Articles | Volume 17, issue 23
https://doi.org/10.5194/gmd-17-8799-2024
https://doi.org/10.5194/gmd-17-8799-2024
Methods for assessment of models
 | 
11 Dec 2024
Methods for assessment of models |  | 11 Dec 2024

Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter

Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee

Related authors

Adjusting Diurnal Error in In-Situ Soil Moisture Measurements via Fourier Time-Filtering Using Land Surface Model Datasets
Junnyeong Han, Eunkyo Seo, and Paul A. Dirmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2025-4163,https://doi.org/10.5194/egusphere-2025-4163, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Implementation of multi-layer snow scheme in seasonal forecast system and its impact on model climatological bias
Eunkyo Seo and Paul A. Dirmeyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-1066,https://doi.org/10.5194/egusphere-2024-1066, 2024
Short summary
Accurate assessment of land–atmosphere coupling in climate models requires high-frequency data output
Kirsten L. Findell, Zun Yin, Eunkyo Seo, Paul A. Dirmeyer, Nathan P. Arnold, Nathaniel Chaney, Megan D. Fowler, Meng Huang, David M. Lawrence, Po-Lun Ma, and Joseph A. Santanello Jr.
Geosci. Model Dev., 17, 1869–1883, https://doi.org/10.5194/gmd-17-1869-2024,https://doi.org/10.5194/gmd-17-1869-2024, 2024
Short summary
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022,https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary

Cited articles

Allen, R. J. and Zender, C. S.: Forcing of the Arctic Oscillation by Eurasian snow cover, J. Climate, 24, 6528–6539, 2011. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 
Brasnett, B.: A global analysis of snow depth for numerical weather prediction, J. Appl. Meteorol., 38, 726–740, 1999. 
Brown, L. C., Howell, S. E., Mortin, J., and Derksen, C.: Evaluation of the Interactive Multisensor Snow and Ice Mapping System (IMS) for monitoring sea ice phenology, Remote Sens. Environ., 147, 65–78, https://doi.org/10.1016/j.rse.2014.02.012, 2014. 
Download
Short summary
We developed an advanced snow water equivalent (SWE) data assimilation framework using satellite data based on a land surface model. The results of this study highlight the beneficial impact of data assimilation by effectively combining land surface model and satellite-derived data according to their relative uncertainty, thereby controlling not only transitional regions but also the regions with heavy snow accumulation that are difficult to detect by satellite.
Share