and 1 in a given data point,
and Atheo is the theoretical true data. Maximizing Eq. (10) is
equivalent to running any PMF algorithm on the matrix A1
formed in Eq. (9).

To form the confidence matrix C from the uncertainty ma-
trix 6, Yahaya (2021) suggests scaling the weights (in this
case 1

σij
) so that the maximum value is 1. However, previ-

ous testing has primarily focused on problems with binary
weights (Yahaya et al., 2019; Yahaya, 2021; Yahaya et al.,
2021).

1.6 Determining the number of factors

The squared weighted residual error, Q=∑m
i=1
∑n
j=1

(
Aij−

∑k
l=1WilHlj

σij

)2

, can be used to deter-

mine whether a given solution either overfits or underfits
the data (Ulbrich et al., 2009). If measurement errors are
normally distributed, then Q will follow a χ2 distribution
with mn− k(m+ n) degrees of freedom. Thus, to avoid
overfitting, the number of factors in a solution is chosen
such that Q≈mn− k(m+ n) (Paatero et al., 2002). When
additional error is present, measuring the convergence of Q
or the weighted residual error with additional factors can
determine if these additional factors add much information
to the model.

Another method used in determining the number of fac-
tors is the lack of rotational ambiguity of a solution (Ulbrich
et al., 2009). Consider a simple case where the data matrix
A is the product of two rank-two matrices W= [a,b] and
H= [y,z]T , with a,b,y, and z being column vectors. An
exact solution can also be obtained by finding W= [c,d,b]
and H= [y,y,z], where c+ d = a, in a process known as
factor splitting (Ulbrich et al., 2009). Thus, a three-factor so-
lution introduces rotational ambiguity, as any two factors c
and d can be chosen as long as they add up to a. The same
analysis can be seen by analyzing solutions with four or more
factors, and we can conclude that a large amount of rotational
ambiguity is a potential sign of overfitting.

1.7 Data

In this paper, we use the data from “Ambient measurements
of highly oxidized gas-phase molecules during the Southern
Oxidant and Aerosol Study (SOAS) 2013”, measuring highly
oxidized multifunctional molecules (HOMs) over a forest
site in Alabama from 22 June to 7 July 2013 (Massoli et al.,
2018). The dataset contains mass spectra concentrations of
1059 different ions over 27 336 different time stamps. Addi-
tionally, initial uncertainties associated with each measure-
ment are also included. PMF was applied to the data using
the PMF2 algorithm described in Paatero (1997), checking
solutions from 2 to 10 factors, where a six-factor solution
was obtained (Massoli et al., 2018). We note that some of the
uncertainties were artificially increased for this PMF2 anal-
ysis. The authors concluded that a significant portion of the
secondary organic aerosol (SOA) was the result of interac-
tions between biogenic and anthropogenic emissions (Mas-
soli et al., 2018).

We use this six-factor solution as a reference solution and
test whether the RHALS algorithm can recreate formulated
factors and those found from PMF2. Analyses of results for
different numbers of factors (other than the original six iden-
tified in Massoli et al., 2018) were not considered in order to
maintain interpretability of the algorithm output. For refer-
ence, the PMF2 factor mass spectra and the time trends over
all of the data are shown in Fig. 1. The factor time series,
as well as the time series of the total mass concentration,
is also shown in Fig. 2. Both plots show total concentration
amounts over the entire time series and mass spectra, respec-
tively. Discussion of the chemical interpretations of the data

https://doi.org/10.5194/gmd-18-2891-2025 Geosci. Model Dev., 18, 2891–2919, 2025



2896 B. C. Sapper et al.: Positive matrix factorization of large error-weighted mass spectrometry datasets

are not presented, and the scope of this effort is limited to
the mathematical results from implementing the RHALS al-
gorithm.

2 Methods

In this section, we present the derivation of the basic
weighted HALS algorithm in Sect. 2.1, a simple rotation al-
gorithm in Sect. 2.2, our new external weighting algorithm
in Sect. 2.3, and inclusion of L1 and L2 regularization in
Sect. 2.4.

2.1 HALS algorithm

The derivation of the unweighted algorithm for HALS is
detailed in Erichson et al. (2018). Here we present a simi-
lar derivation, taking into account uncertainties in the data
that act as weights. Another derivation of weighted HALS is
given in Ho (2008).

The HALS algorithm applies block coordinate descent
methods in order to minimize the cost function Qj by min-
imizing a “block”, or an outer product of individual factors,
of W and H at a certain time while keeping the other factors
fixed (Erichson et al., 2018).

Qj = ||(Rj −W(:,j)H(j,:))�6||
2
F (11)

In Eq. (11), Rj is the j th residual, with

Rj = A−
k∑
i 6=j

W(:,i)H(i,:) = A−WH+W(:,j)H(j,:). (12)

W(:,j) is the j th column (or j th factor) of W, H(j,:) is the j th
row and factor of H, and k is the number of factors that the
algorithm is aiming to find. As defined previously, 6 con-
tains the uncertainties associated with each element in the
data matrix A.

To derive update rules for HALS, partial derivatives of
Eq. (11) are taken with respect to the factors W(:,j) and
H(j,:). In order to incorporate the uncertainties (6), we
present a variation on the derivation presented in Erichson
et al. (2018) by considering just a row (i) and column (p) of
the weighted residual.

Qi
j = ||(Rj (i,:)−WijH(j,:))6

−1
i ||

2
F (13)

Q
p
j = ||6

−1
p (Rj (:,p)−HjpW(:,j))||

2
F (14)

In Eqs. (13) and (14), 6i are 6p are diagonal matrices
(of size m and n, respectively), with the diagonal elements
corresponding to the elements of the ith row (for 6i) and
pth column (for 6p) of 6. Expanding Eq. (13) and Eq. (14)
using the fact that ||X||2F = Tr(XTX), where Tr(A) denotes

the trace of the matrix A, we get

Qi
j = Tr(6−1

i RTj (i,:)Rj (i,:)6
−1
i

− 2Wij6
−1
i RTj (i,:)H(j,:)6

−1
i

+W2
ij6
−1
i HT

(j,:)H(j,:)6
−1
i ), (15)

Q
p
j = Tr(RTj (:,p)6

−1
p 6−1

p Rj (:,p)

− 2HjpRTj (:,p)6
−1
p 6−1

p W(:,j)

+H2
jpWT

(:,j)6
−1
p 6−1

p W(:,j)). (16)

Differentiating with respect to Wij and Hjp,

∂Qi
j

∂Wij

=−2Tr(6−1
i RTj (i,:)H(j,:)6

−1
i )

+ 2WijTr(6−1
i HT

(j,:)H(j,:)6
−1
i ), (17)

∂Q
p
j

∂Hjp

=−2Tr(RTj (:,p)6
−1
p 6−1

p W(:,j))

+ 2HjpTr(WT
(:,j)6

−1
p 6−1

p W(:,j)). (18)

To eliminate the matrix traces, it is easy to show that
Eqs. (17) and (18) can be rewritten as

∂Qi
j

∂Wij

=−2Rj (i,:)(HT
(j,:)� (6

T
(i,:)�6

T
(i,:)))

+ 2WijH(j,:)(HT
(j,:)� (6

T
(i,:)�6

T
(i,:))), (19)

∂Q
p
j

∂Hjp

=−2RTj (:,p)(W(:,j)� (6(:,p)�6(:,p)))

+ 2HjpWT
(:,j)(W(:,j)� (6(:,p)�6(:,p))). (20)

Setting Eqs. (19) and (20) to zero and solving for the factor
values yield

Wij =
Rj (i,:)(HT

(j,:)� (6
T
(i,:)�6

T
(i,:)))

H(j,:)(HT
(j,:)� (6

T
(i,:)�6

T
(i,:))),

(21)

Hjp =
RTj (:,p)(W(:,j)� (6(:,p)�6(:,p)))

WT
(:,j)(W(:,j)� (6(:,p)�6(:,p))).

(22)

Substituting Eq. (12) into Eqs. (19) and (20) yields the fol-
lowing update rules:

Wij ←

Wij +

A(i,:)(HT
(j,:)� (6

T
(i,:)�6

T
(i,:)))

−W(i,:)H(HT
(j,:)� (6

T
(i,:)�6

T
(i,:)))

H(j,:)(HT
(j,:)� (6

T
(i,:)�6

T
(i,:)))


+

, (23)

Hjp←

Hjp +

AT(:,p)(W(:,j)� (6(:,p)�6(:,p)))

−HT
(:,p)W

T (W(:,j)� (6(:,p)�6(:,p)))

WT
(:,j)(W(:,j)� (6(:,p)�6(:,p)))


+

, (24)
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Figure 1. (a–f) Mass spectra profiles of the six PMF2 factors labeled by order; (g) total mass spectra concentration of the data.

where the operator [·]+ projects all negative update values to
0. In practice, the authors in Erichson et al. (2018) utilize the
following simplified form of Eqs. (23) and (24):

Wij ←

[
Wij −

∇Wij
Qi
j

∇
2
Wij
Qi
j

]
+

, (25)

Hjp←

[
Hjp −

∇Hjp
Q
p
j

∇
2
Hjp
Q
p
j

]
+

. (26)

Thus, one can add additional auxiliary functions to the cost
function Q, such as regularization and rotation terms, and
add them to the update rules based on the new gradient and
Hessian values. Furthermore, writing the update rules as in
Eqs. (25) and (26) includes the calculation of the projected
gradient. This can be used as a stopping condition criterion
that avoids the computational costs of calculating other con-
vergence statistics (Erichson et al., 2018).

We note that when the uncertainties are equal to 1, 6
can be disregarded in Eqs. (23) and (24), and the update
rules are identical to those in Erichson et al. (2018). In
Eqs. (23) and (24), the Hessians H(HT

(j,:)� (6
T
(i,:)�6

T
(i,:)))

and WT (W(:,j)� (6(:,p)�6(:,p))) should be found prior to
multiplication by W(i,:) and HT

(:,p), respectively, to minimize

computational costs. We do not preallocate the products WH
and HTWT , which is also not done in Erichson et al. (2018).

2.2 Rotational considerations

Rotating solutions to induce slight variations in the output
of a PMF algorithm may be necessary, especially in cases
where the interpretation of the solutions yields some unreal-
istic results (e.g., a factor is zero during a period in which
it is expected to be present, or two factors appear mixed in
their time series and/or spectra). As mentioned in Sect. 1.4,
we do not attempt to constrain these “rotations” to be norm
preserving. However, it is possible to find approximate rota-
tions. As detailed in Paatero and Hopke (2009), for a specific
factor value Wij or Hjp, an auxiliary term can be added to
the cost function to pull the component towards a set value
W∗ij or H∗ij . Defining

Q
ij
auxW = s(Wij −W∗ij )

2 or Qpj
auxH = s(Hjp −H∗jp)

2, (27)

with s determining the strength of the pull, we
find ∇Wij

Q
ij
auxW = 2s(Wij −W∗ij ), ∇

2
Wij
Q
ij
auxW = 2s,

∇Hj,p
Q
pj
auxH = 2s(Hjp −H∗jp), and ∇

2
Hjp
Q
jp
auxH = 2s.

Adding these terms to the gradient and Hessian in Eqs. (25)
and (26), we can derive new update rules for Wij and Hjp.
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Figure 2. Time series profiles of the six PMF2 factors, overlaid with the total time series concentration of the data. A rolling average is used,
with values representing average concentrations over the previous 2 h. The individual time series are stacked on top of each other in order to
compare the total PMF2 time series to the overall time series of the data.

To probe possible rotations of entire factors, we introduce
“pulling equations” to the cost function, which pull the ele-
ments of W and H to the desired rotations:

Q
(j)
auxH = a

(
n∑
i=1
(1−Hji)

)2

, (28)

Q
(j)
auxW = b

(
m∑
i=1

Wij

)2

. (29)

These equations correspond to r < 0, with both a and b pos-
itive. For r > 0, W and H would be interchanged. These
pulling equations are similar to those introduced in Paatero
et al. (2002), although their meanings are slightly changed.

Taking derivatives of Eqs. (28) and (29),

∇Hjp
Q
jp
auxH =−a(1−Hjp), (30)

∇
2
Hjp

Q
jp
auxH = a, (31)

∇Wij
Q
ji
auxW = bWij , (32)

∇
2
Wij
Q
ji
auxW = b, (33)

we add these terms to the gradient and Hessian in Eqs. (25)
and (26) to receive new update rules. Optimally, we would

expect these equations to pull the values of H towards more
positive values and the values of W towards zero, which mir-
rors the effect of setting r to be less than zero in Eq. (6). The
end result may be different solutions that are more realistic
and interpretable.

2.3 External weighting

To perform external weighting, we first find Â= A�6 (i.e.,
we divide the data elementwise by the uncertainties). Note
that the uncertainty matrix 6 must only contain nonzero real
entries, and therefore the algorithm cannot handle problems
with binary weights (such as PMF problems with missing
entries). One approach to PMF with binary weights is the ex-
pectation maximization (EM) approach detailed in the sec-
tion titled “Expectation maximization” (Yahaya et al., 2021;
Zhang et al., 2006).

After elementwise division, RHALS is applied to Â to
form the estimated scaled factor matrices Ŵ and Ĥ. The un-
scaled estimates W and H are found by the relation

WH= (ŴĤ)�6. (34)
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W and H can then be found iteratively via alternating least
squares:

W= ((ŴĤ)�6)HT (HHT )−1 or W= ((ŴĤ)�6)H†, (35)
H= (WT W)−1WT ((ŴĤ)�6) or H=W†((ŴĤ)�6). (36)

Here, W† and H† denote the pseudo-inverses of W and H,
and all negative elements are set to zero after the factor ma-
trix is updated. Mathematically, the two methods for calcu-
lating W and H detailed in Eqs. (35) and (36), respectively,
are identical, as long as the ranks of the factor matrices are
equal to k. Evidence of this is briefly detailed in Appendix B.
Of course, if the factor matrices were of a lower rank (or con-
tained very small singular values), then a lower-rank factor-
ization should first be found instead. Since both algorithms
are identical mathematically, one could be favorable if it pro-
vided a speed advantage, depending on the computational ef-
ficiency of the pseudo-inverse algorithm called. Both update
rules are O(mnk) (Feng et al., 2018), and running this code
in MATLAB on a single CPU, we found the update rules us-
ing the pseudo-inverses were faster.

To begin the iteration, we have to initialize either W or
H. The most intuitive way to do this is by assuming the un-
weighted factors are similar to the weighted factors and set-
ting H (or W) to the weighted values but scaled to the magni-
tude of the original data. Since each entry of the data matrix
is approximated as Aij =

∑k
l=1WilHlj , and assuming rela-

tively equal magnitudes for W and H, the appropriate scale

factor should be
√

A
k

, where A denotes the element mean of
A. When W and H contain values with greatly differing mag-
nitudes, perhaps a different scaling factor should be used, al-
though this has not been extensively tested. Thus, the algo-
rithm should be initialized by

H0 =

√ A

kH2

Ĥ. (37)

In Eq. (37), H denotes the element mean of Ĥ. Measur-
ing the change in W and H between iterations, the algorithm
typically converges relatively quickly – within 20 to 40 it-
erations. In practice, one can use L2 regularization in the
external weighting steps, equal to 0.01 for our data, as the
least squares method may become increasingly ill-posed as
the number of factors increases. This value may need to be al-
tered based on the magnitude of the values in the data and the
number of factors. However, we found that adding L2 regu-
larization lowered the similarity of the factors to the given
factors from the solution using PMF2.

We used this method for all externally weighted algo-
rithms tested in Sect. 4. Theoretically, any PMF algorithm
could be used for the post-processing step. This may become
relevant, since as noted in Sect. 1.2.3, the nonnegative ALS
method described above may have convergence issues for
certain factorization problems (Gillis, 2020).

2.4 Regularization

As in the RHALS algorithm presented in Erichson et al.
(2018), we add L1 and L2 regularization. L1 regularization is
added to the cost function through the L1 norm, || · ||1, which
is the maximum sum of the absolute value of the components
in a given column in the factor matrices. L2 regularization is
added through the L2 (or Euclidean) norm, ||·||22. L1 regular-
ization is typically added to reduce sparsity, while L2 regu-
larization is added to control the Euclidean norms of the fac-
tors and avoid overfitting ill-posed problems (Erichson et al.,
2018). The cost function now becomes

||(Rj −W(:,j)H(j,:))�6||
2
F +α||W(:,j)||1

+β||H(j,:)||1+ γ ||W(:,j)||
2
2+ δ||H(j,:)||

2
2. (38)

In Eq. (38), α,β,γ , and δ control the amount of regular-
ization that is added. Typically α and β, as well as γ and
δ, are set equal. ∇Wij

Qi
j = β + 2γWij , ∇2

Wij
Qi
j = 2γ , and

∇Hjp
Q
p
j = α+2δHjp,∇2

Hjp
Q
p
j = 2δ. These terms are added

to the update rules in Eqs. (25) and (26). Optimal parameter
values for α,β,γ , and δ in Eq. (38) are often found using an
L-curve analysis, which measures the tradeoff between min-
imizing a norm and minimizing the residual error (Hansen
and O’Leary, 1993).

In the SOAS dataset, the average data value is 1.9969×
10−5 for the mass-to-charge ratio. When external weighting
is applied, the average value of A�6 is 1.4851. The L curves
below are thus plotted using two different scales: one with a
scale of 10−5 and one with a scale of 1. The deterministic,
unweighted algorithm is first applied to a small dataset con-
sisting of the first 100 rows and columns of the SOAS dataset,
scaled to contain different average values, to produce the L
curves shown in Fig. 3. Values of the regularization param-
eters are listed in the graphs, with “e” representing the ex-
ponential function with base 10, and the number to the right
is the exponent (e.g., e03= 103). The optimal regularization
value is one that is located in the bend of the graph, mean-
ing it minimizes a solution’s norm while having low residual
error. In our results, we put emphasis on minimizing the lat-
ter, so we choose regularization values towards the left side
of the bend. Analyzing the figures, the L1 regularization pa-
rameters α and β are chosen between 1×10−6 and 1×10−5

for the scale of 10−5 and between 0.1 and 1 for the scale of 1.
The L2 regularization parameters γ and δ are chosen around
0.001 for the scale of 10−5 and 100 for the scale of 1. We
note that choosing much smaller regularization values does
not drastically increase the norms of the solution, suggesting
that regularization is not especially necessary for this prob-
lem. However, for more ill-posed problems, the L1 and L2
norms may become extremely large as the amount of regu-
larization tends to zero (Hansen and O’Leary, 1993).

As a rule of thumb, the L1 regularization parameters
should be chosen to be of the same order of magnitude as the
data, and the L2 regularization parameters should be chosen
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Figure 3. L curves for L1 and L2 regularization, applied to data with different average values. (a) L1 regularization for data with a magnitude
of around 10−5, (b) L1 regularization for data with a magnitude of around 1, (c) L2 regularization for data with a magnitude of around 10−5,
and (d) L2 regularization for data with a magnitude of around 1.

to be around 100 times that. Note that neither the data matrix
size nor the number of factors affect these optimal regulariza-
tion parameter values. External and internal weighting will
also not affect these values, as the magnitudes of the gradient
and the Hessian will be around the same value.

An increasingly popular alternative to traditional regular-
ization is nuclear norm regularization, which can be applied
to matrix factorization without the need for rank constraints
(Hu et al., 2013; Sun and Mazumder, 2013; Fornasier et al.,
2011). The nuclear norm is defined as

||A||∗ =
n∑
i=1

σi(A), (39)

where σi(A) is the ith singular value of A. It is the convex
envelope to the rank function, and thus finding a PMF solu-
tion that minimizes the nuclear norm also has a minimal rank
(Hu et al., 2013). Two possible ways to apply nuclear norm
regularization to weighted PMF are by the alternating direc-
tion method of multipliers (ADMM), as demonstrated in Sun
and Mazumder (2013), and by reconstruction of the nuclear
norm into a Frobenius norm, which can then be treated as L2
regularization (Fornasier et al., 2011). However, both these
approaches involve key computations with the large, low-

rank product WH and may be computationally expensive to
implement. Furthermore, both algorithms still involve some
arbitrary choice of rank by requiring a present amount of nu-
clear norm regularization. In traditional PMF, factor profiles
are optimized from a predetermined number of factors. Our
implementation and methodology are consistent with this ap-
proach.

3 Computational details

The computer used for these calculations has an 11th Gen
Intel® Core™ i7-1165G7 dual-quad-core CPU with a speed
of 2.80 GHz. MATLAB™ R2021a is used for all calcula-
tions. While no algorithms detailed in this paper explicitly
utilize multicore processing, they may rely on built-in MAT-
LAB functions (such as svd()) that utilize multicore process-
ing for increased efficiency.

4 Results

We measure the accuracy of RHALS using the weighted
residual error of the final algorithm, again defined as
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i=1
∑n
j=1

(
Aij−

∑k
l=1WilHlj

σij

)2

; the correlation coeffi-

cients between the time series factors produced by RHALS
and those of the reference solution; and the cosine similarity
between the mass spectra profiles produced by RHALS and
the reference solution.

In the MU algorithm, the elements of W and H are initial-
ized by taking the absolute value of random numbers drawn
from a standard normal distribution. These values are then
scaled by a factor of A2

. The ALS and HALS algorithms are
initialized by the nonnegative double SVD (NNDSVD) ap-
proach detailed in Boutsidis and Gallopoulos (2008). Note
that the latter approach will still vary between random seeds
as the NNDSVD is also found from utilizing the randomiza-
tion technique in Sect. 1.3.

All algorithms cease updates when a stopping criterion is
met or the maximum number of iterations is reached. For the
MU and ALS algorithms, the value of the cost function is cal-
culated after each iteration, and the algorithm halts when the
percent change in this value, divided by the initial cost func-
tion value, is less than a set tolerance. The HALS algorithm
differs by using the percent change in the projected gradient
in its stopping criterion (detailed in Lin, 2007). The projected
gradient is defined as (Erichson et al., 2018)

∇
P
Wij

{
∇Wij

if Wij > 0

min(0,∇Wij
) if Wij = 0

(40)

and similarly for ∇PHjp
. When the percentage change in∑m

i=1
∑k
j=1(∇

P
Wij
)2+

∑k
i=1
∑n
j=1(∇

P
Hij
)2 (divided by its ini-

tial value) is less than a specified tolerance, the algorithm
halts. Below, the maximum number of iterations allowed is
set to be 100 (which is rarely reached by any algorithm), and
the tolerance is set to be 1×10−4 for the HALS and ALS al-
gorithms. A tolerance of 10−5 is used for the MU algorithm
to account for a larger initial cost from the random initializa-
tion.

When comparing factors from different algorithms, it is
important to note that the ratio of values between a time se-
ries factor and a mass spectra factor might be slightly dif-
ferent. Consider two algorithms that compute the identical
factorizations

W1H1 =

k∑
l=1

W(1)
(:,l)H

(1)
(l,:) and

W2H2 =

k∑
l=1

W(2)
(:,l)H

(2)
(l,:) =

k∑
l=1

(
clW(1)

(:,l)

)( 1
cl

H(1)
(l,:)

)
,

with cl being an arbitrary positive constant. It can be seen
above that W(2)

(:,l) is identical to W(1)
(:,l), scaled in magnitude

by cl . It would appear that one factorization yields a stronger
signal for factor l, despite the fact that the factorizations
are identical. Thus, when comparing individual factors be-

tween algorithms, the time series concentrations are cumula-
tive over the entire mass spectra, and the mass spectra con-
centrations are cumulative over the entire time series (as also
presented with the PMF2 results). Specifically, we plot the
time series of factor l as the sum over the columns of the
outer product W(:,lH(l,:), and we plot the mass spectra of fac-
tor l as the sum over the rows. To avoid this issue, one can add
scaling coefficients to rescale the factors at each iteration so
that they will approximately have the same magnitude (Lu
and Wu, 2004). This has not yet been implemented in our
code.

4.1 Computational efficiency

Table 1 shows the number of operations required at each
step (update of W and H). Preprocessing steps, such as find-
ing A�6 and 6�6, are excluded from the table. Exter-
nal weighting eliminates almost all elementwise operations
needed, which is a slow memory-bound operation (Jia et al.,
2020). However, systems with an abundance of free memory
and/or GPUs may find that internal weighting methods are
sufficiently quick for small- or medium-sized problems. Fur-
thermore, the performance of matrix operations within these
algorithms may vary between programming languages and
libraries, such as between the NumPy, NumExpr, and Theano
libraries in Python (Bergstra et al., 2010).

Analyzing Table 1 allows us to see why, in practice, it
takes longer for internally weighted ALS and HALS to con-
verge than internally weighted MU, as the former will have
more matrix multiplication operations and elementwise op-
erations for our target rank, k = 6. However, when the al-
gorithms are internally weighted, ALS and HALS become
much more computationally efficient, allowing runtime to di-
minish as well.

To show numerically how the cost of RHALS scales with
the size of the system, we consider the size of the data ma-
trix vs. the runtime of the RHALS algorithm, as well as the
deterministic internally weighted HALS and MU algorithms.
Figure 4 shows how the computational costs of the different
algorithms vary with the number of rows (and columns) in
a square data matrix. The number of factors is set to five,
and the data are formed by multiplying two rank-five matri-
ces filled with sampled values from the PMF2 solution of the
SOAS dataset. Uncertainty values are also randomly sampled
from the given uncertainty data, and noise is added to the data
matrix through random normal values centered around 0 with
standard deviations equal to the uncertainties. L1 regulariza-
tion is set to 1 for all factors, and L2 regularization is set to
50.

As seen in Fig. 4, the logarithms of size and runtime are
approximately linear for all three algorithms. RHALS clearly
outperforms MU and HALS in terms of efficiency, requiring
roughly 5 % and 1 % of the runtime of the MU and determin-
istic HALS algorithms, respectively. It should also be noted
that the randomization step, which accounts for about 5 % of
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Table 1. Comparison of the number of operations per step for each algorithm used. We also track the number of elementwise multiplications
and divisions (implemented in MATLAB as .* and ./) in the third column.

Comparison of cost of different algorithms

Algorithm Number of operations using Number of elementwise
matrix multiplication multiplications and divisions

ALS (IW) O(mnk2) 2mnk
ALS (EW) O(mnk) 0
MU (IW) O(mnk) 4mn+ 4(m+ n)k
MU (EW) O(mnk) 4(m+ n)k
MU (randomized) O((k+ l)nk) 4((k+ l)+ n)k
HALS (IW) O(mnk2) 2mnk
HALS (EW) O(mnk) 0
RHALS O((k+ l)nk) 0
Post-processing O(mnk) 0

Figure 4. Size of data matrix vs. runtime (in seconds) in RHALS
algorithm, performed with three different random seeds (containing
the absolute value of random normal variables). The x axis shows
the base 10 log of n, and the y axis plots the base 10 log of runtime.
The median runtime is plotted, with the error bars plotting the max-
imum and minimum runtimes. Note that runtime initially decreases
due to a coincidental reduction in the number of steps to conver-
gence, but problems of environmental interest are generally located
on the right of the graph or beyond its right edge.

the algorithm computational costs, can be parallelized using
GPUs (Erichson et al., 2018). The post-algorithm external
weighting step can also be parallelized as it only involves
matrix multiplication and an SVD (Lahabar and Narayanan,
2009). This post-weighting step accounts for around 60 % of
the algorithm’s computational costs.

4.2 Simple case

We now present the RHALS algorithm for a small test case.
To do this, we form a data matrix by combining underlying
“true” factors and random noise. We form a 5952 by 400
matrix using the first three factors from the PMF2 solution
to the SOAS dataset. We choose the time stamps between
9385 and 15 336 from the PMF2 time series factor matrix
WPMF2 as the PMF2 factors are clearly distinguishable from
each other in this time interval. We choose the first 400 mass
spectra profiles from the mass spectra factor matrix HPMF2
as the bulk of the mass spectra concentrations lies within this
range.

A data matrix is then formed by combining the factors and
adding random normal noise with a standard deviation equal
to that of the uncertainty of the data:

Atest
ij =max(0,Wtest

(i,:)H
test
(:,j)+N(0,6ij )). (41)

Next, we run RHALS over 20 trials, each with a different
initialization, in order to obtain many different solutions that
exist in the solution space. Here, initializations are formed
using the randomized SVD method described earlier, which
generated sufficiently different solutions. Figure 5 shows the
weighted residual error of the RHALS algorithm over 20 tri-
als.

The average weighted error over 20 trials is 1.4749× 103,
and the algorithm took an average time of 0.0561 s to con-
verge with an average of 48.15 block coordinate descent
steps per trial. As one can see, solutions can vary over dif-
ferent trials, and a smaller weighted error could be used as
justification of one solution over another.

Next, we compare the similarities of the converged factors
and the original factors that formed the test case. The aver-
ages of the similarities between the three factors are shown in
Fig. 6. A cosine similarity is used for the mass spectra, while
the correlation coefficient is used for the time series.

As one can see, the RHALS algorithm recreates the mass
spectra and time series factors almost perfectly for all trials
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Figure 5. RHALS error over 20 trials. Mean: 1476.60, standard de-
viation: 20.47.

tested, regardless of the weighted residual error. In practice,
a cosine similarity over 0.95 or a correlation coefficient over
0.90 between factor profiles represents almost identically in-
terpretable solutions. Any trial is viable to be chosen as a
“good” solution. Each solution yields a mass spectra similar-
ity over 0.994 and a time series correlation over 0.974. There
is low variance in the similarity metrics among trials, and a
higher weighted error corresponds with less important parts
of the factor.

4.3 Large dataset

4.3.1 Comparing different algorithms

Next, we analyze the complete dataset and compare the
RHALS factors to all PMF2 factors. Table 2 shows a table
of diagnostics for the HALS, RHALS, ALS, and MU algo-
rithms applied to the complete SOAS dataset, averaged over
three trials. As one can see, algorithms with external weight-
ing demonstrate a dramatic reduction in computational costs,
albeit at the cost of a larger error. The ALS algorithms were
by far the slowest, and the internally weighted HALS algo-
rithm yielded the lowest average weighted error. The inter-
nally weighted MU algorithm produced comparable results
to the internally weighted HALS algorithm less than two-
thirds of the time; however, both the internally and the ex-
ternally weighted cases took the most steps to converge. The
two fastest algorithms were the externally weighted HALS
and RHALS algorithms, taking 1.01 and 0.50 s, respectively.

PMF factor profiles are often visually analyzed and com-
pared to known candidate profiles for identification. Thus,
the question arises as to whether or not an algorithm uti-
lizing external weighting still contains interpretable factors
in light of the decreased accuracy. Figure 7 shows the cu-
mulative time series from one solution of the externally and

Table 2. Average statistics of different algorithms over five different
SVD initializations, with a tolerance of 10−4 (for MU, tolerance is
10−5 and a random initialization), L1 regularization of 1, and L2
regularization of 50.

Comparison of algorithms

Algorithm Total time (s) Steps Weighted error

ALS (IW) 317.08 42.2 6.48×103

ALS (EW) 12.21 29.0 7.35×103

MU (IW) 19.31 76.4 6.52×103

MU (EW) 4.06 51.2 7.11×103

MU (randomized) 4.02 53.6 7.76×103

HALS (IW) 33.87 19.4 6.45×103

HALS (EW) 1.01 31.2 7.08×103

RHALS (EW) 0.50 36.6 7.15×103

internally weighted HALS algorithm, with the factors pro-
duced by the externally weighted algorithm and the internally
weighted algorithm overlaid. Figure 8 shows the cumulative
mass spectra of this solution, with the factors from the exter-
nally weighted algorithm and the internally weighted algo-
rithm laid out side by side. Similar graphs for the ALS and
MU algorithms are shown in Figs. A4 and A5 respectively in
Appendix A.

Upon visual inspection, the time series produced by the
externally weighted factors have peaks and troughs at al-
most identical times, but the magnitudes of these peaks and
troughs can vary throughout the factors. Interestingly, there
exists a consistent difference in the magnitude of the time
series between internal and external weighting. Specifically,
the external weighting algorithms seem to consistently over-
predict the concentrations of the time series of the second
factor compared to the internally weighted algorithms. The
difference is small compared to the concentrations of the fac-
tors, but this may lead to an over-interpretation of the impor-
tance of the second factor with an externally weighted algo-
rithm. It should be noted that there exists a (similarly) large
variation in relative factor signals between trials of internally
weighted algorithms, although caution should be taken with
regard to the possibility that external weighting introduces
extra error in this analysis. More research is needed to under-
stand the overestimation or underestimation of factor magni-
tudes in external weighting.

Comparing the mass spectra yields a similar analysis.
Most factors of externally weighted algorithms share the
same spikes of key ions as in the internally weighted ions,
although sometimes at different magnitudes. Occasionally,
some externally weighted mass spectra factors will look quite
dissimilar to the corresponding internally weighted factor or
contain noticeable spikes and divots in key ions, as seen in
the second factor for the MU and HALS algorithm. It should
also be noted that the solutions of the externally weighted
algorithms could be rotated away from each other. These dif-
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Figure 6. (a) Average time series similarity and (b) average mass spectra similarity to formed factors in the small test case.

Figure 7. Comparison of 2 h rolling average of time series for externally weighted and internally weighted HALS factors. Externally weighted
error: 7.1321× 103. Internally weighted error: 6.4841× 103.
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Figure 8. Comparison of mass spectra for internally weighted (on the left) and externally weighted (on the right) HALS factors.

ferences may be extreme enough to encourage users to utilize
multiple trials to search for multiple solutions.

4.3.2 Comparison between expectation maximization
and external weighting

To test the EM approach to uncertainty weighting, as men-
tioned in the section titled “Expectation maximization”, the
weights σij in the uncertainty matrix 6 are scaled so that

maxij
(

1
σij

)
= 1. Since the bulk computational component of

the algorithm constructs the matrix A1 in Eq. (9), the authors
in Yahaya et al. (2019) and Yahaya et al. (2021) recommend
updating A1 only after convergence or a maximum number
of iterations of 20 or 50. They also note that applying the ex-
pectation step too early in the algorithm led to poorer perfor-
mance due to the number of errors in the estimates of W and
H. In order to apply the projected gradient stopping criterion
discussed in Sect. 4, we chose to reconstruct A1 at fixed iter-
ations – after 10 and 20 PMF steps for different experiments.
The first construction of A1 is evaluated at the 1st, 5th, and
10th step. We used the NNDSVD initialization in Boutsidis
and Gallopoulos (2008) and also varied the tolerance of the
stopping condition between 10−4 and 10−6. We summarize
these results by presenting the range of average values across
the different variations.

We present a comparison of external weighting and the
EM algorithm in Table 3, using the ranges of values from the

different experiments listed above. Each value is an average
over 20 trials. We compare the convergence times of the al-
gorithms, the number of steps, the weighted errors, and the
similarity to the PMF2 solution for both W (correlation) and
H (cosine similarity).

As demonstrated in Table 3, some variations of the EM al-
gorithm were able to outperform externally weighted HALS
and RHALS in total time, as well as in weighted error. For in-
stance, running the expectation maximization algorithm with
the first calculation of A1 taking place at the 10th step and re-
calculating A1 after 20 additional steps until the convergence
criterion with a tolerance of 10−5 was reached yielded an
average weighted error of 6.92× 103 in 0.6703 s. This com-
putational speed compares to RHALS, while the accuracy
bests both RHALS and externally weighted HALS. How-
ever, no expectation maximization algorithm was as success-
ful at recreating the PMF2 time series factors, as seen in
column five of Table 3. Externally weighted RHALS and
HALS also provided mass spectra factors with a higher sim-
ilarity to the PMF2 factors, with the exception of two runs
of the expectation maximization algorithm, one recalculat-
ing A1 after 20 steps, with the first calculation at the fifth
step, and the other after 10 steps, with the first calculation
at the first step. These yielded average similarities of 0.8856
and 0.8861, respectively, although they both took over 2.90 s
to run, much slower than any other algorithm tested besides
internally weighted HALS.
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Table 3. Average statistics of external weighting (EW) versus expectation maximization (EM) algorithms over 20 trials. Internally weighted
(IW) HALS is provided as a reference. Ranges of the values of the algorithms run using different variations of expectation maximization
(EM) steps are presented. The correlation of the columns of W and similarity of the rows of H to the PMF2 solution are also listed.

Comparison of algorithms

Algorithm Total time (s) Steps Weighted error Correlation of W Similarity of H

HALS (IW) 40.70 19.65 6.46×103 0.8756 0.9134
HALS (EW) 1.07 31.80 7.09×103 0.8414 0.8828
RHALS (EW) 0.56 38.35 7.27×103 0.8475 0.9034
HALS (EM) 0.51–2.93 13.50–83.90 (6.71–7.22)×103 0.7759–0.8306 0.8434–0.8861
RHALS (EM) 0.33–1.19 20.30–61.05 (7.11–7.54)×103 0.7930–0.8221 0.8301–0.8694

We also tested how well each algorithm produced factors
that were within a rotation of the PMF2 factors. As detailed
in Sect. 1.4, the factor profiles of ŴĤ=WT−1TH for a
square matrix T may be closer to the desired solution than
the original factors W and H. To see the extent that W can be
rotated towards WPMF2, we find the matrix T that minimizes
the total squared differences between HPMF2 and TH and
then find the average correlation between the rows of WPMF2
and WT−1. A symmetrical approach can be made to find the
cosine similarity for H. For internally weighted HALS, exter-
nally weighted HALS, and RHALS, we found average post-
rotation time series correlations to be 0.9391, 0.9021, and
0.8902, respectively, and post-rotation mass spectra similari-
ties to be 0.9602, 0.9433, and 0.9518, respectively. When this
approach was tested on HALS and RHALS using the EM al-
gorithm, average post-rotation time series correlations varied
within 0.8528–0.8819 and 0.8314–0.8544, respectively, and
post-rotation mass spectra similarities within 0.9230–0.9363
and 0.9147–0.9287, respectively.

Ultimately, we found that external weighting recreated the
PMF2 factors more consistently than EM, both before and
after rotation. This may be due to the fact that the scaling of
the weights used for the EM step is not perfectly analogous
to creating a set of weights that represent the confidence of
each data point. Thus, the EM method using this scaling may
not capture the key error-weighted patterns in the data as well
as external weighting.

4.3.3 Complete analysis of RHALS algorithm

Figure 9 shows the weighted residual error for a six-factor
solution (equivalent to the number of factors in PMF2) over
20 different nonnegative SVD initializations. The average
weighted residual error is 7.2743× 103, with a convergence
time of 0.5163 s over 38.45 steps per trial. If the solutions
differ significantly, weighted residual error is a useful met-
ric for choosing a solution from the 20 trials. The 11th and
13th trials appear promising, with the lowest weighted resid-
ual errors of 7.1474×103 and 7.1026×103, respectively. The
average similarities between RHALS factors and PMF2 fac-

Figure 9. RHALS error over 20 trials. Mean error: 7.2743× 103,
standard deviation of error: 120.8. Mean time: 0.5163, standard de-
viation of time: 0.0292. Mean steps: 38.45, standard deviation of
steps: 6.88.

tors are presented in Fig. 10, with the same similarity metrics
as listed above.

We see that different initializations can lead to different
solutions, in terms of both similarity to the given PMF2 so-
lution and weighted error, suggesting that convergence to a
global minimum is not always achieved. This further empha-
sizes the importance of using multiple initializations in order
to find an optimal solution.

Only the 2nd, 11th, 13th, and 17th trials have an aver-
age cosine similarity between mass spectra factors over 0.95,
along with a correlation over 0.90 between time series fac-
tors. The 13th trial holds the highest similarity scores, with
a time series correlation of 0.9468 and a cosine similarity
of 0.9787. As seen in Fig. 9, these solutions have a small
weighted residual error, further justifying picking a solution
with low weighted error.

As we saw with the small test case, every RHALS solu-
tion contained factors similar to the true factors. However,
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Figure 10. (a) Average time series and (b) average mass spectra similarities between RHALS and PMF2.

Figure 11. (a) Average time series correlation, (b) average mass spectra similarity, and (c) average of time series and mass spectra similarities
between the solutions of the different trials for RHALS.
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Figure 12. RHALS mass spectra series factors. (a) First factor similarity with PMF2= 0.9631, (b) second factor similarity with PMF2=
0.9582, (c) third factor similarity with PMF2= 0.9912, (d) fourth factor similarity with PMF2= 0.9970, (e) fifth factor similarity with
PMF2= 0.9795, and (f) sixth factor similarity with PMF2= 0.9835.

only 4 out of 20 trials produced solutions surpassing 0.95
in mass spectra similarity and 0.90 in time series correlation
for the entire dataset. Running 100 trials, it was found that
RHALS found a solution matching these criteria 27 % of the
time. Thus the probability of not finding a good solution in
10 trials would be around (1–0.27)10

≈ 4.3 % and ≈ 0.2 %
in 20 trials. This rate could vary depending on the number of
factors and the rotational ambiguity of the problem, as in the
“bad” trials RHALS may simply find a rotated version of the
“true” solution.

In the potential case that interest lies in factors that occur
most frequently, an alternative approach to picking a solution
given multiple trials would be to focus on solutions in which
factors are found repeatedly. In Fig. 11, we compare the av-
erage similarities of a given trial to the other 19 trials. Again,
cosine similarity is used for the mass spectra, and the corre-
lation coefficient is used for the time series. The bottom plot
shows the two graphs averaged to give a total metric of the
similarity of a solution to the other solutions.

Analyzing these figures, it appears that most solutions
have about the same similarity to each other, with a time
series correlation of around 0.87 and a mass spectra simi-
larity of around 0.93. A few solutions, such as those in the
trials between 6 and 9, can be ruled out as outliers due to

a low similarity to the other solutions. While the 12th trial
yields the highest similarity between it and the other solu-
tions (0.9148 averaged between the time series correlation
and the mass spectra similarity), no solution drastically out-
performs any of the other solutions. Note that the solutions
from the 2nd, 11th, 13th, and 17th trials all perform well
in this analysis, with average similarities of 0.9028, 0.8993,
0.9016, and 0.9036, respectively.

From visual inspection of Figs. 9 and 11, the solution from
the 13th trial is barely outperformed in the above analysis,
while holding a clear lead in accuracy. Thus, it seems to be
a rational choice to decide that this solution is the “best”.
The solution from the 13th trial is plotted in Figs. 12 and 13.
Figure 12 shows the cumulative mass spectra profiles from
the RHALS solution, while Fig. 13 shows the cumulative
time series profiles from the RHALS solution compared with
those from the PMF2 solution. Again, the profiles are plotted
as a sum over the entire time series and mass spectra, respec-
tively.

The similarities of the RHALS factors to the “true” PMF2
factors are very promising; however, the magnitudes of some
factors differ. Specifically, RHALS underestimates the sig-
nificance of the first factor, while overestimating the signif-
icance of the second and fifth factors. Again, this additional
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Figure 13. The 2 h rolling average of RHALS time series factors overlaid with PMF2 factors.

error should be considered when interpreting RHALS fac-
tors.

Another potential concern from the RHALS algorithm is
that the factors have a general bias towards higher or lower
magnitudes. Specifically, since RHALS enforces nonnegativ-
ity merely by setting negative elements to zero, in addition to
regularization, it could be hypothesized that RHALS would
produce factors of lower magnitude than the actual data. In
Fig. A1 in Appendix A, the time series of the six RHALS
factors, stacked on top of each other, are plotted against the
total time series of the data matrix. We sometimes see larger
magnitudes from the RHALS algorithm, along with seeing
smaller magnitudes other times, but there seems to be no
general pattern of bias towards solutions of greater or lesser
magnitude generated by RHALS.

Finally, we determine if a solution with a different num-
ber of factors is more optimal with the RHALS algorithm for
this dataset. Figure A6 shows the convergence of weighted
residual error of RHALS as the number of factors increases,
with the random initialization from the 13th trial. Error dra-
matically decreases as the factors increase from one to six,
while barely improving for solutions with a larger number
of factors. Therefore, a six-factor solution is justified by the
RHALS algorithm.

4.4 Testing rotations

For rotations of entire factors, we first tested the rotational
algorithm detailed in Paatero and Hopke (2009) to determine
whether or not it was applicable to RHALS. Unfortunately
the pulling equations used in the multilinear engine (ME) do
not seem to work for RHALS as well.

Implementing the approach laid out in Sect. 2.2 to some
of the solutions, we find that this method can potentially find
better factorizations in the solution space. Ranging the values
of a and b in Eqs. (28) and (29) between 0 and 500 (which
is of a similar magnitude of the optimal amount of L2 regu-
larization), we test the rotational method on the RHALS so-
lutions from the 11th, 13th, and 17th trials. The graphs are
plotted, in which a positive pulling value corresponds to a
“pull-up” of W and a “pull-down” of H and vice versa for
negative pulling values. The values of a and b are the mag-
nitude of the pulling parameter. We present the rotation of
the 13th solution in Figs. 14 and 15, with the rotations of the
11th solution in Figs. A7 and A8 and rotations of the 17th
solution in Figs. A9 and A10 in Appendix A.

As can be seen by analyzing the rotation of the solu-
tion from the three different trials, solutions that have lower
weighted residual error and are closer to the target solution
can be found through this simple pulling method, regardless
of the direction of the pull. Interestingly, weighted residual
error was able to be decreased to under 7000 when rotat-
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Figure 14. Weighted residual error of rotated solutions from the
13th trial of RHALS.

Figure 15. (a) W, (b) H, and (c) total average similarities of the ro-
tated solutions to the PMF2 solution from the 13th trial of RHALS.
The total similarity refers to an average of the similarity metrics for
the time series and mass spectra factors.

ing the solution from the 13th trial towards larger values of
W with a pulling parameter of 400. Note that the matrix
norms do not always increase with larger positive values of
the pulling parameter (and vice versa). This is most clearly
seen in Fig. A11 in Appendix A with the rotated factors from
the 11th trial. As the factors are pulled in one direction, the
matrix norms may respond in the opposite direction.

The magnitude of change in the similarity to the PMF2
factors is small for all solutions, and rotations may only be
worthwhile to look at when no good solution exists from the
onset. The benefit of the rotations is more apparent when ro-
tating poor solutions.

5 Conclusions

As the size of datasets has grown, computational costs have
become increasingly expensive for traditional PMF algo-
rithms. Thus, randomized and hierarchical algorithms are at-
tractive alternative methods. Specifically, the RHALS algo-
rithm was shown to provide a reduction in runtime compared
to the multiplicative update algorithm, as well as the deter-
ministic HALS algorithm. Furthermore, we proposed a novel
approach to handling uncertainties in a weighted factoriza-
tion problem. While this approach, coupled with randomiza-
tion, slightly reduced the accuracy of the algorithm, it dra-
matically decreased the computational cost. Ultimately, we
showed that our weighted RHALS algorithm was able to al-
most completely recreate the factors in both a formed test
matrix and a real dataset and is a useful tool for finding non-
negative factors of large datasets, particularly in the context
of real-time atmospheric mass spectrometry.

Appendix A: ALS derivation

The cost function Q is defined as

Q= ||(A−WH)�6||2F +
m∑
i=1

α||W(i,:)||1

+

n∑
j=1

β||H(:,j)||1+ γ ||W||2F + δ||H||
2
F , (A1)

where α,β,γ , and δ are regularization parameters. As with
the derivation of HALS, the elementwise division of 6 is
eliminated by considering a row or column of the residual at
a time. Thus we find

0←
∂Qi

∂W(i,:)

=
∂

∂W(i,:)

(
||(A(i,:)−W(i,:)H)6−1

i ||
2
F

+α||W(i,:)||1+

n∑
j=1

β||H(:,j)||1

+ γ ||W(i,:)||
2
2+ δ||H||

2
F

)
, (A2)

0←
∂Qj

∂H(:,j)

=
∂

∂H(:,j)

(
||6−1

j (A(:,j)−WH(:,j))||
2
F

+

m∑
i=1

α||W(i,:)||1+β||H(:,j)||1+ γ ||W||2F

+ δ||H(:,j)||
2
2
)
, (A3)

where 6i is a diagonal n×n matrix with the diagonal values
equal to the ith row of 6, and 6j is a diagonalm×mmatrix
with the diagonal values equal to the j th column of 6. Using
the fact that ||X||2F = Tr(XTX), with Tr being the trace of the
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matrix, Eqs. (A2) and (A3) can be rewritten as

0=
∂

∂Wi

(Tr(6−1
i ATi Ai6−1

i − 26−1
i ATi WiH6−1

i

+6−1
i HTWT

i WiH6−1
i )+α||W(i,:)||1

+

n∑
j=1

β||H(:,j)||1+ γ ||W(i,:)||
2
2+ δ||H||

2
F ), (A4)

0=
∂

∂Hj

(Tr(ATj 6
−1
j 6−1

j Aj − 2HT
j WT6−1

j 6−1
j Aj

+HT
j WT6−1

j 6−1
j WHj )+

m∑
i=1

α||W(i,:)||1

+β||H(:,j)||1+ γ ||W||2F + δ||H(:,j)||
2
2), (A5)

where A(i,:) = Ai , A(:,j) = Aj , W(i,:) =Wi , and H(:,j) =

Hj . Using vector derivative rules and the fact that
Tr(ABC)= Tr(CAB)= Tr(BCA) when ABC is square, the
following gradients are found.

0←−2Ai6−1
i 6−1

i HT
+ 2WiH6−1

i 6−1
i HT

+α11×k + 2γWi (A6)

0←−2WT6−1
j 6−1

j Aj + 2WT6−1
j 6−1

j WHj

+β1k×1+ 2δHj (A7)

In Eqs. (A6) and (A7), 1 is a vector of ones. Finally, the fol-
lowing update rules are found.

Wi← [(Ai6−1
i 6−1

i HT
−
α

2
11×k)

(H6−1
i 6−1

i HT
+ γ Ik×k)−1

]+ (A8)

Hj ← [(WT6−1
j 6−1

j W+ δIk×k)−1

(WT6−1
j 6−1

j Aj −
β

2
1k×1)]+ (A9)

Here, I is the identity matrix.
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Figure A1. RHALS time series factors laid out with total time series from data, plotted as a 2 h rolling average.

Figure A2. Comparison of 2 h rolling average of time series for externally weighted and internally weighted ALS factors. Externally weighted
error: 7.3666× 103. Internally weighted error: 6.4768× 103.
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Figure A3. Comparison of 2 h rolling average of time series for externally weighted and internally weighted MU factors. Externally weighted
error: 6.9457× 103. Internally weighted error: 6.4292× 103.

Figure A4. Comparison of mass spectra for internally weighted (on the left) and externally weighted (on the right) ALS factors.
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Figure A5. Comparison of mass spectra for internally weighted (on the left) and externally weighted (on the right) MU factors.

Figure A6. Number of factors versus weighted residual error for the RHALS algorithm.

Geosci. Model Dev., 18, 2891–2919, 2025 https://doi.org/10.5194/gmd-18-2891-2025



B. C. Sapper et al.: Positive matrix factorization of large error-weighted mass spectrometry datasets 2915

Figure A7. Weighted residual error of rotated solutions from the 11th trial of RHALS.

Figure A8. (a) W, (b) H, and (c) total average similarities of the rotated solutions to the PMF2 solution from the 11th trial of RHALS.
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Figure A9. Weighted residual error of rotated solutions from the 17th trial of RHALS.

Figure A10. (a) W, (b) H, and (c) total average similarities of the rotated solutions to the PMF2 solution from the 17th trial of RHALS.
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Figure A11. Frobenius norms of rotated factor matrices for the (a–b) 11th, (c–d) 13th, and (e–f) 17th trials.

Appendix B: Mathematical equivalence of
pseudo-inverse update and ordinary least squares

For simplicity, we label (W̃H̃)�6 as ỹ. Let us consider the
ordinary least squares update for W:

W= ỹHT (HHT )−1.

H is a k× n matrix that is assumed to be of a full-row rank
and can thus be decomposed into the exact SVD factorization
H= USVT , where U is a k×k orthogonal matrix, S is a k×k
diagonal matrix, and V is an n× k matrix with orthonormal
columns. The pseudo-inverse of H is defined as VS−1UT .
VTV= I and UT = U−1. The update for W can be rewritten
as

W= ỹVSUT (USISUT )−1

= ỹVSUT (US2UT )−1

= ỹVSUT (US−2UT )

= ỹVSIS−2UT

= ỹ(VS−1UT )

= ỹH†, (B1)

which is equal to the pseudo-inverse update described in
Sect. 2.3. A similar argument can be made for the update
for H.
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