Articles | Volume 17, issue 23
https://doi.org/10.5194/gmd-17-8799-2024
https://doi.org/10.5194/gmd-17-8799-2024
Methods for assessment of models
 | 
11 Dec 2024
Methods for assessment of models |  | 11 Dec 2024

Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter

Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee

Viewed

Total article views: 886 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
659 176 51 886 77 46 33
  • HTML: 659
  • PDF: 176
  • XML: 51
  • Total: 886
  • Supplement: 77
  • BibTeX: 46
  • EndNote: 33
Views and downloads (calculated since 05 Dec 2023)
Cumulative views and downloads (calculated since 05 Dec 2023)

Viewed (geographical distribution)

Total article views: 886 (including HTML, PDF, and XML) Thereof 832 with geography defined and 54 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Jan 2025
Download
Short summary
We developed an advanced snow water equivalent (SWE) data assimilation framework using satellite data based on a land surface model. The results of this study highlight the beneficial impact of data assimilation by effectively combining land surface model and satellite-derived data according to their relative uncertainty, thereby controlling not only transitional regions but also the regions with heavy snow accumulation that are difficult to detect by satellite.