Articles | Volume 17, issue 24
https://doi.org/10.5194/gmd-17-8885-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-8885-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Xueshun Chen
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Zifa Wang
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Huansheng Chen
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
Lin Wu
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Wending Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Xiao Tang
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Jie Li
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Qizhong Wu
College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
Yang Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Zhiyin Zou
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Zijian Jiang
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
No articles found.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2986, https://doi.org/10.5194/egusphere-2024-2986, 2024
Short summary
Short summary
In this study, we applied the quasi double-precision algorithm to MPAS-A. Found that, the algorithm can effectively reduce the errors introduced by using low precision through the iterative process of time integration. The error of surface pressure of 4 cases are reduced by 68%, 75%, 97%, 96%. When applied the quasi double-precision algorithm in MPAS-A, we achieved to reduce all double precision to single precision, memory has been reduced by almost half, while the computation increases only 2%.
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024, https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Short summary
A new long-term inversed emission inventory for Chinese air quality (CAQIEI) is developed in this study, which contains constrained monthly emissions of NOx, SO2, CO, PM2.5, PM10, and NMVOCs in China from 2013 to 2020 with a horizontal resolution of 15 km. Emissions of different air pollutants and their changes during 2013–2020 were investigated and compared with previous emission inventories, which sheds new light on the complex variations of air pollutant emissions in China.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ling Huang, Xinxin Zhang, Chris Emery, Qing Mu, Greg Yarwood, Hehe Zhai, Zhixu Sun, Shuhui Xue, Yangjun Wang, Joshua S. Fu, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2199, https://doi.org/10.5194/egusphere-2024-2199, 2024
Short summary
Short summary
Serious air pollution problems have occurred in many regions of China for the past decade and chemical transport models (CTMs) are being applied more frequently to address diverse scientific and regulatory compliance associated with deteriorated air quality in China. We provided benchmarks for model performance evaluation of CTM applications in China to demonstrate model robustness.
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1432, https://doi.org/10.5194/egusphere-2024-1432, 2024
Short summary
Short summary
Inadequate consideration of mixing state and coatings on BC hinders aerosol radiation forcing quantification. While core-shell mixing results match observations closely, partial internal mixing and coating are more realistic. The fraction of embedded BC and coating aerosols resolved by a microphysics module were used to constrain the mixing state. This led to a 30~43 % absorption enhancement decrease over Northern China, offering valuable insights for the assessment of BC's radiative effects.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Zehua Bai, Qizhong Wu, Kai Cao, Yiming Sun, and Huaqiong Cheng
Geosci. Model Dev., 17, 4383–4399, https://doi.org/10.5194/gmd-17-4383-2024, https://doi.org/10.5194/gmd-17-4383-2024, 2024
Short summary
Short summary
There is relatively limited research on the application of scientific computing on RISC CPU platforms. The MIPS architecture CPUs, a type of RISC CPUs, have distinct advantages in energy efficiency and scalability. The air quality modeling system can run stably on the MIPS and LoongArch platforms, and the experiment results verify the stability of scientific computing on the platforms. The work provides a technical foundation for the scientific application based on MIPS and LoongArch.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Aodong Du, Jiaxing Sun, Hang Liu, Weiqi Xu, Wei Zhou, Yuting Zhang, Lei Li, Xubing Du, Yan Li, Xiaole Pan, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 23, 13597–13611, https://doi.org/10.5194/acp-23-13597-2023, https://doi.org/10.5194/acp-23-13597-2023, 2023
Short summary
Short summary
We characterized the impacts of emission controls on particle mixing state and density during the Beijing Olympic Winter Games using a SPAMS in tandem with a DMA and an AAC. OC and sulfate-containing particles increased, while those from primary emissions decreased. The effective particle densities increased and varied largely for different particles, highlighting the impacts of aging and formation processes on the changes of particle density and mixing state.
Tao Wang, Hang Liu, Jie Li, Shuai Wang, Youngseob Kim, Yele Sun, Wenyi Yang, Huiyun Du, Zhe Wang, and Zifa Wang
Geosci. Model Dev., 16, 5585–5599, https://doi.org/10.5194/gmd-16-5585-2023, https://doi.org/10.5194/gmd-16-5585-2023, 2023
Short summary
Short summary
This paper developed a two-way coupled module in a new version of a regional urban–street network model, IAQMS-street v2.0, in which the mass flux from streets to background is considered. Test cases are defined to evaluate the performance of IAQMS-street v2.0 in Beijing by comparing it with that simulated by IAQMS-street v1.0 and a regional model. The contribution of local emissions and the influence of on-road vehicle control measures on air quality are evaluated by using IAQMS-street v2.0.
Xi Chen, Ting Yang, Zifa Wang, Futing Wang, and Haibo Wang
Atmos. Meas. Tech., 16, 4289–4302, https://doi.org/10.5194/amt-16-4289-2023, https://doi.org/10.5194/amt-16-4289-2023, 2023
Short summary
Short summary
Uncertainties remain great in the planetary boundary layer height (PBLH) determination from radiosonde, especially during the transition period of different PBL regimes. We combine seven existing methods along with statistical modification on gradient-based methods. We find that the ensemble method can eliminate the overestimation of PBLH and reduce the inconsistency between individual methods. The ensemble method improves the effectiveness of PBLH determination to 62.6 %.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Lichao Yang, Wansuo Duan, and Zifa Wang
Geosci. Model Dev., 16, 3827–3848, https://doi.org/10.5194/gmd-16-3827-2023, https://doi.org/10.5194/gmd-16-3827-2023, 2023
Short summary
Short summary
An approach is proposed to refine a ground meteorological observation network to improve the PM2.5 forecasts in the Beijing–Tianjin–Hebei region. A cost-effective observation network is obtained and makes the relevant PM2.5 forecasts assimilate fewer observations but achieve the forecasting skill comparable to or higher than that obtained by assimilating all ground station observations, suggesting that many of the current ground stations can be greatly scattered to avoid much unnecessary work.
Jinming Feng, Meng Luo, Jun Wang, Yuan Qiu, Qizhong Wu, and Ke Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-867, https://doi.org/10.5194/egusphere-2023-867, 2023
Preprint withdrawn
Short summary
Short summary
We modified the code of the Weather Research and Forecasting Model (WRF) v3.8.1 to include the forcing components more than the Greenhouse Gases and evaluate the impact of forcing configurations on the climate simulation results in China. It showed that different external forcing configurations in WRF could result in considerable impact on the annual temperature and precipitation trend, which was stronger than parameterization schemes but was weaker than spectral nudging.
Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Weijie Yao, Guiqian Tang, Tao Wang, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, and Zifa Wang
Atmos. Chem. Phys., 23, 7225–7239, https://doi.org/10.5194/acp-23-7225-2023, https://doi.org/10.5194/acp-23-7225-2023, 2023
Short summary
Short summary
We provide the average vertical profiles of black carbon (BC) concentration, size distribution and coating thickness at different times of the day in an urban area based on 112 vertical profiles. In addition, it is found that BC in the residual layer generally has a thicker coating, higher absorption enhancement and hygroscopicity than on the surface. Such aged BC could enter into the boundary layer and influence the BC properties in the early morning.
Wen Lu, Bin Zhu, Shuqi Yan, Jie Li, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1089, https://doi.org/10.5194/egusphere-2023-1089, 2023
Preprint archived
Short summary
Short summary
Parameterized the minimum turbulent diffusivity (Kzmin) by sensible heat flux and latent heat flux and embedded it into the WRF-Chem model. New scheme improved the underestimation of turbulence diffusion underestimation and overestimation of surface PM2.5 under stable boundary layer simulation over eastern China. The physical relationship between Kzmin and two factors was discussed. Process analysis showed that vertical mixing is the key process to improve surface PM2.5 simulations.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Yele Sun, Pingqing Fu, Meng Gao, Huangjian Wu, Miaomiao Lu, Qian Wu, Shuyuan Huang, Wenxuan Sui, Jie Li, Xiaole Pan, Lin Wu, Hajime Akimoto, and Gregory R. Carmichael
Atmos. Chem. Phys., 23, 6217–6240, https://doi.org/10.5194/acp-23-6217-2023, https://doi.org/10.5194/acp-23-6217-2023, 2023
Short summary
Short summary
A multi-air-pollutant inversion system has been developed in this study to estimate emission changes in China during COVID-19 lockdown. The results demonstrate that the lockdown is largely a nationwide road traffic control measure with NOx emissions decreasing by ~40 %. Emissions of other species only decreased by ~10 % due to smaller effects of lockdown on other sectors. Assessment results further indicate that the lockdown only had limited effects on the control of PM2.5 and O3 in China.
Junhua Wang, Baozhu Ge, Xueshun Chen, Jie Li, Keding Lu, Yayuan Dong, Lei Kong, Zifa Wang, and Yuanhang Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-22, https://doi.org/10.5194/gmd-2023-22, 2023
Revised manuscript not accepted
Short summary
Short summary
We developed a quantitative decoupling analysis (QDA) method to quantify the contributions of emissions, meteorology, chemical reactions, and their nonlinear interactions on PM2.5. We found the effects of adverse meteorological conditions and the importance of nonlinear interactions. This method can provide valuable information for understanding of key factors to heavy pollution, but also help the modelers to find out the sources of uncertainties in numerical models.
Shujun Zhong, Shuang Chen, Junjun Deng, Yanbing Fan, Qiang Zhang, Qiaorong Xie, Yulin Qi, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Jialei Zhu, Xin Wang, Di Liu, Xiaole Pan, Yele Sun, Zifa Wang, Yisheng Xu, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 2061–2077, https://doi.org/10.5194/acp-23-2061-2023, https://doi.org/10.5194/acp-23-2061-2023, 2023
Short summary
Short summary
This study investigated the role of the secondary organic aerosol (SOA) loading on the molecular composition of wintertime urban aerosols by ultrahigh-resolution mass spectrometry. Results demonstrate that the SOA loading is an important factor associated with the oxidation degree, nitrate group content, and chemodiversity of nitrooxy–organosulfates. Our study also found that the hydrolysis of nitrooxy–organosulfates is a possible pathway for the formation of organosulfates.
Futing Wang, Ting Yang, Zifa Wang, Haibo Wang, Xi Chen, Yele Sun, Jianjun Li, Guigang Tang, and Wenxuan Chai
Atmos. Meas. Tech., 15, 6127–6144, https://doi.org/10.5194/amt-15-6127-2022, https://doi.org/10.5194/amt-15-6127-2022, 2022
Short summary
Short summary
We develop a new algorithm to get the vertical mass concentration profiles of fine aerosol components based on the synergy of ground-based remote sensing for the first time. The comparisons with in situ observations and chemistry transport models validate the performance of the algorithm. Uncertainties caused by input parameters are also assessed in this paper. We expected that the algorithm can provide a new idea for lidar inversion and promote the development of aerosol component profiles.
Lichao Yang, Wansuo Duan, Zifa Wang, and Wenyi Yang
Atmos. Chem. Phys., 22, 11429–11453, https://doi.org/10.5194/acp-22-11429-2022, https://doi.org/10.5194/acp-22-11429-2022, 2022
Short summary
Short summary
The initial meteorological state has a great impact on PM2.5 forecasts. Assimilating additional observations is an effective way to improve the accuracy of the initial meteorological state. Here we used an advanced optimization approach to identify where we should preferentially place the meteorological observations associated with PM2.5 forecasts in the Beijing–Tianjin–Hebei region of China. We provide evidence that the target observation strategy is effective for improving PM2.5 forecasts.
Zhiqiang Zhang, Yele Sun, Chun Chen, Bo You, Aodong Du, Weiqi Xu, Yan Li, Zhijie Li, Lu Lei, Wei Zhou, Jiaxing Sun, Yanmei Qiu, Lianfang Wei, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 10409–10423, https://doi.org/10.5194/acp-22-10409-2022, https://doi.org/10.5194/acp-22-10409-2022, 2022
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic aerosol and the first mass spectral characterization of water-insoluble organic aerosol in the cold season in Beijing by integrating online and offline aerosol mass spectrometer measurements. WSOA comprised dominantly secondary OA and showed large changes during the transition season from autumn to winter. WIOA was characterized by prominent hydrocarbon ions series, low oxidation states, and significant day–night differences.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Zixuan Jia, Ruth M. Doherty, Carlos Ordóñez, Chaofan Li, Oliver Wild, Shipra Jain, and Xiao Tang
Atmos. Chem. Phys., 22, 6471–6487, https://doi.org/10.5194/acp-22-6471-2022, https://doi.org/10.5194/acp-22-6471-2022, 2022
Short summary
Short summary
This study investigates the modulation of daily PM2.5 over three major populated regions in China by regional meteorology and large-scale circulation during winter. These results demonstrate the benefits of considering the large-scale circulation for air quality studies. The novel circulation indices proposed here can explain a considerable fraction of the day-to-day variability of PM2.5 and can be combined with regional meteorology to improve our capability to predict the variability of PM2.5.
Junjun Deng, Hao Ma, Xinfeng Wang, Shujun Zhong, Zhimin Zhang, Jialei Zhu, Yanbing Fan, Wei Hu, Libin Wu, Xiaodong Li, Lujie Ren, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 22, 6449–6470, https://doi.org/10.5194/acp-22-6449-2022, https://doi.org/10.5194/acp-22-6449-2022, 2022
Short summary
Short summary
Light-absorbing brown carbon (BrC) plays an important role in climate change and atmospheric chemistry. Here we investigated the seasonal and diurnal variations in water-soluble BrC in PM2.5 in the megacity Tianjin in coastal China. Results of the source apportionments from the combination with organic molecular compositions and optical properties of water-soluble BrC reveal a large contribution from primary bioaerosol particles to BrC in the urban atmosphere.
Haibo Wang, Ting Yang, Zifa Wang, Jianjun Li, Wenxuan Chai, Guigang Tang, Lei Kong, and Xueshun Chen
Geosci. Model Dev., 15, 3555–3585, https://doi.org/10.5194/gmd-15-3555-2022, https://doi.org/10.5194/gmd-15-3555-2022, 2022
Short summary
Short summary
In this paper, we develop an online data coupled assimilation system (NAQPMS-PDAF) with the Eulerian atmospheric chemistry-transport model. NAQPMS-PDAF allows efficient use of large computational resources. The application and performance of the system are investigated by assimilating 1 month of vertical aerosol observations. The results show that NAQPMS-PDAF can significantly improve the performance of aerosol vertical structure simulation and reduce the uncertainty to a large extent.
Qian Ma, Kaicun Wang, Yanyi He, Liangyuan Su, Qizhong Wu, Han Liu, and Youren Zhang
Earth Syst. Sci. Data, 14, 463–477, https://doi.org/10.5194/essd-14-463-2022, https://doi.org/10.5194/essd-14-463-2022, 2022
Short summary
Short summary
Surface incident solar radiation plays a key role in atmospheric circulation, the water cycle, and ecological equilibrium on Earth. A homogenized century-long surface incident solar radiation dataset was obtained over Japan.
Qing Mu, Bruce Rolstad Denby, Eivind Grøtting Wærsted, and Hilde Fagerli
Geosci. Model Dev., 15, 449–465, https://doi.org/10.5194/gmd-15-449-2022, https://doi.org/10.5194/gmd-15-449-2022, 2022
Short summary
Short summary
Our study has achieved air quality modelling down to 100 m for all of Europe. This solves the current problem that street-level air quality modelling is usually limited to individual cities. With publicly available downscaling proxy data, even regions without their own high-resolution proxy data can obtain air quality maps at 100 m. The work is of significance for air quality mitigation strategies and human health exposure studies.
Jiaxing Sun, Zhe Wang, Wei Zhou, Conghui Xie, Cheng Wu, Chun Chen, Tingting Han, Qingqing Wang, Zhijie Li, Jie Li, Pingqing Fu, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-2022, https://doi.org/10.5194/acp-22-561-2022, 2022
Short summary
Short summary
We analyzed 9-year measurements of BC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in BC and light extinction coefficient due to the Clean Air Action Plan. As a response, both SSA and mass extinction efficiency (MEE) showed considerable increases, demonstrating a future challenge in visibility improvement. The primary and secondary BrC was also separated and quantified, and the changes in radiative forcing of BC and BrC were estimated.
Qian Ye, Jie Li, Xueshun Chen, Huansheng Chen, Wenyi Yang, Huiyun Du, Xiaole Pan, Xiao Tang, Wei Wang, Lili Zhu, Jianjun Li, Zhe Wang, and Zifa Wang
Geosci. Model Dev., 14, 7573–7604, https://doi.org/10.5194/gmd-14-7573-2021, https://doi.org/10.5194/gmd-14-7573-2021, 2021
Short summary
Short summary
We developed a global tropospheric atmospheric chemistry source–receptor model. This model can quantify the contributions of multiple air pollutants from various source regions in one simulation without introducing the nonlinear error of atmospheric chemistry. The S-R relationships of PM2.5 and O3 from a global high-resolution (0.5° × 0.5°) simulation were given and compared with previous studies. This model will be useful for creating a link between the scientific community and policymakers.
Yuting Zhang, Hang Liu, Shandong Lei, Wanyun Xu, Yu Tian, Weijie Yao, Xiaoyong Liu, Qi Liao, Jie Li, Chun Chen, Yele Sun, Pingqing Fu, Jinyuan Xin, Junji Cao, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 17631–17648, https://doi.org/10.5194/acp-21-17631-2021, https://doi.org/10.5194/acp-21-17631-2021, 2021
Short summary
Short summary
In this study, the authors used a single-particle soot photometer (SP2) to characterize the particle size, mixing state, and optical properties of black carbon aerosols in rural areas of the North China Plain in winter. Relatively warm and high-RH environments (RH > 50 %, −4° < T < 4 °) were more favorable to rBC aging than dry and cold environments (RH < 60 %, T < −8°). The paper emphasizes the importance of meteorological parameters in the mixing state of black carbon.
Hong Ren, Wei Hu, Lianfang Wei, Siyao Yue, Jian Zhao, Linjie Li, Libin Wu, Wanyu Zhao, Lujie Ren, Mingjie Kang, Qiaorong Xie, Sihui Su, Xiaole Pan, Zifa Wang, Yele Sun, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 21, 12949–12963, https://doi.org/10.5194/acp-21-12949-2021, https://doi.org/10.5194/acp-21-12949-2021, 2021
Short summary
Short summary
This study presents vertical profiles of biogenic and anthropogenic secondary organic aerosols (SOAs) in the urban boundary layer based on a 325 m tower in Beijing in late summer. The increases in the isoprene and toluene SOAs with height were found to be more related to regional transport, whereas the decrease in those from monoterpenes and sesquiterpene were more subject to local emissions. Such complicated vertical distributions of SOA should be considered in future modeling work.
Junhua Wang, Baozhu Ge, Xueshun Chen, Jie Li, Keding Lu, Yayuan Dong, Lei Kong, Zifa Wang, and Yuanhang Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-259, https://doi.org/10.5194/gmd-2021-259, 2021
Revised manuscript not accepted
Short summary
Short summary
This paper developed a novel quantitative decoupling analysis (QDA) method to quantify the contributions of emission, meteorology, chemical reaction, and their nonlinear interactions on PM2.5 and applied it to a pollution episode in Beijing. This method can provides the researchers and policy makers with valuable information for understanding of key factors to heavy pollution, but also help the modelers to find out the sources of uncertainties among numerical models.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Ying Wei, Xueshun Chen, Huansheng Chen, Yele Sun, Wenyi Yang, Huiyun Du, Qizhong Wu, Dan Chen, Xiujuan Zhao, Jie Li, and Zifa Wang
Geosci. Model Dev., 14, 4411–4428, https://doi.org/10.5194/gmd-14-4411-2021, https://doi.org/10.5194/gmd-14-4411-2021, 2021
Short summary
Short summary
The sub-grid particle formation (SGPF) in plumes plays an important role in air pollution and climate. We coupled an SGPF scheme to a chemical transport model with an aerosol microphysics module and applied it to investigate the SGPF impact over China. The scheme clearly improved the model performance in simulating aerosol components and particle number at typical sites influenced by point sources. The results indicate the significant effects of SGPF on aerosol particles in industrial areas.
Tommaso Galeazzo, Richard Valorso, Ying Li, Marie Camredon, Bernard Aumont, and Manabu Shiraiwa
Atmos. Chem. Phys., 21, 10199–10213, https://doi.org/10.5194/acp-21-10199-2021, https://doi.org/10.5194/acp-21-10199-2021, 2021
Short summary
Short summary
We simulate SOA viscosity with explicit modeling of gas-phase oxidation of isoprene and α-pinene. While the viscosity dependence on relative humidity and mass loadings is captured well by simulations, the model underestimates measured viscosity, indicating missing processes. Kinetic limitations and reduction in mass accommodation may cause an increase in viscosity. The developed model is powerful for investigation of the interplay among gas reactions, chemical composition and phase state.
Baozhu Ge, Danhui Xu, Oliver Wild, Xuefeng Yao, Junhua Wang, Xueshun Chen, Qixin Tan, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 9441–9454, https://doi.org/10.5194/acp-21-9441-2021, https://doi.org/10.5194/acp-21-9441-2021, 2021
Short summary
Short summary
In this study, an improved sequential sampling method is developed and implemented to estimate the contribution of below-cloud and in-cloud wet deposition over four years of measurements in Beijing. We find that the contribution of below-cloud scavenging for Ca2+, SO4 2–, and NH4+ decreases from above 50 % in 2014 to below 40 % in 2017. This suggests that the Action Plan has mitigated particulate matter pollution in the surface layer and hence decreased scavenging due to the washout process.
Xueshun Chen, Fangqun Yu, Wenyi Yang, Yele Sun, Huansheng Chen, Wei Du, Jian Zhao, Ying Wei, Lianfang Wei, Huiyun Du, Zhe Wang, Qizhong Wu, Jie Li, Junling An, and Zifa Wang
Atmos. Chem. Phys., 21, 9343–9366, https://doi.org/10.5194/acp-21-9343-2021, https://doi.org/10.5194/acp-21-9343-2021, 2021
Short summary
Short summary
Atmospheric aerosol particles have significant climate and health effects that depend on aerosol size, composition, and mixing state. A new global-regional nested aerosol model with an advanced particle microphysics module and a volatility basis set organic aerosol module was developed to simulate aerosol microphysical processes. Simulations strongly suggest the important role of anthropogenic organic species in particle formation over the areas influenced by anthropogenic sources.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Santosh Kumar Verma, Kimitaka Kawamura, Fei Yang, Pingqing Fu, Yugo Kanaya, and Zifa Wang
Atmos. Chem. Phys., 21, 4959–4978, https://doi.org/10.5194/acp-21-4959-2021, https://doi.org/10.5194/acp-21-4959-2021, 2021
Short summary
Short summary
We studied aerosol samples collected in autumn 2007 with day and night intervals in a rural site of Mangshan, north of Beijing, for sugar compounds (SCs) that are abundant organic aerosol components and can influence the air quality and climate. We found higher concentrations of biomass burning (BB) products at nighttime than daytime, whereas pollen tracers and other SCs showed an opposite diurnal trend, because this site is meteorologically characterized by a mountain/valley breeze.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Tabish Umar Ansari, Oliver Wild, Edmund Ryan, Ying Chen, Jie Li, and Zifa Wang
Atmos. Chem. Phys., 21, 4471–4485, https://doi.org/10.5194/acp-21-4471-2021, https://doi.org/10.5194/acp-21-4471-2021, 2021
Short summary
Short summary
We use novel modelling approaches to quantify the lingering effects of 1 d local and regional emission controls on subsequent days, the effects of longer continuous emission controls of individual sectors over different regions, and the effects of combined emission controls of multiple sectors and regions on air quality in Beijing under varying weather conditions to inform precise short-term emission control policies for avoiding heavy haze pollution in Beijing.
Tie Dai, Yueming Cheng, Daisuke Goto, Yingruo Li, Xiao Tang, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021, https://doi.org/10.5194/acp-21-4357-2021, 2021
Short summary
Short summary
The anthropogenic emission of sulfur dioxide (SO2) over China has significantly declined as a consequence of the clean air actions. We have developed a new emission inversion system to dynamically update the SO2 emission grid by grid over China by assimilating ground-based SO2 observations. The inverted SO2 emission over China in November 2016 on average had declined by 49.4 % since 2010, which is well in agreement with the bottom-up estimation of 48.0 %.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Tao Song, Fei Li, Haitao Zheng, Guanglin Jia, Miaomiao Lu, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 13, 529–570, https://doi.org/10.5194/essd-13-529-2021, https://doi.org/10.5194/essd-13-529-2021, 2021
Short summary
Short summary
China's air pollution has changed substantially since 2013. Here we have developed a 6-year-long high-resolution air quality reanalysis dataset over China from 2013 to 2018 to illustrate such changes and to provide a basic dataset for relevant studies. Surface fields of PM2.5, PM10, SO2, NO2, CO, and O3 concentrations are provided, and the evaluation results indicate that the reanalysis dataset has excellent performance in reproducing the magnitude and variation of air pollution in China.
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021, https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
Short summary
Viscosity is important because it determines the lifetime, impact, and fate of particulate matter. We collected new data to rigorously test a framework that is used to constrain the phase state in global simulations. We find that the framework is accurate as long as appropriate compound specific inputs are available.
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238, https://doi.org/10.5194/gmd-14-223-2021, https://doi.org/10.5194/gmd-14-223-2021, 2021
Short summary
Short summary
Few studies have investigated the effects of initial conditions on the simulation or prediction of PM2.5 concentrations. Here, sensitivity experiments are used to explore the effects of three initial mechanisms (clean, restart, and continuous) and emissions in Xi’an in December 2016. According to this work, if the restart mechanism cannot be used due to computing resource and storage space limitations when forecasting PM2.5 concentrations, a spin-up time of at least 27 h is needed.
Bruce Rolstad Denby, Michael Gauss, Peter Wind, Qing Mu, Eivind Grøtting Wærsted, Hilde Fagerli, Alvaro Valdebenito, and Heiko Klein
Geosci. Model Dev., 13, 6303–6323, https://doi.org/10.5194/gmd-13-6303-2020, https://doi.org/10.5194/gmd-13-6303-2020, 2020
Short summary
Short summary
Air pollution is both a local and a global problem. Since measurements cannot be made everywhere, mathematical models are used to calculate air quality over cities or countries. Modelling over countries limits the level of detail of the models. For countries, the level of detail is only a few kilometres, so air quality at kerb sides is not properly represented. The uEMEP model is used together with the regional air quality model EMEP MSC-W to model details down to kerb side for all of Norway.
Hajime Akimoto, Tatsuya Nagashima, Natsumi Kawano, Li Jie, Joshua S. Fu, and Zifa Wang
Atmos. Chem. Phys., 20, 15003–15014, https://doi.org/10.5194/acp-20-15003-2020, https://doi.org/10.5194/acp-20-15003-2020, 2020
Short summary
Short summary
In order to perform proper model simulation of ozone near the ground in the coastal area of northeastern Asia, it has been found that it is very important to select appropriate dry deposition velocities of ozone on the oceanic water of specific area of the northwestern Pacific. Empirical measurement of the mixing ratios and dry deposition flux of ozone over the ocean in this area is highly recommended.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Wanyu Zhao, Hong Ren, Kimitaka Kawamura, Huiyun Du, Xueshun Chen, Siyao Yue, Qiaorong Xie, Lianfang Wei, Ping Li, Xin Zeng, Shaofei Kong, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020, https://doi.org/10.5194/acp-20-10331-2020, 2020
Short summary
Short summary
Our observations provide detailed information on the abundance and vertical distribution of dicarboxylic acids, oxoacids and α-dicarbonyls in PM2.5 collected at three heights based on a 325 m meteorological tower in Beijing in summer. Our results demonstrate that organic acids at the ground surface are largely associated with local traffic emissions, while long-range atmospheric transport followed by photochemical ageing contributes more in the urban boundary layer than the ground surface.
Ying Li, Douglas A. Day, Harald Stark, Jose L. Jimenez, and Manabu Shiraiwa
Atmos. Chem. Phys., 20, 8103–8122, https://doi.org/10.5194/acp-20-8103-2020, https://doi.org/10.5194/acp-20-8103-2020, 2020
Short summary
Short summary
Viscosity is an important property of organic aerosols, but viscosity measurements of ambient organic aerosols are scarce. We developed a method to predict glass transition temperatures using volatility and the atomic oxygen-to-carbon ratio. The method was applied to field observations of volatility distributions to predict viscosity of ambient organic aerosols, yielding consistent results with ambient particle phase-state measurements and global simulations.
Jiani Tan, Joshua S. Fu, Gregory R. Carmichael, Syuichi Itahashi, Zhining Tao, Kan Huang, Xinyi Dong, Kazuyo Yamaji, Tatsuya Nagashima, Xuemei Wang, Yiming Liu, Hyo-Jung Lee, Chuan-Yao Lin, Baozhu Ge, Mizuo Kajino, Jia Zhu, Meigen Zhang, Hong Liao, and Zifa Wang
Atmos. Chem. Phys., 20, 7393–7410, https://doi.org/10.5194/acp-20-7393-2020, https://doi.org/10.5194/acp-20-7393-2020, 2020
Short summary
Short summary
This study evaluated the performance of 12 chemical transport models from MICS-Asia III for predicting the particulate matter (PM) over East Asia. Four model processes were investigated as the possible reasons for model bias with measurements and the factors causing inconsistent predictions of PM from different models: (1) model inputs, (2) gas–particle conversion, (3) dust emission modules and (4) removal mechanisms (wet and dry depositions). The influence of each process was discussed.
Weiqi Xu, Yao He, Yanmei Qiu, Chun Chen, Conghui Xie, Lu Lei, Zhijie Li, Jiaxing Sun, Junyao Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Meas. Tech., 13, 3205–3219, https://doi.org/10.5194/amt-13-3205-2020, https://doi.org/10.5194/amt-13-3205-2020, 2020
Short summary
Short summary
We characterized mass spectral features of organic aerosol (OA) and water-soluble OA (WSOA) from 21 cooking, crop straw, wood, and coal burning experiments using aerosol mass spectrometers with standard and capture vaporizers, and we demonstrated the applications of source spectral profiles in improving source apportionment of ambient OA at a highly polluted rural site in the North China Plain in winter.
Jing Yang, Wanyu Zhao, Lianfang Wei, Qiang Zhang, Yue Zhao, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 20, 6841–6860, https://doi.org/10.5194/acp-20-6841-2020, https://doi.org/10.5194/acp-20-6841-2020, 2020
Short summary
Short summary
Our observations provide novel detailed information on the atmospheric abundances and spatial distributions of dicarboxylic acids, oxoacids, and α-dicarbonyls in marine aerosols collected from the South China Sea to the East Indian Ocean. Our results demonstrate that the continental outflow of both biogenic and anthropogenic precursors followed by photochemical aging is one of the main sources and formation processes of marine organic aerosols over the tropical oceanic regions.
Qiaorong Xie, Sihui Su, Shuang Chen, Yisheng Xu, Dong Cao, Jing Chen, Lujie Ren, Siyao Yue, Wanyu Zhao, Yele Sun, Zifa Wang, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, Guibin Jiang, Cong-Qiang Liu, and Pingqing Fu
Atmos. Chem. Phys., 20, 6803–6820, https://doi.org/10.5194/acp-20-6803-2020, https://doi.org/10.5194/acp-20-6803-2020, 2020
Short summary
Short summary
Current knowledge on firework-related organic aerosols is very limited. Here the detailed molecular composition of organics in urban aerosols was characterized using ultrahigh-resolution FT-ICR mass spectrometry. Our findings highlight that firework emission leads to a sharp increase in CHO, CHNO, and CHOS containing high-molecular-weight species, particularly aromatic-like substances, which affect the physicochemical properties such as the light absorption and health effects of urban aerosols.
Hang Liu, Xiaole Pan, Dantong Liu, Xiaoyong Liu, Xueshun Chen, Yu Tian, Yele Sun, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 20, 5771–5785, https://doi.org/10.5194/acp-20-5771-2020, https://doi.org/10.5194/acp-20-5771-2020, 2020
Short summary
Short summary
The bare black carbon (BC) was in a fractal structure. With coating thickness increasing, BC changed from a fractal structure to a core–shell structure. In the ambient atmosphere, plenty of BC particles were not in a perfect core–shell structure. This study brought attention to the combined effects of morphology and coating thickness on the absorption enhancement of BC-containing particles, which is helpful for determining the climatic effects of BC.
Shaofeng Xu, Lujie Ren, Yunchao Lang, Shengjie Hou, Hong Ren, Lianfang Wei, Libin Wu, Junjun Deng, Wei Hu, Xiaole Pan, Yele Sun, Zifa Wang, Hang Su, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 20, 3623–3644, https://doi.org/10.5194/acp-20-3623-2020, https://doi.org/10.5194/acp-20-3623-2020, 2020
Short summary
Short summary
Current knowledge on the size distribution of biogenic primary organic aerosols in urban regions with heavy haze pollution is very limited. Here we performed a year-round study focusing on the organic molecular composition of size-segregated aerosol samples collected in urban Beijing during haze and non-haze days to elucidate the seasonal contributions of biomass burning, fungal spores, and plant debris to organic carbon as well as the influences from local emissions and long-range transport.
Lu Lei, Conghui Xie, Dawei Wang, Yao He, Qingqing Wang, Wei Zhou, Wei Hu, Pingqing Fu, Yong Chen, Xiaole Pan, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 20, 2877–2890, https://doi.org/10.5194/acp-20-2877-2020, https://doi.org/10.5194/acp-20-2877-2020, 2020
Short summary
Short summary
We characterized aerosol composition and sources near two steel plants in a coastal region in fall and spring seasons. Our results showed substantially different aerosol composition and sources between the two seasons. We observed significant impacts of steel plant emissions on aerosol chemistry nearby, and we found that aerosol particles emitted from the steel plants were dominated by ammonium sulfate/bisulfate; NOx/CO and NOx/SO2 were distinct from those in the absence of industrial plumes.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, Michael Hollaway, David Carruthers, Jie Li, Qiang Zhang, Ruili Wu, Simone Kotthaus, Sue Grimmond, Freya A. Squires, James Lee, and Zongbo Shi
Atmos. Chem. Phys., 20, 2755–2780, https://doi.org/10.5194/acp-20-2755-2020, https://doi.org/10.5194/acp-20-2755-2020, 2020
Short summary
Short summary
Ambient air pollution is a major cause of premature death in China. We examine the street-scale variation of pollutant levels in Beijing using air pollution dispersion and chemistry model ADMS-Urban. Campaign measurements are compared with simulated pollutant levels, providing a valuable means of evaluating the impact of key processes on urban air quality. Air quality modelling at such fine scales is essential for human exposure studies and for informing choices on future emission controls.
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Junichi Kurokawa, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 20, 2667–2693, https://doi.org/10.5194/acp-20-2667-2020, https://doi.org/10.5194/acp-20-2667-2020, 2020
Short summary
Short summary
This study gives an overview of acid deposition from the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Wet deposition simulated by a total of nine models is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The total deposition maps comparing to emissions over Asia are presented. To seek a way to improve the model performance, ensemble approaches and the precipitation-adjusted method are discussed.
Zhining Tao, Mian Chin, Meng Gao, Tom Kucsera, Dongchul Kim, Huisheng Bian, Jun-ichi Kurokawa, Yuesi Wang, Zirui Liu, Gregory R. Carmichael, Zifa Wang, and Hajime Akimoto
Atmos. Chem. Phys., 20, 2319–2339, https://doi.org/10.5194/acp-20-2319-2020, https://doi.org/10.5194/acp-20-2319-2020, 2020
Short summary
Short summary
One goal of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III is to identify strengths and weaknesses of current air quality models to provide insights into reducing uncertainties. This study identified that a 15 km grid would be the optimal horizontal resolution in terms of performance and resource usage to capture average and extreme air quality over East Asia and is thus suggested for use in future MICS-Asia modeling activities if the investigation domain remains the same.
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy
Atmos. Chem. Phys., 20, 1497–1505, https://doi.org/10.5194/acp-20-1497-2020, https://doi.org/10.5194/acp-20-1497-2020, 2020
Short summary
Short summary
We quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Meteorological conditions over the study period would have led to an increase of haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate.
Meng Gao, Zhiwei Han, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Meng Li, Jung-Hun Woo, Qiang Zhang, Yafang Cheng, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 1147–1161, https://doi.org/10.5194/acp-20-1147-2020, https://doi.org/10.5194/acp-20-1147-2020, 2020
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the models.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Yanbing Fan, Cong-Qiang Liu, Linjie Li, Lujie Ren, Hong Ren, Zhimin Zhang, Qinkai Li, Shuang Wang, Wei Hu, Junjun Deng, Libin Wu, Shujun Zhong, Yue Zhao, Chandra Mouli Pavuluri, Xiaodong Li, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, Zongbo Shi, and Pingqing Fu
Atmos. Chem. Phys., 20, 117–137, https://doi.org/10.5194/acp-20-117-2020, https://doi.org/10.5194/acp-20-117-2020, 2020
Short summary
Short summary
This study provides useful knowledge on the abundance, sources, and formation processes of organic aerosols in the coastal megacity of Tianjin, North China, based on the investigation of the molecular composition, diurnal variation, and winter/summer differences under the influence of land/sea breezes and the Asian summer monsoon.
Danhui Xu, Baozhu Ge, Xueshun Chen, Yele Sun, Nianliang Cheng, Mei Li, Xiaole Pan, Zhiqiang Ma, Yuepeng Pan, and Zifa Wang
Atmos. Chem. Phys., 19, 15569–15581, https://doi.org/10.5194/acp-19-15569-2019, https://doi.org/10.5194/acp-19-15569-2019, 2019
Short summary
Short summary
Wet deposition is one of the most important and efficient removal mechanisms in the evolution of the air pollution. Due to the lack of a localized parameterization scheme and some mechanisms being neglected in theoretical estimations and modeling calculations, below-cloud wet scavenging coefficients (BWSC) have large uncertainties. We compare the BWSCs under the same conditions to perform a multi-method evaluation in order to describe their characteristics.
Hang Liu, Xiaole Pan, Yu Wu, Dawei Wang, Yu Tian, Xiaoyong Liu, Lu Lei, Yele Sun, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 19, 14791–14804, https://doi.org/10.5194/acp-19-14791-2019, https://doi.org/10.5194/acp-19-14791-2019, 2019
Short summary
Short summary
The relationship among the effective density, rBC's coating thickness, and rBC's morphology was investigated. rBC with larger effective density adopted a more regular shape due to more coating thickness. The effective density distribution of ambient rBC was also measured. From the information of effective density, the ambient rBC mainly adopts an irregular shape, which can cause large uncertainties in the rBC's optical properties.
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019, https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Short summary
This study evaluated and intercompared 14 CTMs with ozone observations in East Asia, within the framework of the Model Inter-Comparison Study for ASIA Phase III (MICS-Asia III). Potential causes of the discrepancies between model results and observation were investigated by assessing the planetary boundary layer heights, emission fluxes, dry deposition, chemistry and vertical transport among models. Finally, a multi-model estimate of pollution distributions was provided.
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019, https://doi.org/10.5194/acp-19-12515-2019, 2019
Lei Chen, Yi Gao, Meigen Zhang, Joshua S. Fu, Jia Zhu, Hong Liao, Jialin Li, Kan Huang, Baozhu Ge, Xuemei Wang, Yun Fat Lam, Chuan-Yao Lin, Syuichi Itahashi, Tatsuya Nagashima, Mizuo Kajino, Kazuyo Yamaji, Zifa Wang, and Jun-ichi Kurokawa
Atmos. Chem. Phys., 19, 11911–11937, https://doi.org/10.5194/acp-19-11911-2019, https://doi.org/10.5194/acp-19-11911-2019, 2019
Short summary
Short summary
Simulated aerosol concentrations from 14 CTMs within the framework of MICS-Asia III are detailedly evaluated with an extensive set of measurements in East Asia. Similarities and differences among model performances are also analyzed. Although more considerable capacities for reproducing the aerosol concentrations and their variations are shown in current CTMs than those in MICS-Asia II, more efforts are needed to reduce diversities of simulated aerosol concentrations among air quality models.
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019, https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
Short summary
We present the first aerosol volatility measurements in Beijing in summer using a thermodenuder coupled with aerosol mass spectrometers. Our results showed that organic aerosol (OA) comprised mainly semi-volatile organic compounds in summer, and the freshly oxidized secondary OA was the most volatile component. We also found quite different volatility distributions in black-carbon-containing primary and secondary OA, ambient OA, ambient secondary OA and the WRF-Chem model.
Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram
Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019, https://doi.org/10.5194/acp-19-10073-2019, 2019
Short summary
Short summary
We measured the diffusion rates of organic molecules in a number of proxies for secondary organic aerosol (SOA) and compared measured diffusion with predictions from two relations: the Stokes–Einstein relation and a fractional Stokes–Einstein relation. The fractional relation does a better job of predicting diffusion rates in this case. Output from an atmospheric model shows that mixing times predicted using the two relations differ by up to 1 order of magnitude at an altitude of ~ 3 km.
Huiyun Du, Jie Li, Xueshun Chen, Zifa Wang, Yele Sun, Pingqing Fu, Jianjun Li, Jian Gao, and Ying Wei
Atmos. Chem. Phys., 19, 9351–9370, https://doi.org/10.5194/acp-19-9351-2019, https://doi.org/10.5194/acp-19-9351-2019, 2019
Short summary
Short summary
Regional transport and heterogeneous reactions play crucial roles in haze formation. Using a chemical transport model, we found that chemical transformation of SO2 along the transport pathway from source regions to Beijing was the major source of sulfate. Heterogeneous chemistry had a stronger effect under high humidity and high pollution levels. Aerosols underwent aging during transport which altered the aerosol size and the degree of aging.
Tabish Umar Ansari, Oliver Wild, Jie Li, Ting Yang, Weiqi Xu, Yele Sun, and Zifa Wang
Atmos. Chem. Phys., 19, 8651–8668, https://doi.org/10.5194/acp-19-8651-2019, https://doi.org/10.5194/acp-19-8651-2019, 2019
Short summary
Short summary
We explore the effectiveness of short-term emission controls on haze events in Beijing in October–November 2014 with high-resolution model studies. The model captures observed hourly variation in key pollutants well, but representation of boundary layer processes remains a key constraint. The controls contributed to improved air quality in early November but would not have been sufficient had the meteorology been less favourable. We quantify the much more stringent controls needed in that case.
Dongsheng Ji, Wenkang Gao, Willy Maenhaut, Jun He, Zhe Wang, Jiwei Li, Wupeng Du, Lili Wang, Yang Sun, Jinyuan Xin, Bo Hu, and Yuesi Wang
Atmos. Chem. Phys., 19, 8569–8590, https://doi.org/10.5194/acp-19-8569-2019, https://doi.org/10.5194/acp-19-8569-2019, 2019
Short summary
Short summary
This study reveals an obvious decreasing trend in OC and EC concentrations in urban Beijing. Higher concentrations were related to air masses originating from the northeast sector at wind speeds of approximately 5 km h−1. The potential source regions of the carbonaceous aerosols stretched to broader areas in the northwestern and western regions where coal mining and coal-fired power generation activities are intensive, which is fairly consistent with the MEIC inventory for China.
Xiaole Pan, Hang Liu, Yu Wu, Yu Tian, Yele Sun, Conghui Xie, Xiaoyong Liu, Tianhai Cheng, and Zifa Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-433, https://doi.org/10.5194/acp-2019-433, 2019
Revised manuscript not accepted
Ying Wei, Xueshun Chen, Huansheng Chen, Jie Li, Zifa Wang, Wenyi Yang, Baozhu Ge, Huiyun Du, Jianqi Hao, Wei Wang, Jianjun Li, Yele Sun, and Huili Huang
Atmos. Chem. Phys., 19, 8269–8296, https://doi.org/10.5194/acp-19-8269-2019, https://doi.org/10.5194/acp-19-8269-2019, 2019
Short summary
Short summary
This study presents a full description and evaluation of a global–regional nested aerosol and atmospheric chemistry model (IAP-AACM). The simulation for 2014 is evaluated against model datasets and a range of observational datasets. The results show that IAP-AACM is within the range of other models, and reproduces both spatial and seasonal variation of trace gases and aerosols over most areas well. In future, we recommend improving the model's ability to capture high spatial variation of PM2.5.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Yue Liu, Mei Zheng, Mingyuan Yu, Xuhui Cai, Huiyun Du, Jie Li, Tian Zhou, Caiqing Yan, Xuesong Wang, Zongbo Shi, Roy M. Harrison, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 19, 6595–6609, https://doi.org/10.5194/acp-19-6595-2019, https://doi.org/10.5194/acp-19-6595-2019, 2019
Short summary
Short summary
This study is part of the UK–China APHH campaign. To identify both source types and source regions at the same time, this study developed a combined method including receptor model, footprint model, and air quality model for the first time to investigate sources of PM2.5 during haze episodes in Beijing. It is an expansion of the application of the receptor model and is helpful for formulating effective control strategies to improve air quality in this region.
Ying Li and Manabu Shiraiwa
Atmos. Chem. Phys., 19, 5959–5971, https://doi.org/10.5194/acp-19-5959-2019, https://doi.org/10.5194/acp-19-5959-2019, 2019
Short summary
Short summary
Timescales for secondary organic aerosols (SOA) to reach equilibrium were estimated under various temperatures and relative humidities. Equilibration timescales in free troposphere can be longer than hours or days, even at moderate or relatively high relative humidities. These results provide critical insights into thermodynamic or kinetic treatments of SOA partitioning for accurate predictions of gas- and particle-phase concentrations of semi-volatile compounds in chemical transport models.
Hui Wang, Junmin Lin, Qizhong Wu, Huansheng Chen, Xiao Tang, Zifa Wang, Xueshun Chen, Huaqiong Cheng, and Lanning Wang
Geosci. Model Dev., 12, 749–764, https://doi.org/10.5194/gmd-12-749-2019, https://doi.org/10.5194/gmd-12-749-2019, 2019
Short summary
Short summary
A new framework was designed for the widely used Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical kinetics kernel to adapt the single-instruction, multiple-data (SIMD) technology in next-generation processors like Knights Landing (KNL) to improve their calculation performance. The optimization is aimed at implementing the fine-grain level parallelization of CBM-Z. The test results showed significant acceleration with our optimization on both CPU and KNL platforms.
Hajime Akimoto, Tatsuya Nagashima, Jie Li, Joshua S. Fu, Dongsheng Ji, Jiani Tan, and Zifa Wang
Atmos. Chem. Phys., 19, 603–615, https://doi.org/10.5194/acp-19-603-2019, https://doi.org/10.5194/acp-19-603-2019, 2019
Short summary
Short summary
The regional model intercomparison study called MICS-Asia III revealed that substantial discrepancy still exists for surface ozone simulation in East Asia, even though common emissions, meteorological field, and boundary conditions have been used among the models. Three factors have been identified as possible causes of such discrepancy, (1) chemistry sub-models, (2) heterogeneous reactions, and (3) vertical transport parameters, and each component has been discussed.
Xiaole Pan, Baozhu Ge, Zhe Wang, Yu Tian, Hang Liu, Lianfang Wei, Siyao Yue, Itsushi Uno, Hiroshi Kobayashi, Tomoaki Nishizawa, Atsushi Shimizu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 19, 219–232, https://doi.org/10.5194/acp-19-219-2019, https://doi.org/10.5194/acp-19-219-2019, 2019
Conghui Xie, Weiqi Xu, Junfeng Wang, Qingqing Wang, Dantong Liu, Guiqian Tang, Ping Chen, Wei Du, Jian Zhao, Yingjie Zhang, Wei Zhou, Tingting Han, Qingyun Bian, Jie Li, Pingqing Fu, Zifa Wang, Xinlei Ge, James Allan, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 165–179, https://doi.org/10.5194/acp-19-165-2019, https://doi.org/10.5194/acp-19-165-2019, 2019
Short summary
Short summary
We present the first simultaneous real-time online measurements of aerosol optical properties at ground level and at 260 m on a meteorological tower in urban Beijing in winter. The vertical similarities and differences in scattering and absorption coefficients were characterized. The increases in MAC of BC were mainly associated with the coating materials on rBC. Coal combustion was the dominant source contribution of brown carbon followed by biomass burning and SOA in winter in Beijing.
Yu Tian, Xiaole Pan, Tomoaki Nishizawa, Hiroshi Kobayashi, Itsushi Uno, Xiquan Wang, Atsushi Shimizu, and Zifa Wang
Atmos. Chem. Phys., 18, 18203–18217, https://doi.org/10.5194/acp-18-18203-2018, https://doi.org/10.5194/acp-18-18203-2018, 2018
Short summary
Short summary
East Asia is characterized by severe anthropogenic pollution and dust storms due to fuel consumption and the downwind location of dust sources. We studied the mixing states of dust and pollutants using an optical particle counter equipped with a polarization detection module, providing a deeper understanding of possible mechanisms of aerosols’ morphological change. In Beijing, the heterogeneous processes in the mixture of dust and emitted pollutants have a great influence on smog formation.
Hansen Cao, Tzung-May Fu, Lin Zhang, Daven K. Henze, Christopher Chan Miller, Christophe Lerot, Gonzalo González Abad, Isabelle De Smedt, Qiang Zhang, Michel van Roozendael, François Hendrick, Kelly Chance, Jie Li, Junyu Zheng, and Yuanhong Zhao
Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, https://doi.org/10.5194/acp-18-15017-2018, 2018
Short summary
Short summary
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1, including 16.4 to 23.6 Tg y−1 from anthropogenic sources, 12.2 to 22.8 Tg y−1 from biogenic sources, and 2.08 to 3.13 Tg y−1 from biomass burning. Our four inversions consistently showed that the emissions of Chinese anthropogenic NMVOC precursors of glyoxal were larger than the a priori estimates. The glyoxal and formaldehyde constraints helped distinguish the NMVOC species from different sources.
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Mingjie Kang, Pingqing Fu, Kimitaka Kawamura, Fan Yang, Hongliang Zhang, Zhengchen Zang, Hong Ren, Lujie Ren, Ye Zhao, Yele Sun, and Zifa Wang
Atmos. Chem. Phys., 18, 13947–13967, https://doi.org/10.5194/acp-18-13947-2018, https://doi.org/10.5194/acp-18-13947-2018, 2018
Short summary
Short summary
Molecular characterization and spatial distribution of biogenic primary organic aerosol (POA) and secondary organic aerosol (SOA) in the marine atmosphere are not well known. Here, we analysed the organic molecular composition of marine aerosols collected during a marine cruise in the East China Sea during May–June 2014. Our results suggest that the Asian continent can be a natural emitter of biogenic POA and SOA, which can be transported to the downwind marine atmosphere.
Wei Zhou, Jian Zhao, Bin Ouyang, Archit Mehra, Weiqi Xu, Yuying Wang, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Qi Chen, Conghui Xie, Qingqing Wang, Junfeng Wang, Wei Du, Yingjie Zhang, Xinlei Ge, Penglin Ye, James D. Lee, Pingqing Fu, Zifa Wang, Douglas Worsnop, Roderic Jones, Carl J. Percival, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, https://doi.org/10.5194/acp-18-11581-2018, 2018
Short summary
Short summary
We present measurements of gas-phase N2O5 and ClNO2 by ToF-CIMS during summer in urban Beijing as part of the APHH campaign. High reactivity of N2O5 indicative of active nocturnal chemistry was observed. The lifetime of N2O5 as a function of aerosol surface area and relative humidity was characterized, and N2O5 uptake coefficients were estimated. We also found that the N2O5 loss in this study is mainly attributed to its indirect loss via reactions of NO3 with VOCs and NO.
Hui Wang, Qizhong Wu, Hongjun Liu, Yuanlin Wang, Huaqiong Cheng, Rongrong Wang, Lanning Wang, Han Xiao, and Xiaochun Yang
Atmos. Chem. Phys., 18, 9583–9596, https://doi.org/10.5194/acp-18-9583-2018, https://doi.org/10.5194/acp-18-9583-2018, 2018
Short summary
Short summary
The Beijing area has suffered from severe air quality pollution in recent years, including ozone pollution in summer. BVOC emissions play a non-negligible role in air quality and climate. Since the forest cover rate increased from 20.6 % to 35.8 % during 1998–2013 in Beijing, we presented a new estimation of local BVOC emissions in a current scenario based on the latest emission model MEGAN v2.1 and also adopted diverse input datasets for the sensitivities of the model and results.
Yele Sun, Weiqi Xu, Qi Zhang, Qi Jiang, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Jie Li, John Jayne, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 18, 8469–8489, https://doi.org/10.5194/acp-18-8469-2018, https://doi.org/10.5194/acp-18-8469-2018, 2018
Short summary
Short summary
We present a 2–year analysis of organic aerosol (OA) from highly time–resolved measurements by an aerosol chemical speciation monitor in the megacity of Beijing. The sources of OA were analyzed with the advanced factor analysis of a multilinear engine (ME-2). Our results showed very different seasonal patterns, relative humidity and temperature dependence, and sources regions among different OA factors. The sources and processes of OA factors, and their roles in haze pollution are elucidated.
Xiao-Xiao Zhang, Brenton Sharratt, Lian-You Liu, Zi-Fa Wang, Xiao-Le Pan, Jia-Qiang Lei, Shi-Xin Wu, Shuang-Yan Huang, Yu-Hong Guo, Jie Li, Xiao Tang, Ting Yang, Yu Tian, Xue-Shun Chen, Jian-Qi Hao, Hai-Tao Zheng, Yan-Yan Yang, and Yan-Li Lyu
Atmos. Chem. Phys., 18, 8353–8371, https://doi.org/10.5194/acp-18-8353-2018, https://doi.org/10.5194/acp-18-8353-2018, 2018
Short summary
Short summary
The impact of a strong East Asian dust event during 2–7 May 2017 was quantified and assessed based upon environmental observations, lidar measurements, and satellite products along with simulation techniques. This dust storm impacted a wide area of China and other Asian nations and reached North America within 1 week. Dust storms are a significant contributor to the global dust budget. Asian dust storms such as that observed in early May 2017 may lead to wider climate forcing on a global scale.
Wing-Sy Wong DeRieux, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov, and Manabu Shiraiwa
Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, https://doi.org/10.5194/acp-18-6331-2018, 2018
Short summary
Short summary
The phase transition of organic particles between glassy and semi-solid states occurs at the glass transition temperature. We developed a method to predict glass transition temperatures and the viscosity of secondary organic aerosols using molecular composition, with consistent results with viscosity measurements. The viscosity of biomass burning particles was also estimated using the chemical composition measured by high-resolution mass spectrometry with two different ionization techniques.
Meng Gao, Zhiwei Han, Zirui Liu, Meng Li, Jinyuan Xin, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Yafang Cheng, Yuesi Wang, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Jung-Hun Woo, Qiang Zhang, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, https://doi.org/10.5194/acp-18-4859-2018, 2018
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design is presented.
Wei Zhou, Qingqing Wang, Xiujuan Zhao, Weiqi Xu, Chen Chen, Wei Du, Jian Zhao, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 18, 3951–3968, https://doi.org/10.5194/acp-18-3951-2018, https://doi.org/10.5194/acp-18-3951-2018, 2018
Short summary
Short summary
We present a 3-month analysis of submicron aerosols that were measured at 260 m on a meteorological tower in Beijing, China. The sources of organic aerosol (OA) were analyzed by using a multi-linear engine (ME-2). Our results showed significant changes in both primary and secondary OA composition from the non-heating season to the heating season. We also observed a considerable contribution (10–13%) of cooking OA at 260 m and very different OA composition between ground level and 260 m.
Wanyu Zhao, Kimitaka Kawamura, Siyao Yue, Lianfang Wei, Hong Ren, Yu Yan, Mingjie Kang, Linjie Li, Lujie Ren, Senchao Lai, Jie Li, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 18, 2749–2767, https://doi.org/10.5194/acp-18-2749-2018, https://doi.org/10.5194/acp-18-2749-2018, 2018
Short summary
Short summary
In this paper, we investigate the seasonal trends in concentrations and compound-specific stable carbon isotope ratios of low molecular weight dicarboxylic acids (C2–C12) and related compounds in fine aerosols (PM2.5) in Beijing. Our study demonstrates that, in addition to the production via photo-oxidation, high abundances of diacids and related compounds in Beijing are largely associated with anthropogenic primary emissions such as biomass burning, fossil fuel combustion and plastic burning.
Qingqing Wang, Yele Sun, Weiqi Xu, Wei Du, Libo Zhou, Guiqian Tang, Chen Chen, Xueling Cheng, Xiujuan Zhao, Dongsheng Ji, Tingting Han, Zhe Wang, Jie Li, and Zifa Wang
Atmos. Chem. Phys., 18, 2495–2509, https://doi.org/10.5194/acp-18-2495-2018, https://doi.org/10.5194/acp-18-2495-2018, 2018
Short summary
Short summary
We conducted the first real-time continuous vertical measurements of particle extinction, NO2, and BC from ground level to 260 m during two severe winter haze episodes in urban Beijing, China. Our results show very complex and dynamic vertical profiles that interact closely with boundary layer and meteorological conditions. Further analysis demonstrate that vertical convection, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles.
Itsushi Uno, Kazuo Osada, Keiya Yumimoto, Zhe Wang, Syuichi Itahashi, Xiaole Pan, Yukari Hara, Yugo Kanaya, Shigekazu Yamamoto, and Thomas Duncan Fairlie
Atmos. Chem. Phys., 17, 14181–14197, https://doi.org/10.5194/acp-17-14181-2017, https://doi.org/10.5194/acp-17-14181-2017, 2017
Short summary
Short summary
We analyzed long-term fine- and coarse-mode nitrate and related aerosols synergetic observations at Fukuoka, Japan. GEOS Chem model including dust and sea-salt acid uptake processes was used to assess the observed seasonal variation, and the impact of long-range transport from the Asian continent. A numerical model reproduced the seasonal variations of fine aerosols. For coarse nitrate, large-scale dust-nitrate outflow from China was confirmed during all dust events between January and June.
Xiaole Pan, Yugo Kanaya, Fumikazu Taketani, Takuma Miyakawa, Satoshi Inomata, Yuichi Komazaki, Hiroshi Tanimoto, Zhe Wang, Itsushi Uno, and Zifa Wang
Atmos. Chem. Phys., 17, 13001–13016, https://doi.org/10.5194/acp-17-13001-2017, https://doi.org/10.5194/acp-17-13001-2017, 2017
Short summary
Short summary
Characteristics of refractory black carbon (rBC) from open biomass burning (OBB) have a great impact on regional pollution and climate, in particular in East Asia. However, experimental study on characteristics of rBC from agricultural residue burning in East China was limited. This study performed laboratory experiments: we found that emission of rBC is highly related to flaming burning, and non-rBC to smoldering burning. Rapid condensation of semi-volatile organics resulted in coated rBC.
Yujiao Zhu, Caiqing Yan, Renyi Zhang, Zifa Wang, Mei Zheng, Huiwang Gao, Yang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 17, 9469–9484, https://doi.org/10.5194/acp-17-9469-2017, https://doi.org/10.5194/acp-17-9469-2017, 2017
Short summary
Short summary
This study reports the distinct effects of street canyons on new particle formation (NPF) under warm or cold ambient temperature conditions because of on-road vehicle emissions; i.e., stronger condensation sinks are responsible for the reduced NPF in the springtime, but efficient nucleation and partitioning of gaseous species contribute to the enhanced NPF in the wintertime. The oxidization of biogenic organics is suggested to play an important role in growing new particles.
Hui Wang, Huansheng Chen, Qizhong Wu, Junmin Lin, Xueshun Chen, Xinwei Xie, Rongrong Wang, Xiao Tang, and Zifa Wang
Geosci. Model Dev., 10, 2891–2904, https://doi.org/10.5194/gmd-10-2891-2017, https://doi.org/10.5194/gmd-10-2891-2017, 2017
Short summary
Short summary
We introduced some methods to port our Global Nested Air Quality Prediction Modeling System (GNAQPMS) model on Intel Knight Landing (KNL). In this paper, we introduced both common and specific methods to accelerate out model better. With the guidance of the resources material on Intel Websites (http://www.intel.com/content/www/us/en/products/processors/xeon-phi.html) and relative books, this paper could be an example for the model developers to take advantage of KNL for their model.
Jing Zheng, Min Hu, Zhuofei Du, Dongjie Shang, Zhaoheng Gong, Yanhong Qin, Jingyao Fang, Fangting Gu, Mengren Li, Jianfei Peng, Jie Li, Yuqia Zhang, Xiaofeng Huang, Lingyan He, Yusheng Wu, and Song Guo
Atmos. Chem. Phys., 17, 6853–6864, https://doi.org/10.5194/acp-17-6853-2017, https://doi.org/10.5194/acp-17-6853-2017, 2017
Short summary
Short summary
By monitoring aerosol properties as a function of high-resolution chemical composition, this study sheds light on the evolution processes of particles in the Tibetan Plateau background environment during the pre-monsoon season. A positive matrix factorization analysis integrated with a mesoscale meteorological model clearly shows that the southeastern edge of the Tibetan Plateau was affected by air pollutants transported from active biomass burning areas in South Asia.
Wei Du, Jian Zhao, Yuying Wang, Yingjie Zhang, Qingqing Wang, Weiqi Xu, Chen Chen, Tingting Han, Fang Zhang, Zhanqing Li, Pingqing Fu, Jie Li, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 17, 6797–6811, https://doi.org/10.5194/acp-17-6797-2017, https://doi.org/10.5194/acp-17-6797-2017, 2017
Short summary
Short summary
We conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing. The vertical differences strongly depend on particle sizes, with accumulation-mode particles being highly correlated at the two heights. We further demonstrated that regional emission controls have a dominant impact on accumulation-mode particles, while the influences on Aitken particles were much smaller due to the enhanced NPF events.
Ting Yang, Zifa Wang, Wei Zhang, Alex Gbaguidi, Nobuo Sugimoto, Xiquan Wang, Ichiro Matsui, and Yele Sun
Atmos. Chem. Phys., 17, 6215–6225, https://doi.org/10.5194/acp-17-6215-2017, https://doi.org/10.5194/acp-17-6215-2017, 2017
Short summary
Short summary
Predicting air pollution events over megacities requires, notably, continuous and accurate determination of the boundary layer height (BLH). Based on gravity wave theory, a new approach (CRGM) is developed to overcome existing algorithms' weakness in order to accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions from lidar observation. Comprehensive evaluation highlights strong effectiveness of this new method.
Syuichi Itahashi, Itsushi Uno, Kazuo Osada, Yusuke Kamiguchi, Shigekazu Yamamoto, Kei Tamura, Zhe Wang, Yasunori Kurosaki, and Yugo Kanaya
Atmos. Chem. Phys., 17, 3823–3843, https://doi.org/10.5194/acp-17-3823-2017, https://doi.org/10.5194/acp-17-3823-2017, 2017
Short summary
Short summary
Over East Asia, the transboundary air pollution of SO42− has been recognized. The importance of the transboundary air pollution of NO3− in winter was demonstrated in this study through synergetic ground-based observations with state-of-the-art measurements of secondary inorganic aerosols (SO42−, NO3−, and NH4+) and a regional chemical transport model analysis. This study will help to refine the understanding of transboundary heavy PM2.5 pollution in winter.
Jian Zhao, Wei Du, Yingjie Zhang, Qingqing Wang, Chen Chen, Weiqi Xu, Tingting Han, Yuying Wang, Pingqing Fu, Zifa Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 17, 3215–3232, https://doi.org/10.5194/acp-17-3215-2017, https://doi.org/10.5194/acp-17-3215-2017, 2017
Short summary
Short summary
We conducted aerosol particle composition measurements at ground level and 260 m with two aerosol mass spectrometers in Beijing during the 2015 China Victory Day parade. Our results showed a stronger impact of emission controls on inorganic aerosol than OA. A larger decrease in more oxidized SOA than the less oxidized one during the control period was also observed. Our results indicate that emission controls and the changes in meteorological conditions have affected SOA formation mechanisms.
Xiao-Xiao Zhang, Brenton Sharratt, Xi Chen, Zi-Fa Wang, Lian-You Liu, Yu-Hong Guo, Jie Li, Huan-Sheng Chen, and Wen-Yi Yang
Atmos. Chem. Phys., 17, 1699–1711, https://doi.org/10.5194/acp-17-1699-2017, https://doi.org/10.5194/acp-17-1699-2017, 2017
Short summary
Short summary
To improve our understanding of the fate and transport of airborne dust, there is a need for long-term records of dust deposition and concentration. This study characterized the spatial and temporal distribution in dust deposition and concentration in central Asia. The occurrence of high dust deposition and concentration suggests this region is a potential contributor to the global dust budget. This work will strengthen our comprehension of aerosol transport in global desertification regions.
Shurui Chen, Liang Xu, Yinxiao Zhang, Bing Chen, Xinfeng Wang, Xiaoye Zhang, Mei Zheng, Jianmin Chen, Wenxing Wang, Yele Sun, Pingqing Fu, Zifa Wang, and Weijun Li
Atmos. Chem. Phys., 17, 1259–1270, https://doi.org/10.5194/acp-17-1259-2017, https://doi.org/10.5194/acp-17-1259-2017, 2017
Short summary
Short summary
Many studies have focused on the unusually severe hazes instead of the more frequent light and moderate hazes (22–63 %) in winter in the North China Plain (NCP). The morphology, mixing state, and size of organic aerosols in the L & M hazes were characterized. We conclude that the direct emissions from residential coal stoves without any pollution controls in rural and urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in winter in the NCP.
Meng Gao, Gregory R. Carmichael, Pablo E. Saide, Zifeng Lu, Man Yu, David G. Streets, and Zifa Wang
Atmos. Chem. Phys., 16, 11837–11851, https://doi.org/10.5194/acp-16-11837-2016, https://doi.org/10.5194/acp-16-11837-2016, 2016
Short summary
Short summary
The WRF-Chem model was used to examine how the winter PM2.5 concentrations change in response to changes in emissions and meteorology in North China from 1960 to 2010. The discussions in this study indicate that dramatic changes in emissions are the main cause of increasing haze events in North China, and long-term trends in atmospheric circulations maybe another important cause. We also found aerosol feedbacks have been significantly enhanced from 1960 to 2010, due to higher aerosol loadings.
Xiaole Pan, Itsushi Uno, Yukari Hara, Kazuo Osada, Shigekazu Yamamoto, Zhe Wang, Nobuo Sugimoto, Hiroshi Kobayashi, and Zifa Wang
Atmos. Chem. Phys., 16, 9863–9873, https://doi.org/10.5194/acp-16-9863-2016, https://doi.org/10.5194/acp-16-9863-2016, 2016
Short summary
Short summary
Polarization properties of aerosol particles at a suburban site in the western Japan was studied on the basis of long-term observation and trajectory analysis. This study provides the detailed information on the polarization characteristics of particles from different origins, and proposed a reliable criterion to classify spherical and non-spherical particles. This study introduced a new method to investigate the mixed state of dust particle with anthropogenic pollutant.
Yele Sun, Wei Du, Pingqing Fu, Qingqing Wang, Jie Li, Xinlei Ge, Qi Zhang, Chunmao Zhu, Lujie Ren, Weiqi Xu, Jian Zhao, Tingting Han, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, https://doi.org/10.5194/acp-16-8309-2016, 2016
Short summary
Short summary
We have a comprehensive characterization of the sources, variations and processes of submicron aerosols in Beijing in winter using HR-AMS and GC/MS measurements. The primary sources including traffic, cooking, biomass burning and coal combustion emissions, and secondary components were separated and quantified with PMF. Our results elucidated the important roles of primary emissions, particularly coal combustion, and aqueous-phase processing in the formation of severe air pollution in winter.
Xiao Tang, Jiang Zhu, ZiFa Wang, Alex Gbaguidi, CaiYan Lin, JinYuan Xin, Tao Song, and Bo Hu
Atmos. Chem. Phys., 16, 6395–6405, https://doi.org/10.5194/acp-16-6395-2016, https://doi.org/10.5194/acp-16-6395-2016, 2016
Short summary
Short summary
Chemical data assimilation through adjusting precursor emissions has brought out notable impacts on improving ozone forecasts in previous studies. This paper, from another point of view, investigated in detail the impacts of adjusting nitrogen oxide emissions on the forecasts of nitrogen dioxide through assimilating ozone observations. Limitations of the existing chemical data assimilation methods in a highly nonlinear system were identified and highlighted.
Ying Li, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 16, 3327–3344, https://doi.org/10.5194/acp-16-3327-2016, https://doi.org/10.5194/acp-16-3327-2016, 2016
M. Gao, G. R. Carmichael, Y. Wang, P. E. Saide, M. Yu, J. Xin, Z. Liu, and Z. Wang
Atmos. Chem. Phys., 16, 1673–1691, https://doi.org/10.5194/acp-16-1673-2016, https://doi.org/10.5194/acp-16-1673-2016, 2016
Short summary
Short summary
The WRF-Chem model was applied to study the 2010 winter haze in North China. Air pollutants outside Beijing contributed about 64.5 % to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, Relative Humidity (RH) and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn.
W. Q. Xu, Y. L. Sun, C. Chen, W. Du, T. T. Han, Q. Q. Wang, P. Q. Fu, Z. F. Wang, X. J. Zhao, L. B. Zhou, D. S. Ji, P. C. Wang, and D. R. Worsnop
Atmos. Chem. Phys., 15, 13681–13698, https://doi.org/10.5194/acp-15-13681-2015, https://doi.org/10.5194/acp-15-13681-2015, 2015
Short summary
Short summary
We have investigated the response of aerosol composition, size distributions, and oxidation properties to emission controls during the 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing. Our results showed substantial changes of aerosol bulk composition during APEC with the most reductions in secondary aerosols in large accumulation modes, demonstrating that that emission controls over regional scales can substantially reduce secondary particulates.
W. J. Li, S. R. Chen, Y. S. Xu, X. C. Guo, Y. L. Sun, X. Y. Yang, Z. F. Wang, X. D. Zhao, J. M. Chen, and W. X. Wang
Atmos. Chem. Phys., 15, 13365–13376, https://doi.org/10.5194/acp-15-13365-2015, https://doi.org/10.5194/acp-15-13365-2015, 2015
Short summary
Short summary
We found that anthropogenic soot, fly ash, and visible organic particles likely adhere to the surface of secondary inorganic particles larger than 200nm due to coagulation. Biomass burning and coal combustion both constantly contribute to anthropogenic particles in the Qinghai-Tibet Plateau (QTP) background atmosphere. Organic coating and soot on the surface of the aged particles could have different impacts on their hygroscopic and optical properties in the QTP compared to the urban aerosols.
C. Chen, Y. L. Sun, W. Q. Xu, W. Du, L. B. Zhou, T. T. Han, Q. Q. Wang, P. Q. Fu, Z. F. Wang, Z. Q. Gao, Q. Zhang, and D. R. Worsnop
Atmos. Chem. Phys., 15, 12879–12895, https://doi.org/10.5194/acp-15-12879-2015, https://doi.org/10.5194/acp-15-12879-2015, 2015
Short summary
Short summary
A comprehensive characterization of submicron aerosol composition and sources at 260m in urban Beijing during APEC 2014 is presented. Aerosol species were shown to decrease substantially by 40–80% during APEC, whereas the bulk composition was relatively similar to the result of synergetic controls of secondary precursors. Our results elucidated that the good air quality during APEC was the combined result of emission controls and meteorological effects, with the former playing the dominant role.
J. Zheng, J. Zhu, Z. Wang, F. Fang, C. C. Pain, and J. Xiang
Geosci. Model Dev., 8, 3421–3440, https://doi.org/10.5194/gmd-8-3421-2015, https://doi.org/10.5194/gmd-8-3421-2015, 2015
Short summary
Short summary
A new anisotropic hr-adaptive mesh technique has been applied to modelling of multiscale transport phenomena. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. To illustrate its capability, comparisons have been made between the results obtained using adaptive and uniform meshes.
H. S. Chen, Z. F. Wang, J. Li, X. Tang, B. Z. Ge, X. L. Wu, O. Wild, and G. R. Carmichael
Geosci. Model Dev., 8, 2857–2876, https://doi.org/10.5194/gmd-8-2857-2015, https://doi.org/10.5194/gmd-8-2857-2015, 2015
Short summary
Short summary
A new global nested atmospheric mercury transport model was developed and introduced. Model performance was found significantly better in North America and Europe than in East Asia. Nested simulation has been conducted in East Asia and shows improved skill at capturing the high spatial variability of Hg concentrations and deposition. The trans-boundary transport of Chinese primary anthropogenic mercury emissions was quantified for the first time.
Y. L. Sun, Z. F. Wang, W. Du, Q. Zhang, Q. Q. Wang, P. Q. Fu, X. L. Pan, J. Li, J. Jayne, and D. R. Worsnop
Atmos. Chem. Phys., 15, 10149–10165, https://doi.org/10.5194/acp-15-10149-2015, https://doi.org/10.5194/acp-15-10149-2015, 2015
Short summary
Short summary
We conducted the first long-term real-time measurement of submicron aerosol composition in Beijing using an ACSM for 1 year. The seasonal variations of mass concentrations and chemical composition of submicron aerosol were investigated in detail, and the meteorological effects on aerosol chemistry, particularly temperature and relative humidity, were elucidated. Finally, the potential source areas of aerosol species during four seasons were identified.
Y. Tang, J. An, F. Wang, Y. Li, Y. Qu, Y. Chen, and J. Lin
Atmos. Chem. Phys., 15, 9381–9398, https://doi.org/10.5194/acp-15-9381-2015, https://doi.org/10.5194/acp-15-9381-2015, 2015
Short summary
Short summary
High daytime HONO mixing ratios in experiments suggest that an unknown daytime HONO source (P unknown) could exist. P unknown≈19.60×NO2×J(NO2) was obtained using observed data from 13 field experiments across the globe, then coupled into the WRF-Chem model. Simulations indicated that elevated P unknown was found in the coastal regions of China; the additional HONO sources, especially the P unknown produced significant increases of radicals in the major cities, and accelerated the radical cycles.
X. Pan, Y. Kanaya, H. Tanimoto, S. Inomata, Z. Wang, S. Kudo, and I. Uno
Atmos. Chem. Phys., 15, 6101–6111, https://doi.org/10.5194/acp-15-6101-2015, https://doi.org/10.5194/acp-15-6101-2015, 2015
Q. Jiang, Y. L. Sun, Z. Wang, and Y. Yin
Atmos. Chem. Phys., 15, 6023–6034, https://doi.org/10.5194/acp-15-6023-2015, https://doi.org/10.5194/acp-15-6023-2015, 2015
Short summary
Short summary
Aerosol composition and sources during the Chinese spring festival are characterized in detail. The roles of fireworks and secondary aerosol in fine particle pollution were elucidated. We observed large reductions of primary species, whereas changes of secondary aerosol during the holiday period were minor. This has significant implications; reducing primary emissions on a local scale during severe haze episodes might have a limited effect on improving air quality in megacities.
Q. Z. Wu, W. S. Xu, A. J. Shi, Y. T. Li, X. J. Zhao, Z. F. Wang, J. X. Li, and L. N. Wang
Geosci. Model Dev., 7, 2243–2259, https://doi.org/10.5194/gmd-7-2243-2014, https://doi.org/10.5194/gmd-7-2243-2014, 2014
D. Ji, L. Wang, J. Feng, Q. Wu, H. Cheng, Q. Zhang, J. Yang, W. Dong, Y. Dai, D. Gong, R.-H. Zhang, X. Wang, J. Liu, J. C. Moore, D. Chen, and M. Zhou
Geosci. Model Dev., 7, 2039–2064, https://doi.org/10.5194/gmd-7-2039-2014, https://doi.org/10.5194/gmd-7-2039-2014, 2014
Y. Kanaya, H. Akimoto, Z.-F. Wang, P. Pochanart, K. Kawamura, Y. Liu, J. Li, Y. Komazaki, H. Irie, X.-L. Pan, F. Taketani, K. Yamaji, H. Tanimoto, S. Inomata, S. Kato, J. Suthawaree, K. Okuzawa, G. Wang, S. G. Aggarwal, P. Q. Fu, T. Wang, J. Gao, Y. Wang, and G. Zhuang
Atmos. Chem. Phys., 13, 8265–8283, https://doi.org/10.5194/acp-13-8265-2013, https://doi.org/10.5194/acp-13-8265-2013, 2013
K. Kawamura, E. Tachibana, K. Okuzawa, S. G. Aggarwal, Y. Kanaya, and Z. F. Wang
Atmos. Chem. Phys., 13, 8285–8302, https://doi.org/10.5194/acp-13-8285-2013, https://doi.org/10.5194/acp-13-8285-2013, 2013
Y. Zhang, K. Sartelet, S. Zhu, W. Wang, S.-Y. Wu, X. Zhang, K. Wang, P. Tran, C. Seigneur, and Z.-F. Wang
Atmos. Chem. Phys., 13, 6845–6875, https://doi.org/10.5194/acp-13-6845-2013, https://doi.org/10.5194/acp-13-6845-2013, 2013
N. He, K. Kawamura, K. Okuzawa, Y. Kanaya, and Z. F. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-16699-2013, https://doi.org/10.5194/acpd-13-16699-2013, 2013
Revised manuscript not accepted
K. Kawamura, K. Okuzawa, S. G. Aggarwal, H. Irie, Y. Kanaya, and Z. Wang
Atmos. Chem. Phys., 13, 5369–5380, https://doi.org/10.5194/acp-13-5369-2013, https://doi.org/10.5194/acp-13-5369-2013, 2013
Y. L. Sun, Z. F. Wang, P. Q. Fu, T. Yang, Q. Jiang, H. B. Dong, J. Li, and J. J. Jia
Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, https://doi.org/10.5194/acp-13-4577-2013, 2013
Related subject area
Atmospheric sciences
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Cited articles
Aulinger, A., Quante, M., and Matthias, V.: Introducing a Partitioning Mechanism for PAHs into the Community Multiscale Air Quality Modeling System and Its Application to Simulating the Transport of Benzo(a)pyrene over Europe, J. Appl. Meteorol. Clim., 46, 1718–1730, https://doi.org/10.1175/2007jamc1395.1, 2007.
Aulinger, A., Matthias, V., and Quante, M.: CMAQ simulations of the benzo(a)pyrene distribution over Europe for 2000 and 2001, Atmos. Environ., 43, 4078–4086, https://doi.org/10.1016/j.atmosenv.2009.04.058, 2009.
Baek, S. O., Field, R. A., Goldstone, M. E., Kirk, P. W., Lester, J. N., and Perry, R.: A review of atmospheric polycyclic aromatic-hydrocarbons-sources,fate and behavior, Water Air Soil Poll., 60, 279–300, https://doi.org/10.1007/bf00282628, 1991.
Bai, L., Chen, W. Y., He, Z. J., Sun, S. Y., and Qin, J.: Pollution characteristics, sources and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 in an office building in northern areas, China, Sustain. Cities Soc., 53, 101891, https://doi.org/10.1016/j.scs.2019.101891, 2020.
Bieser, J., Aulinger, A., Matthias, V., and Quante, M.: Impact of Emission Reductions between 1980 and 2020 on Atmospheric Benzo (a) pyrene Concentrations over Europe, Water Air Soil Poll., 223, 1393–1414, https://doi.org/10.1007/s11270-011-0953-z, 2012.
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Byun, D. W. and Dennis, R.: Design artifacts in eulerian air quality models: Evaluation of the effects of layer thickness and vertical profile correction on surface ozone concentrations, Atmos. Environ., 29, 105–126, https://doi.org/10.1016/1352-2310(94)00225-a, 1995.
Cao, X. H., Huo, S. L., Zhang, H. X., Zheng, J. Q., He, Z. S., Ma, C. Z., and Song, S.: Source emissions and climate change impacts on the multimedia transport and fate of persistent organic pollutants, Chaohu watershed, eastern China, J. Environ. Sci., 109, 15–25, https://doi.org/10.1016/j.jes.2021.02.028, 2021.
Chen, H. S., Wang, Z. F., Li, J., Tang, X., Ge, B. Z., Wu, X. L., Wild, O., and Carmichael, G. R.: GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions, Geosci. Model Dev., 8, 2857–2876, https://doi.org/10.5194/gmd-8-2857-2015, 2015.
Chen, S. C. and Liao, C. M.: Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources, Sci. Total Environ., 366, 112–123, https://doi.org/10.1016/j.scitotenv.2005.08.047, 2006.
Chen, X., Yu, F., Yang, W., Sun, Y., Chen, H., Du, W., Zhao, J., Wei, Y., Wei, L., Du, H., Wang, Z., Wu, Q., Li, J., An, J., and Wang, Z.: Global–regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module, Atmos. Chem. Phys., 21, 9343–9366, https://doi.org/10.5194/acp-21-9343-2021, 2021.
Chen, X. S., Wang, Z. F., Li, J., and Yu, F. Q.: Development of a Regional Chemical Transport Model with Size-Resolved Aerosol Microphysics and Its Application on Aerosol Number Concentration Simulation over China, Sola, 10, 83–87, https://doi.org/10.2151/sola.2014-017, 2014.
Crippa, M., Solazzo, E., Huang, G. L., Guizzardi, D., Koffi, E., Muntean, M., Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution temporal profiles in the Emissions Database for Global Atmospheric Research, Scientific Data, 7, 121, https://doi.org/10.1038/s41597-020-0462-2, 2020.
Dachs, J. and Eisenreich, S. J.: Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 34, 3690–3697, https://doi.org/10.1021/es991201+, 2000.
Ding, D., Xing, J., Wang, S.X., Liu, K.Y., and Hao, J.M.: Estimated Contributions of Emissions Controls, Meteorological Factors, Population Growth, and Changes in Baseline Mortality to Reductions in Ambient PM2.5 and PM2.5-Related Mortality in China, 2013–2017, Environ. Health Persp., 127, 067009, https://doi.org/10.1289/ehp4157, 2019.
Dong, Z. S., Kong, Z. H., Dong, Z., Shang, L. Q., Zhang, R. Q., Xu, R. X., and Li, X.: Air pollution prevention in central China: Effects on particulate-bound PAHs from 2010 to 2018, J. Environ. Manage., 344, 118555, https://doi.org/10.1016/j.jenvman.2023.118555, 2023.
Du, H., Li, J., Chen, X., Wang, Z., Sun, Y., Fu, P., Li, J., Gao, J., and Wei, Y.: Modeling of aerosol property evolution during winter haze episodes over a megacity cluster in northern China: roles of regional transport and heterogeneous reactions of SO2, Atmos. Chem. Phys., 19, 9351–9370, https://doi.org/10.5194/acp-19-9351-2019, 2019.
Efstathiou, C. I., Matejovičová, J., Bieser, J., and Lammel, G.: Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants, Atmos. Chem. Phys., 16, 15327–15345, https://doi.org/10.5194/acp-16-15327-2016, 2016.
Feng, Y. Y., Ning, M., Lei, Y., Sun, Y. M., Liu, W., and Wang, J. N.: Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017, J. Environ. Manage., 252, 109603, https://doi.org/10.1016/j.jenvman.2019.109603, 2019.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, San Diego, CA, https://doi.org/10.1016/B978-0-12-257060-5.X5000-X, 2000.
Friedman, C. L., Pierce, J. R., and Selin, N. E.: Assessing the Influence of Secondary Organic versus Primary Carbonaceous Aerosols on Long-Range Atmospheric Polycyclic Aromatic Hydrocarbon Transport, Environ. Sci. Technol., 48, 3293–3302, https://doi.org/10.1021/es405219r, 2014.
Friedman, C. L. and Selin, N. E.: Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources, Environ. Sci. Technol., 46, 9501–9510, https://doi.org/10.1021/es301904d, 2012.
Galarneau, E., Makar, P. A., Zheng, Q., Narayan, J., Zhang, J., Moran, M. D., Bari, M. A., Pathela, S., Chen, A., and Chlumsky, R.: PAH concentrations simulated with the AURAMS-PAH chemical transport model over Canada and the USA, Atmos. Chem. Phys., 14, 4065–4077, https://doi.org/10.5194/acp-14-4065-2014, 2014.
Gusev, A., Ilyin, I., Rozovskaya, O., Shatalov, V., Travnikov, O., and Strijkina, I.: Assessment of transboundary pollution by toxic substances: Heavy metals and POPs, Meteorological Synthesizing Centre – East, Russia, 74 pp., https://nilu.no/publikasjon/1821637/ (last access: 28 December 2023), 2019.
Han, F. L., Guo, H., Hu, J. L., Zhang, J., Ying, Q., and Zhang, H. L.: Sources and health risks of ambient polycyclic aromatic hydrocarbons in China, Sci. Total Environ., 698, 134229, https://doi.org/10.1016/j.scitotenv.2019.134229, 2020.
Hansen, K. M., Christensen, J. H., Brandt, J., Frohn, L. M., and Geels, C.: Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP, Atmos. Chem. Phys., 4, 1125–1137, https://doi.org/10.5194/acp-4-1125-2004, 2004.
Haritash, A. K. and Kaushik, C. P.: Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review, J. Hazard. Mater., 169, 1–15, https://doi.org/10.1016/j.jhazmat.2009.03.137, 2009.
Harner, T. and Bidleman, T. F.: Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air, Environ. Sci. Technol., 32, 1494–1502, https://doi.org/10.1021/es970890r, 1998.
Inomata, Y., Kajino, M., Sato, K., Ohara, T., Kurokawa, J. I., Ueda, H., Tang, N., Hayakawa, K., Ohizumi, T., and Akimoto, H.: Emission and Atmospheric Transport of Particulate PAHs in Northeast Asia, Environ. Sci. Technol., 46, 4941–4949, https://doi.org/10.1021/es300391w, 2012.
Inomata, Y., Kajino, M., Sato, K., Ohara, T., Kurokawa, J., Ueda, H., Tang, N., Hayakawa, K., Ohizumi, T., and Akimoto, H.: Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source-receptor relationships, Environ. Pollut., 182, 324–334, https://doi.org/10.1016/j.envpol.2013.07.020, 2013.
Jonker, M. T. O. and Koelmans, A. A.: Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment mechanistic considerations, Environ. Sci. Technol., 36, 3725–3734, https://doi.org/10.1021/es020019x, 2002.
Jury, W. A., Spencer, W. F., and Farmer, W. J.: Behavior Assessment Model for Trace Organics in Soil: I. Model Description, J. Environ. Qual., 12, 558–564, https://doi.org/10.2134/jeq1983.00472425001200040025x, 1983.
Kahan, T. F., Kwamena, N. O. A., and Donaldson, D. J.: Heterogeneous ozonation kinetics of polycyclic aromatic hydrocarbons on organic films, Atmos. Environ., 40, 3448–3459, https://doi.org/10.1016/j.atmosenv.2006.02.004, 2006.
Karickhoff, S. W.: Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils, Chemosphere, 10, 833–846, https://doi.org/10.1016/0045-6535(81)90083-7, 1981.
Keyte, I. J., Harrison, R. M., and Lammel, G.: Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons – a review, Chem. Soc. Rev., 42, 9333–9391, https://doi.org/10.1039/c3cs60147a, 2013.
Klöpffer, W., Wagner, B., and Scheringer, M.: Atmospheric degradation of organic substances data for persistence and long-range transport potential, Environ. Sci. Pollut. R., 14, 143–144, https://doi.org/10.1065/espr2007.04.408, 2007.
Kwamena, N. O. A., Clarke, J. P., Kahan, T. F., Diamond, M. L., and Donaldson, D. J.: Assessing the importance of heterogeneous reactions of polycyclic aromatic hydrocarbons in the urban atmosphere using the Multimedia Urban Model, Atmos. Environ., 41, 37–50, https://doi.org/10.1016/j.atmosenv.2006.08.016, 2007.
Lammel, G. and Sehili, A. M.: Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia, Atmos. Environ., 41, 8301–8315, https://doi.org/10.1016/j.atmosenv.2007.06.050, 2007.
Lammel, G., Sehili, A. M., Bond, T. C., Feichter, J., and Grassl, H.: Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons–a modelling approach, Chemosphere, 76, 98–106, https://doi.org/10.1016/j.chemosphere.2009.02.017, 2009.
Lammel, G., Dvorská, A., Klánová, J., Kohoutek, J., Kukacka, P., Prokes, R., and Sehili, A. M.: Long-range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons is Worldwide Problem – Results from Measurements at Remote Sites and Modelling, Acta Chim. Slov., 62, 729–735, 2015.
Li, J., Wang, Z., Zhuang, G., Luo, G., Sun, Y., and Wang, Q.: Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in March 2010, Atmos. Chem. Phys., 12, 7591–7607, https://doi.org/10.5194/acp-12-7591-2012, 2012.
Li, R. F., Zhang, J., and Krebs, P.: Global trade drives transboundary transfer of the health impacts of polycyclic aromatic hydrocarbon emissions, Communications Earth & Environment, 3, 170, https://doi.org/10.1038/s43247-022-00500-y, 2022.
Li, Z., Mulholland, J. A., Romanoff, L. C., Pittman, E. N., Trinidad, D. A., Lewin, M. D., and Sjödin, A.: Assessment of non-occupational exposure to polycyclic aromatic hydrocarbons through personal air sampling and urinary biomonitoring, J. Environ. Monitor., 12, 1110–1118, https://doi.org/10.1039/c000689k, 2010.
Lin, Y., Ma, Y. Q., Qiu, X. H., Li, R., Fang, Y. H., Wang, J. X., Zhu, Y. F., and Hu, D.: Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM2.5 in Beijing, J. Geophys. Res.-Atmos., 120, 7219–7228, https://doi.org/10.1002/2015jd023628, 2015.
Lin, Y., Shi, X. D., Qiu, X. H., Jiang, X., Liu, J. M., Zhong, P. W., Ge, Y. H., Tseng, C.-H., Zhang, J. F., Zhu, T., Araujo, J. A., and Zhu, Y. F.: Reduction in polycyclic aromatic hydrocarbon exposure in Beijing following China's clean air actions, Sci. Bull., 69, 3283–3290, https://doi.org/10.1016/j.scib.2024.08.015, 2024.
Liu, S. J., Lu, Y. L., Wang, T. Y., Xie, S. W., Jones, K. C., and Sweetman, A. J.: Using gridded multimedia model to simulate spatial fate of Benzo α pyrene on regional scale, Environ. Int., 63, 53–63, https://doi.org/10.1016/j.envint.2013.10.015, 2014.
Lou, S. J., Shrivastava, M., Ding, A. J., Easter, R. C., Fast, J. D., Rasch, P. J., Shen, H. Z., Simonich, S. M., Smith, S. J., Tao, S., and Zelenyuk, A.: Shift in Peaks of PAH-Associated Health Risks From East Asia to South Asia and Africa in the Future, Earth's Future, 11, e2022EF003185, https://doi.org/10.1029/2022ef003185, 2023.
Ma, W. L., Liu, L. Y., Jia, H. L., Yang, M., and Li, Y. F.: PAHs in Chinese atmosphere Part I: Concentration, source and temperature dependence, Atmos. Environ., 173, 330–337, https://doi.org/10.1016/j.atmosenv.2017.11.029, 2018.
Ma, W. L., Zhu, F. J., Liu, L. Y., Jia, H. L., Yang, M., and Li, Y. F.: PAHs in Chinese atmosphere Part II: Health risk assessment, Ecotox. Environ. Safe., 200, 110774, https://doi.org/10.1016/j.ecoenv.2020.110774, 2020.
Mu, Q., Shiraiwa, M., Octaviani, M., Ma, N., Ding, A. J., Su, H., Lammel, G., Pöschl, U., and Cheng, Y. F.: Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs, Science Advances, 4, eaap7314, https://doi.org/10.1126/sciadv.aap7314, 2018.
Nam, K. J., Li, Q., Heo, S. K., Tariq, S., Loy-Benitez, J., Woo, T. Y., and Yoo, C. K.: Inter-regional multimedia fate analysis of PAHs and potential risk assessment by integrating deep learning and climate change scenarios, J. Hazard. Mater., 411, 125149, https://doi.org/10.1016/j.jhazmat.2021.125149, 2021.
Octaviani, M., Tost, H., and Lammel, G.: Global simulation of semivolatile organic compounds – development and evaluation of the MESSy submodel SVOC (v1.0), Geosci. Model Dev., 12, 3585–3607, https://doi.org/10.5194/gmd-12-3585-2019, 2019.
Odabasi, M., Cetin, E., and Sofuoglu, A.: Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas–particle partitioning in an urban atmosphere, Atmos. Environ., 40, 6615–6625, https://doi.org/10.1016/j.atmosenv.2006.05.051, 2006.
Quan, J. N., Tie, X. X., Zhang, Q., Liu, Q., Li, X., Gao, Y., and Zhao, D. L.: Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China, Atmos. Environ., 88, 83–89, https://doi.org/10.1016/j.atmosenv.2014.01.058, 2014.
Ravindra, K., Sokhi, R., and Van Grieken, R.: Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation, Atmos. Environ., 42, 2895–2921, https://doi.org/10.1016/j.atmosenv.2007.12.010, 2008.
San José, R., Pérez, J. L., Callén, M. S., López, J. M., and Mastral, A.: BaP (PAH) air quality modelling exercise over Zaragoza (Spain) using an adapted version of WRF-CMAQ model, Environ. Pollut., 183, 151–158, https://doi.org/10.1016/j.envpol.2013.02.025, 2013.
Seigneur, C., Karamchandani, P., Lohman, K., Vijayaraghavan, K., and Shia, R. L.: Multiscale modeling of the atmospheric fate and transport of mercury, J. Geophys. Res.-Atmos., 106, 27795–27809, https://doi.org/10.1029/2000jd000273, 2001.
Semeena, V. S. and Lammel, G.: The significance of the grasshopper effect on the atmospheric distribution of persistent organic substances, Geophys. Res. Lett., 32, L07804, https://doi.org/10.1029/2004gl022229, 2005.
Shen, H. Z., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G. F., Wang, B., Zhang, Y. Y., Chen, Y. C., Lu, Y., Chen, H., Li, T. C., Sun, K., Li, B. G., Liu, W. X., Liu, J. F., and Tao, S.: Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions, Environ. Sci. Technol., 47, 6415–6424, https://doi.org/10.1021/es400857z, 2013.
Shen, H. Z., Tao, S., Liu, J. F., Huang, Y., Chen, H., Li, W., Zhang, Y. Y., Chen, Y. C., Su, S., Lin, N., Xu, Y. Y., Li, B. G., Wang, X. L., and Liu, W. X.: Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility, Scientific Reports, 4, 6561, https://doi.org/10.1038/srep06561, 2014.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R. C., Corley, R. A., Thrall, B. D., Rasch, P. J., Fast, J. D., Simonich, S. L. M., Shen, H. Z., and Tao, S.: Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol, P. Natl. Acad. Sci. USA, 114, 1246–1251, https://doi.org/10.1073/pnas.1618475114, 2017.
Smith, R. L., Davis, J. M., Speckman P., Bock, G. R., and Goode, J. A. (Eds.): Assessing the human health risks of atmospheric particles, Novartis Found Symposium, https://doi.org/10.1002/9780470515600.ch4, 2007.
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X. Y.: The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling, J. Geophys. Res.-Atmos., 95, 16343–16367, https://doi.org/10.1029/JD095iD10p16343, 1990.
Strand, A. and Hov, O.: A model strategy for the simulation of chlorinated hydrocarbon distributions in the global environment, Water Air Soil Poll., 86, 283–316, https://doi.org/10.1007/bf00279163, 1996.
Su, C., Zheng, D. F., Zhang, H., and Liang, R. Y.: The past 40 years' assessment of urban-rural differences in Benzo a pyrene contamination and human health risk in coastal China, Sci. Total Environ., 901, 165993, https://doi.org/10.1016/j.scitotenv.2023.165993, 2023.
Van Noort, P. C. M.: A thermodynamics-based estimation model for adsorption of organic compounds by carbonaceous materials in environmental sorbents, Environ. Toxicol. Chem., 22, 1179–1188, 2003.
Walcek, C. J. and Aleksic, N. M.: A simple but accurate mass conservative, peak-preserving, mixing ratio bounded advection algorithm with Fortran code, Atmos. Environ., 32, 3863–3880, https://doi.org/10.1016/s1352-2310(98)00099-5, 1998.
Wang, L., Zhang, F. Y., Pilot, E., Yu, J., Nie, C. J., Holdaway, J., Yang, L. S., Li, Y. H., Wang, W. Y., Vardoulakis, S., and Krafft, T.: Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities, Int. J. Env. Res. Pub. He., 15, 306, https://doi.org/10.3390/ijerph15020306, 2018.
Wang, Y. S., Li, W. J., Gao, W. K., Liu, Z. R., Tian, S. L., Shen, R. R., Ji, D. S., Wang, S., Wang, L. L., Tang, G. Q., Song, T., Cheng, M. T., Wang, G. H., Gong, Z. Y., Hao, J. M., and Zhang, Y. H.: Trends in particulate matter and its chemical compositions in China from 2013–2017, Sci. China Earth Sci., 62, 1857–1871, https://doi.org/10.1007/s11430-018-9373-1, 2019.
Wang, Z., Maeda, T., Hayashi, M., Hsiao, L.-F., and Liu, K.-Y.: A nested air quality prediction modeling system for urban and regional scales: Application for high-ozone episode in Taiwan, Water Air Soil Poll., 130, 391–396, https://doi.org/10.1023/a:1013833217916, 2001.
Wang, Z., Li, J., Mu, X., Zhao, L. Y., Gu, C., Gao, H., Ma, J., Mao, X., and Huang, T.: A WRF-CMAQ modeling of atmospheric PAH cycling and health risks in the heavy petrochemical industrialized Lanzhou valley, Northwest China, J. Clean. Prod., 291, 125989, https://doi.org/10.1016/j.jclepro.2021.125989, 2021.
Wei, Y., Chen, X., Chen, H., Li, J., Wang, Z., Yang, W., Ge, B., Du, H., Hao, J., Wang, W., Li, J., Sun, Y., and Huang, H.: IAP-AACM v1.0: a global to regional evaluation of the atmospheric chemistry model in CAS-ESM, Atmos. Chem. Phys., 19, 8269–8296, https://doi.org/10.5194/acp-19-8269-2019, 2019.
Wu, Z., Chen, X., and Wang, Z.: A Global-Regional Nested Model of Polycyclic aromatic hydrocarbons, Zenodo [code], https://doi.org/10.5281/zenodo.12214119, 2024a.
Wu, Z., Chen, X., and Wang, Z.: Results and validation of Global-Regional Nested Model for polycyclic aromatic hydrocarbons, Zenodo [data set], https://doi.org/10.5281/zenodo.11595165, 2024b.
Yan, D., Wu, S., Zhou, S., Tong, G., Li, F., Wang, Y., and Li, B.: Characteristics, sources and health risk assessment of airborne particulate PAHs in Chinese cities: A review, Environ. Pollut., 248, 804–814, https://doi.org/10.1016/j.envpol.2019.02.068, 2019.
Yang, L., Zhang, X., Xing, W. L., Zhou, Q. Y., Zhang, L. L., Wu, Q., Zhou, Z. J., Chen, R. J., Toriba, A., Hayakawa, K., and Tang, N.: Yearly variation in characteristics and health risk of polycyclic aromatic hydrocarbons and nitro-PAHs in urban shanghai from 2010–2018. J. Environ. Sci., 99, 72–79, https://doi.org/10.1016/j.jes.2020.06.017, 2021.
Ye, Q., Li, J., Chen, X., Chen, H., Yang, W., Du, H., Pan, X., Tang, X., Wang, W., Zhu, L., Li, J., Wang, Z., and Wang, Z.: High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global tropospheric atmospheric chemistry source–receptor model (GNAQPMS-SM), Geosci. Model Dev., 14, 7573–7604, https://doi.org/10.5194/gmd-14-7573-2021, 2021.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415, https://doi.org/10.1029/1999jd900876, 1999.
Zhang, H., Zhang, X., Wang, Y., Bai, P. C., Zhang, L. L., Chen, L. J., Han, C., Yang, W. J., Wang, Q. M., Cai, Y. P., Nagao, S., and Tang, N.: Factor analysis of recent variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) and 1-nitropyrene (1-NP) in Shenyang, China from 2014 to 2020, Atmos. Pollut. Res., 14, 101900, https://doi.org/10.1016/j.apr.2023.101900, 2023.
Zhang, J., Feng, L., Zhao, Y., Hou, C., and Gu, Q.: Health risks of PM2.5-bound polycyclic aromatic hydrocarbon (PAH) and heavy metals (PPAH&HM) during the replacement of central heating with urban natural gas in Tianjin, China, Environ. Geochem. Health, 44, 2495–2514, https://doi.org/10.1007/s10653-021-01040-8, 2022.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, M., Xie, J. F., Wang, Z. T., Zhao, L. J., Zhang, H., and Li, M.: Determination and source identification of priority polycyclic aromatic hydrocarbons in PM2.5 in Taiyuan, China, Atmos. Res., 178, 401–414, https://doi.org/10.1016/j.atmosres.2016.04.005, 2016.
Zhang, Q., Zheng, Y. X., Tong, D., Shao, M., Wang, S. X., Zhang, Y. H., Xu, X. D., Wang, J. N., He, H., Liu, W. Q., Ding, Y. H., Lei, Y., Li, J. H., Wang, Z. F., Zhang, X. Y., Wang, Y. S., Cheng, J., Liu, Y., Shi, Q. R., Yan, L., Geng, G. N., Hong, C. P., Li, M., Liu, F., Zheng, B., Cao, J. J., Ding, A. J., Gao, J., Fu, Q. Y., Huo, J. T., Liu, B. X., Liu, Z. R., Yang, F. M., He, K. B., and Hao, J. M.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, Y. and Tao, S.: Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004, Atmos. Environ., 43, 812–819, https://doi.org/10.1016/j.atmosenv.2008.10.050, 2009.
Zhang, Y., Shen, H., Tao, S., and Ma, J.: Modeling the atmospheric transport and outflow of polycyclic aromatic hydrocarbons emitted from China, Atmos. Environ., 45, 2820–2827, https://doi.org/10.1016/j.atmosenv.2011.03.006, 2011a.
Zhang, Y., Tao, S., Ma, J., and Simonich, S.: Transpacific transport of benzo[a]pyrene emitted from Asia, Atmos. Chem. Phys., 11, 11993–12006, https://doi.org/10.5194/acp-11-11993-2011, 2011b.
Zhang, Y., Hemperly, J., Meskhidze, N., and Skamarock, W. C.: The Global Weather Research and Forecasting (GWRF) Model: Model Evaluation, Sensitivity Study, and Future Year Simulation, Atmospheric and Climate Sciences, 2, 231–253, https://doi.org/10.4236/acs.2012.23024, 2012a.
Zhang, Y., Jaeglé, L., van Donkelaar, A., Martin, R. V., Holmes, C. D., Amos, H. M., Wang, Q., Talbot, R., Artz, R., Brooks, S., Luke, W., Holsen, T. M., Felton, D., Miller, E. K., Perry, K. D., Schmeltz, D., Steffen, A., Tordon, R., Weiss-Penzias, P., and Zsolway, R.: Nested-grid simulation of mercury over North America, Atmos. Chem. Phys., 12, 6095–6111, https://doi.org/10.5194/acp-12-6095-2012, 2012b.
Zhang, Y., Tao, S., Shen, H., and Ma, J.: Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population, P. Natl. Acad. Sci. USA, 106, 21063–21067, https://doi.org/10.1073/pnas.0905756106, 2009.
Zhen, Z. X.: Observation and simulation of atmospheric polycyclic aromatic hydrocarbons in the North China Plain, PhD thesis, Nanjing university of information science and technology, China, 142 pp., 2023.
Zhu, F.-J., Ma, W.-L., Hu, P.-T., Zhang, Z.-F., and Li, Y.-F.: Temporal trends of atmospheric PAHs: Implications for the influence of the clean air action, J. Clean. Prod., 296, 126494, https://doi.org/10.1016/j.jclepro.2021.126494, 2021.
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional...