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Abstract. Snow water equivalent (SWE), as one of the land
initial or boundary conditions, plays a crucial role in global
or regional energy and water balance, thereby exerting a con-
siderable impact on seasonal and subseasonal-scale predic-
tions owing to its enduring persistence over 1 to 2 months.
Despite its importance, most SWE initialization remains
challenging due to its reliance on simple approaches based
on spatially limited observations. Therefore, this study de-
veloped an advanced SWE data assimilation framework with
satellite remote sensing data utilizing the local ensemble
transform Kalman filter (LETKF) and the Joint UK Land
Environment Simulator (JULES) land model. This approach
constitutes an objective method that optimally combines two
previously unattempted incomplete data sources: the satellite
SWE retrieval from the Advanced Microwave Scanning Ra-
diometer 2 (AMSR2) and dynamically balanced SWE from
the JULES land surface model. In this framework, an algo-
rithm is additionally considered to determine the assimilation
process based on the presence or absence of snow cover from
the Interactive Multisensor Snow and Ice Mapping System
(IMS) satellite, renowned for its superior reliability.

The baseline model simulation from JULES without satel-
lite data assimilation shows better performance in high-
latitude regions with heavy snow accumulation but is rel-
atively inferior in the transition regions with less snow
and high spatial and temporal variation. Contrastingly, the
AMSR2 satellite data exhibit better performance in the tran-
sition regions but poorer performance in the high latitudes,
presumably due to the limitation of the satellite data in the

penetrating depth. The data assimilation (DA) demonstrates
the positive impacts by reducing uncertainty in the JULES
model simulations in most areas, particularly in the midlat-
itude transition regions. In the transition regions, the model
background errors from the ensemble runs are significantly
larger than the observation errors, emphasizing great uncer-
tainty in the model simulations. The results of this study
highlight the beneficial impact of data assimilation by ef-
fectively combining land surface model and satellite-derived
data according to their relative uncertainty, thereby control-
ling not only transitional regions but also the regions with
heavy snow accumulation that are difficult to detect by satel-
lite.

1 Introduction

Snow plays a crucial role in regulating the water, energy, and
carbon exchange between the land surface and atmosphere
(e.g., Dutra et al., 2011; Thomas et al., 2016). A snowpack
tends to increase surface albedo and soil moisture as the snow
melts (Eagleson, 1970), thereby affecting the climate system
through changes in water and energy balances. In addition
to local impacts, the continental snowpack over Eurasia can
influence the large-scale atmospheric circulation during win-
ter (e.g., Li and Wang, 2014) or in spring (e.g., Broxton et
al., 2017). Eurasian autumn snow in particular can affect
upward-propagating stationary Rossby-wave activity, lead-
ing to stratospheric warming and weakening of the strato-
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spheric polar vortex and jet stream, which in turn emerges as
a negative Arctic oscillation (AO)-like pattern at the surface
during winter due to downward propagation through the tro-
posphere. Its impact is shown in both observation and model
experiments (e.g., Allen and Zender, 2011; Cohen et al.,
2007). Furthermore, the interannual variability of snow melt-
ing during the boreal spring season affects surface soil mois-
ture in summer, which has important implications for heat-
wave development and emphasizing mechanisms through
land–atmosphere interactions (Seo et al., 2020).

On subseasonal to seasonal (S2S) timescales, land initial
states are crucial components in the S2S timescale predic-
tions due to the inherent memory that changes slowly for 1
to 2 months in the climate system (e.g., Derome et al., 2005;
Chen et al., 2010; Seo et al., 2019). In particular, the realis-
tic snow initial states contribute to improving S2S predic-
tion skills, as proven in several modeling studies. For ex-
ample, previous studies (Orsolini et al., 2013; Jeong et al.,
2013) demonstrated a considerable enhancement in the pre-
diction skill of 2 m air temperature up to a lead time of 1–
2 months across certain regions of Eurasia and the Arctic dur-
ing winter, depending on snow initialization. Moreover, other
studies (Orsolini et al., 2016; Li et al., 2019) have revealed
that wave activity propagating toward the stratosphere, in-
fluenced by snow initial conditions in climate models, can
induce changes in the polar vortex and contribute to the per-
sistence of the North Atlantic Oscillation (NAO) and the AO.
This emphasizes the significance of snow initialization in cli-
mate models as an essential process for enhancing prediction
performance at the S2S timescales.

Snow states, i.e., snow water equivalent (SWE) used di-
rectly for hydrological analysis and initial states of the model
(Li et al., 2019; Gan et al., 2021), are generally provided
from in situ observation data, remote sensing retrievals from
satellites, or numerical models such as a land surface model
(LSM) operated based on the observed atmospheric vari-
ables. For the in situ data snow depth (SD) measurements
prevail, largely attributed to the challenges associated with
acquiring precise SWE data (Takala et al., 2011; De Rosnay
et al., 2014). Surface synoptic observations (SYNOPs) serve
as the principal source of SD measurements. In situ measure-
ments offer the most dependable snow information, yet they
are characterized by relatively coarse temporal and spatial
resolutions, particularly within limited areas, due to the spa-
tial heterogeneity inherent in snow distribution (Helmert et
al., 2018; Meyal et al., 2020). Satellite-derived observations
using conical scanning microwave instruments may provide
spatially consistent data coverage across the globe. Cho et
al. (2017) showed the SWE retrieval results from two pas-
sive microwave sensors, the Advanced Microwave Scanning
Radiometer 2 (AMSR2) and the Special Sensor Microwave
Imager Sounder (SSMIS). However, the algorithms for SWE
retrieval exhibit a degree of sensitivity to a variety of pa-
rameters such as snow liquid water content and snow grain
size distribution (De Rosnay et al., 2014). Hence, satellite-

based SWE data still have limitations in accuracy, especially
under deep snow conditions due to the limited penetration
depth (Gan et al., 2021). On the other hand, satellite retrieval
can estimate snow cover accurately under clear-sky condi-
tions (Brubaker et al., 2009). Model simulations obtained
from LSMs and simple snow models can cover complete
spatiotemporal resolution but involve potentially large uncer-
tainties due to the deficiencies in the physical parameteriza-
tions and meteorological forcing data (Dirmeyer et al., 2006;
Seo et al., 2021).

Considering that a snow observation dataset has its re-
spective strengths as well as limitations, data assimilation or
other data fusion methods can prove to be beneficial for con-
structing snow states such as reanalysis data (e.g., Brasnett,
1999; Dee et al., 2011; Meng et al., 2012; Pullen et al., 2011;
De Rosnay et al., 2014). For example, the snow analysis for
the Canadian Meteorological Center (CMC) utilizes a two-
dimensional optimal interpolation (2D-OI) scheme with in
situ observations and the outputs from a simple snow model
(Brown et al., 2003). The National Centers for Environmen-
tal Prediction (NCEP) Climate Forecast System Reanalysis
(CFSR) combines the multi-satellite-based Interactive Mul-
tisensor Snow and Ice Mapping System (IMS) as satellite-
based snow cover retrieval and the outputs from the global
snow model of the Air Force Weather Agency (Meng et al.,
2012). At the European Centre for Medium-Range Weather
Forecasts (ECMWF), the ECMWF reanalysis (ERA)-Interim
and ERA5 for snow analysis employ a Cressman interpola-
tion and 2D-OI, respectively, with the IMS, in situ observa-
tion, and the results from a land surface model (Dee et al.,
2011; De Rosnay et al., 2014). The Japanese 55-year Re-
analysis (JRA-55) also utilizes the 2D-OI with in situ ob-
servations, satellite-based snow cover from SSMIS, and the
results from an LSM (Kobayashi et al., 2015). Given that the
majority of the reanalysis datasets rely on snow depth mea-
surements, the SWE estimation is likely to introduce poten-
tial accuracy concerns when the snow depth information is
combined with the snow density calculations.

Climate prediction systems in operational centers such
as the Meteorological Office (Met Office) in the United King-
dom and the Korean Meteorological Administration (KMA)
conduct snow initialization by utilizing the results of the
operational global Unified Model (UM) and the IMS snow
cover, which solely indicates the presence of snow (Pullen
et al., 2011) and is lacking in its ability to reflect the physi-
cal quantity of it. The initialization at NCEP also performs
a similar approach using input data combined from IMS
snow cover and results from the global SD model (SNODEP;
Meng et al., 2012). Furthermore, the snow initialization of
ECMWF employs optimal interpolation with a combination
of results from the LSM, IMS snow cover, and in situ ob-
servations from SYNOPs and national networks available on
the Global Telecommunication System (GTS). However, in
regions where ground observations are unavailable, large er-
rors may exist in the snow model outputs due to uncertainties
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in atmospheric forcing and imperfect model parameteriza-
tion (Boone et al., 2004; Essery et al., 2009). Often, the snow
processes parameterized in LSMs rely on observed proper-
ties sampled in limited areas (Lim et al., 2022). In addition,
as IMS snow cover only identifies the presence of snow, data
assimilation with satellite snow cover only is not sufficient
and inappropriate in constraining water and energy conserva-
tion. Alternative methods that consider the physical quantity
of snow are required for the snow initialization.

One approach to mitigate the spatial discontinuity of
ground observations is to use satellite-derived SWE with
wide spatial coverage and frequent temporal resolution.
However, the SWE retrievals from satellites still have con-
siderable uncertainties (De Lannoy et al., 2010; Dawson et
al., 2018), which can arise from vegetation and terrain inter-
ference, sensor signal saturation, snowfall amount, and sim-
plifications in the underlying assumptions of the retrieval al-
gorithms (Liu et al., 2015). In particular, a region with heavy
snow accumulation leads to a significant underestimation of
SWE due to the limitations in penetration depth from satel-
lites (Gan et al., 2021) so that satellite-derived SWE is not
employed in the land initialization process. In previous stud-
ies, various approaches have been attempted to improve SWE
product performance, such as combining satellite-derived
SWE with ground observations (Pulliainen et al., 2020), dif-
ferent satellite datasets (Gan et al., 2021), simple snow mod-
els (Dziubanski and Franz, 2016), or LSMs (Kwon et al.,
2017; Kumar et al., 2019). However, most previous stud-
ies have focused on targeted regions with limited ground-
based observations. Snow initialization in global coverage
using satellite-derived SWE remains a persistently challeng-
ing task.

Therefore, this study developed an advanced SWE data as-
similation framework with satellite remote sensing data using
the local ensemble transform Kalman filter (LETKF) and the
Joint UK Land Environment Simulator (JULES) land model.
While there are existing studies on SWE data assimilation
(e.g., Oaida et al., 2019; Smyth et al., 2020; Luojus et al.,
2021), the use of passive microwave observations based on
the LETKF in this context is relatively rare (e.g., Girotto
et al., 2020). This approach constitutes an objective method
that optimally combines two previously unattempted incom-
plete data sources: the satellite SWE from the Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2) and the dynami-
cally balanced SWE from the JULES land model forced by
observed atmospheric fields. The estimated SWE data ex-
hibit better consistency by additionally using snow cover data
from the IMS data. This assimilation framework also enables
the assessment of improvement as it provides insights into
the reasons behind the performance improvement based on
the Kalman gain analysis that measures the relative signif-
icance of the input data between the satellite and the land
model during the data assimilation cycle. The satellite data
have demonstrated high reliability in the transition regions
of climatologically shallow snow conditions (Gan et al.,

2021), and these regions are known as “hot spots” of strong
atmosphere–land coupling through snow melting and asso-
ciated surface energy and water balance changes (Koster et
al., 2004; Dirmeyer, 2011; Huning and AghaKouchak, 2020).
From these perspectives, it would be important to evaluate
the impact of satellites on the transition regions as well as
on the deep accumulation regions where accurate satellite
retrievals are challenging. Furthermore, the benefits of as-
similating satellite retrievals in extremely high-temperature
events, such as the case in April 2020 over Eurasia, can be
elucidated. In this regard, we expect that this snow data as-
similation framework with satellite-derived SWE can be sig-
nificant in providing optimal snow initial states for improv-
ing the S2S prediction by global climate models.

2 Data and model

2.1 Satellite data

The snow information including snow cover and SWE can
be derived from satellite measurements offering global cov-
erage and high temporal as well as spatial resolution. For data
assimilation, this study uses SWE calculated from brightness
temperature measurements obtained by the AMSR2 on board
the Japanese Aerospace Exploration Agency (JAXA) Global
Change Observation Mission-Water (GCOM-W) satellite.
This AMSR2 Unified Level-3 (L3) dataset offers daily es-
timation of SWE at 25 km resolution from July 2012 to the
present. AMSR2 has a sensor designed to detect microwave
radiation naturally emitted from the surface and atmosphere,
employing six frequency bands ranging from 6.9 to 89 GHz.
Through this conical scanning mechanism, AMSR2 can ac-
quire day and night datasets with nearly constant spatial res-
olution over more than 99 % of the global coverage every
2 d. Comprehensive explanations of AMSR2 characteristics
are available in Imaoka et al. (2010). AMSR2 is selected for
the assimilation because it produces more accurate results
by assimilating data from modern sensors (e.g., AMSR2)
compared to data from conventional sensors (e.g., AMSR-E)
(Cho et al., 2017).

The widely used multi-sensor-derived snow cover is IMS
(e.g., Ramsay, 1998a; Helfrich et al., 2007) produced by the
NOAA National Environmental Satellite Data and Informa-
tion Service (NESDIS) for the Northern Hemisphere from
February 2004 to the present at 4 km resolution. This dataset
is generated using various data products, including multi-
satellite images and in situ observations (U.S. National Ice
Center, 2008). Since IMS provides binary (0: no snow, 1:
snow-covered) snow cover information, we transform the
IMS snow cover at 4 km grids to the snow cover fraction
(SCF) within a 50 km LSM grid by counting the snow pixel
number with a value of 1. A 50 km LSM grid is declared as
snow-covered when more than 50 % of the 4 km pixels within
the grid are covered with snow. In this study, the applica-
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tion of the assimilation process is determined based on IMS-
based SCF, renowned for its superior reliability (e.g., Brown
et al., 2014). Further details will be described in Sect. 3.3.

2.2 Reference data for SWE and SCF

The CMC daily estimated SWE is used for verification. The
SWE data are processed using statistical interpolation be-
tween a background field derived from a simple snow model
and in situ daily SD (Brown and Brasnett, 2010). In detail,
this dataset utilizes optimal interpolation methods to acquire
spatial SD from the in situ data, involving SYNOPs, special
aviation reports from the World Meteorological Organization
(WMO), and meteorological aviation reports (METARs). In
areas with scant in situ data, a simple snow accumulation and
melt model is employed to create an optimal interpolation
that estimates snowmelt and snowfall worldwide, assuming
the persistence of the snowpack mass between snowfall and
melting events (Brasnett, 1999). Although the average eleva-
tion of snow measurement stations used in CMC is biased
toward low elevations (<400 m), potentially causing relative
negative biases at higher elevations with heavy snow accu-
mulation, the CMC dataset is often considered the premier
snow analysis accessible in the Northern Hemisphere (Su et
al., 2010) and has still been widely used to evaluate model
outputs (e.g., Reichle et al., 2011, 2017; Toure et al., 2018).
Therefore, the SWE of CMC produced without the satellite-
derived data is selected for verification as an independent
dataset for evaluating the assimilated analysis with remote
sensing snow retrievals. Since only daily SD analysis is pro-
vided in CMC, it is converted to daily SWE based on snow
bulk density methods (e.g., Sturm et al., 2010). It is available
from 12 March 1998 to the present and offers comprehensive
coverage of the entire Northern Hemisphere with a horizontal
resolution of 24 km. The SWE of CMC at its native horizon-
tal resolution is interpolated onto the LSM grid through local
area averaging.

2.3 JULES LSM

This study utilizes the JULES LSM from the Met Office
(Best et al., 2011), a component land model of the Global
Seasonal Forecasting System version 6 (GloSea6), which is
a fully coupled atmosphere, ocean, land, and sea ice model.
The surface types (or snow tiles) in the JULES LSM consist
of four non-vegetated types (urban, land ice, inland water,
and bare soil) and five vegetation functional types: C3 tem-
perate grass, needleleaf trees, shrubs, C4 tropical grass, and
broadleaf trees. For each surface tile, a separate energy bal-
ance is computed, and the average energy balance in the grid
cells is determined by applying weights to the values of each
surface tile. Two schemes are used within JULES to repre-
sent surface snow (e.g., Best et al., 2011; Burke et al., 2013).
The simple method involves a zero-layer approach, which
modifies the top soil level without using explicit model layers

to represent snow processes. The other is the multi-layer ap-
proach, which is more comprehensive, as described in Best et
al. (2011). In the case of vegetated surfaces, snow can be sep-
arated into ground snow and canopy snow or stored in a sin-
gle effective reservoir. As both the zero-layer and multi-layer
snow models provide similar results under various conditions
(Best et al., 2011), this study used the zero-layer snow model
with constant thermal conductivity and density for snow. Al-
though the heat capacity of snow is ignored, the bulk thermal
conductivity in the surface layer is reduced as the thermal
conductivity of snow differs from that of the soil and the layer
thickness increases. As long as snow persists on the ground,
the skin temperature cannot exceed 0 °C, yet the heat flux
utilized for melting the snow is diagnosed as the residual in
the surface energy balance. The melted water is immediately
drained from the snow and divided into runoff and soil infil-
tration, and liquid water is not stored or frozen in the snow.
A detailed description of the energy and water cycling in the
JULES LSM can be referenced in Best et al. (2011).

The prognostic variables (e.g., SWE) in the LSM are de-
termined by meteorological forcing variables such as 2 m air
temperature, humidity, 10 m wind speed, precipitation, sur-
face pressure, and radiative fluxes. The 3-hourly JRA-55 re-
analysis at 0.56° spatial resolution is employed for the me-
teorological forcing variables, which is linearly interpolated
to the 50 km resolution of the LSM. The model background
error needed for data assimilation is estimated by JULES
ensemble runs with perturbed initial and boundary condi-
tions. Following previous studies (Reichle, 2008; Seo et al.,
2021), meteorological forcing variables are perturbed to ac-
count for the uncertainties in these variables, especially pre-
cipitation, downward shortwave, and downward longwave.
Perturbations are applied using additive adjustments assum-
ing a normal distribution for longwave radiation and multi-
plicative adjustments following a lognormal distribution for
shortwave radiation and precipitation, as guided by previous
studies (Seo et al., 2021). Here, the ensemble means of ad-
ditional and multiplicative perturbations are zero and 1, re-
spectively. The relationship between disturbed precipitation
and radiative flux ensures the physical consistency among at-
mospheric forcing variables (Reichle, 2008). For instance, a
negative anomaly in precipitation and downward longwave
radiation is statistically linked to a positive anomaly of down-
ward shortwave radiation. Detailed explanations regarding
the perturbation of atmospheric forcings can be found in Re-
ichle (2008).

3 Methodology

3.1 Bias correction

The discrepancy in SWE between remote sensing and LSMs
often arises due to uncertainties in the model physics, forc-
ing data, and satellite retrievals. These uncertainties can lead
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to a significant discrepancy in SWE between model simula-
tions and satellite remote sensing retrievals, potentially de-
grading performance. In previous studies (e.g., Reichle and
Koster, 2004; Seo et al., 2021), a scaling method of nonlinear
cumulative distribution function (CDF) matching is used to
account for the systematic bias of soil moisture in the model
backgrounds. However, unlike soil moisture, SWE presents
varying characteristics in the CDF distribution across differ-
ent regions, such as between high and low latitudes, thus re-
quiring the estimation of the distribution at each grid point.
As a result, the insufficient sample size hinders the clear
simulation of the CDF distribution, posing challenges in its
application. To address this issue, we attempted to apply a
simple and effective standard normal deviation scaling to
satellite-derived SWE at each grid point, considering its po-
tential use as initial conditions for JULES-LSM-based cli-
mate models. Based on the climatology and standard devia-
tion for the model and remote sensing retrievals, the scaled
SWE (Onew) from the satellite can be derived from the fol-
lowing relation:

Onew =

(
O −O

σo
× σm

)
+M, (1)

where O(σo) and M(σm) indicate the climatology (standard
deviation) of remote sensing retrievals and the model, respec-
tively. This approach has been widely utilized in observation-
based land initialization and has proven to be effective (e.g.,
Koster et al., 2011; Jeong et al., 2013).

3.2 Data assimilation method

The snow assimilation is conducted based on the LETKF
(e.g., Hunt et al., 2007), which is utilized to combine re-
motely sensed retrievals with the LSM outputs (also called
backgrounds) at each grid point to produce a snow analysis.
Unlike variational data assimilation methods, non-variational
approaches (i.e., ensemble-based filters) characterize a prob-
abilistic representation, with the spread of the ensemble
serving as an estimate of forecast uncertainty. LETKF has
several advantages over other data assimilation methods.
First, LETKF can efficiently handle large datasets and high-
dimensional state variables by localizing the covariance ma-
trix. This offers efficiency in parallel computing, making it
suitable for real-time forecasting and high-resolution data as-
similation. In this study, the horizontal local patch size and
the localization length scale parameters are defined as 150
and 30 km (Table 1), respectively. This approach involves
the weight function for the covariance localization within the
local patch centered at the analysis grid (e.g., Houtekamer
and Mitchell, 2001; Hamill et al., 2001). This function as-
signs larger errors to observations located farther away from
the center of the local patch, as proposed by Miyoshi and
Yamane (2007), depending on the Gaussian function. Sec-
ondly, the method utilizes model simulation ensembles to

capture the uncertainty in the initial states and background
errors, which allows for a better representation of the flow-
dependent probability distribution of the state variables that
vary in time and space. Third, the LETKF employs an infla-
tion parameter to adjust the ensemble spread, ensuring real-
istic uncertainty estimation by accounting for background er-
rors. The underestimation of the analysis error covariance is
typically issued by spatially and temporally constant bound-
ary conditions as well as observation errors and limited en-
semble members. Based on the standardized LETKF, this
study applies a multiplicative covariance inflation of 20 % of
the spread of 24 member ensembles for each data assimila-
tion cycle. Furthermore, the Kalman gain analysis (Seo et al.,
2021), which quantifies the ratio of the background error to
the total error (equivalent to the sum of the background and
the observation error), is conducted. This analysis serves to
determine the weights assigned to assimilated observations
in the analysis update processes of the LETKF.

3.3 Snow data assimilation design

This study conducts the advanced daily cycle snow data as-
similation experiment at each grid point using the LETKF
based on the satellite data and the JULES LSM outputs
driven by 3-hourly JRA-55 reanalysis atmospheric forcing.
The snow assimilation processes are illustrated in Fig. 1, with
a more detailed description in Table 1. Since data assimila-
tion is conducted by considering the error of SWE in both the
model and the observation, it is important to accurately un-
derstand the observation and background errors to improve
the performance of data assimilation. The experiment cal-
culates the background error from the 24 ensemble member
spreads generated by perturbing atmospheric forcings such
as longwave radiation, shortwave radiation, and precipitation
in JULES LSM, as provided in Sect. 2.3. Due to the ab-
sence of precise error estimates for AMSR2 SWE retrievals,
the observation error is conservatively prescribed as 10 % of
AMSR2 SWE for each grid compared to the previous study
utilizing AMSR2 SWE data (Lee et al., 2015), considering
the general increase in errors during the snow accumulation
period with the development of deep snowpack (Foster et
al., 2005; Cho et al., 2017). Here, the bias-corrected AMSR2
satellite data as described in Sect. 3.1 are used as the obser-
vation data, and the updated snow analysis state through data
assimilation becomes a new initial state for the next integra-
tion in JULES LSM (Fig. 1). In addition, the analysis state
of this method is calculated based on the IMS snow cover
fraction as follows (Fig. 1). If the SCF from IMS is 0, the
snow analysis is set to zero; otherwise, it is derived through
data assimilation. The reason for this is the importance of the
presence or absence of snow in the climate system, as well as
the high reliability of the IMS data (e.g., Brown et al., 2014).
A background experiment using JULES LSM without satel-
lite data assimilation as a baseline (referred to hereafter as
“Openloop”) is also performed by employing the same en-
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Table 1. Description of the land surface model, the data used, and assimilation experiment designs.

Information References

Land surface model JULES Best et al. (2011)

Atmospheric forcing 3-hourly JRA-55 reanalysis Kobayashi et al. (2015)

Snow observation AMSR2 and IMS Imaoka et al. (2010)
Ramsay (1998a)
Helfrich et al. (2007)

Data assimilation scheme Local ensemble transform
Kalman filter (LETKF)

Hunt et al. (2007)
Miyoshi and Yamane (2007)

Resolution (km) 0.5°× 0.5° (∼ 50)
1 d, DA cycle

Localization patch size (km) 3× 3 (150), σ = 30
Ensemble sizes 24

Experiment period 2013–2020, April

semble perturbations, thereby measuring the skill improve-
ment from the snow analysis state through the assimilation
of satellite-derived SWE and IMS SCF from satellite and sur-
face observations (referred to hereafter as “DA”). All exper-
iments are conducted in April from 2013 to 2020, which is
one of the months with low snow performance in the LSM
when the snow begins to melt in the Northern Hemisphere
(e.g., Toure et al., 2018; You et al., 2020).

4 Results

4.1 Skill verification

Figure 2 displays the climatological mean SCF from the
IMS multi-satellite data (Brown et al., 2014) and the differ-
ences from IMS for AMSR2, Openloop, JRA-55, and DA for
April 2013–2020. Here, the JRA-55 SCF serves as a refer-
ence dataset for comparison with other reanalyses and is as-
sociated with meteorological forcing data used in the JULES
land surface model. April is a month when the accumulated
snow during the cold season begins to melt. This study de-
fines the transitional region with a climatological mean SWE
of less than 16 mm as in previous studies (e.g., Gan et al.,
2021); the boundary of these transition regions is represented
by the black lines in Fig. 2. The transitional regions exhibit
large variability in space and time, and they are mainly lo-
cated at midlatitudes. The SCF climatology patterns show
negligible differences in high latitudes of heavy snow accu-
mulation but noticeable differences in the transitional mid-
latitude regions of less snow. SCF from JRA-55 tends to
be underestimated compared to IMS, whereas AMSR2 and
Openloop tend to overestimate. There is a clear difference
in SCF between AMSR2 and IMS satellite data. This study
gives more credibility to IMS than AMSR2, as the former is

based on multiple satellite data sources (e.g., Brown et al.,
2014). As we used the IMS SCF to define the snow region to
be assimilated by AMSR2 SWE, it is natural that DA shows
better consistency with IMS and reduces overestimation bi-
ases in Openloop. Quantitatively, the root mean square differ-
ences (accuracy, defined in Supplement Table S1 as in a pre-
vious study) for AMSR2, Openloop, JRA-55, and DA with
(from) IMS are 0.23 (0.91), 0.18 (0.91), 0.13 (0.93), and 0.13
(0.97), respectively, showing the best consistency in DA. The
quantitative differences between DA and other experimental
results are minor, but noticeable spatial discrepancies exist,
particularly around transition regions.

The SWE climatology from AMSR2, Openloop, JRA-
55, and DA is also compared with CMC as a reference in
Fig. 3. The SWE derived from AMSR2 shows a significant
underestimation compared to CMC, particularly in the re-
gions with heavy snow accumulation at high latitudes. This
is presumed to be due to limitations in satellite sensors de-
tecting the depth of snow (Gan et al., 2021). The SWE
from JRA-55 exhibits characteristics of overestimation in
high latitudes and underestimation in transitional regions.
On the other hand, the climatological SWEs from Openloop
and DA exhibit higher correspondence to CMC, even higher
than JRA-55. Specifically, DA demonstrates higher agree-
ment with CMC, despite the marginal difference compared to
Openloop. Quantitatively, the pattern correlation coefficients
(root mean square differences) for AMSR2, Openloop, JRA-
55, and DA with (from) CMC are 0.63 (80.7 kg m−2), 0.80
(50.1 kg m−2), 0.60 (100.8 kg m−2), and 0.80 (49.9 kg m−2),
respectively. Due to the application of standard deviation
scaling to the satellite-derived SWE used in data assimila-
tion, the discrepancy in climatological SWE distributions be-
tween DA and Openloop is deemed negligible. Despite its
similarity to Openloop, DA with snow data assimilation dis-
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Figure 1. Schematic diagram of the snow assimilation system with satellite-derived observations and the land surface model outputs.

plays the relatively highest correlation and the smallest root
mean square difference among the datasets.

Next, we compare the temporal variation of SWE as mea-
sured by the Spearman rank correlation coefficient with
CMC, which is regarded as more appropriate than the Pear-
son correlation coefficient for describing datasets containing
nonlinearity and outliers such as snow in both time and space.
Figure 4 compares the distribution of correlation skills from
AMSR2, Openloop, JRA-55, and DA. Openloop has a high
performance in regions with heavy snow accumulation but
relatively low performance in transition regions with signifi-
cant snow changes. In contrast, the results from the AMSR2
satellite data represent poor performance in high-latitude ar-
eas with heavy snow accumulation but high performance
in transitional regions, consistent with the previous studies
(Gan et al., 2021). DA shows high performance not only in
high-latitude areas with heavy snow accumulation but also
in transition regions. Even compared to JRA-55 used as the
atmospheric forcing, DA performs better in temporal varia-
tion. The quantitative results for the correlation in the North-
ern Hemisphere over 40° N (the transition region) are 0.41
(0.54) for AMSR2, 0.61 (0.48) for Openloop, 0.58 (0.58) for
JRA-55, and 0.67 (0.61) for DA, respectively. The findings
indicate that satellite retrievals offer additional value in cap-
turing temporal variations through data assimilation, indicat-
ing the benefit of assimilating the AMSR2 SWE despite the
overall lower performance of the satellite data itself.

The performance improvement by DA is also evident
in the zonally averaged correlation coefficient shown in
Fig. 5. The AMSR2 satellite data show higher performance
than Openloop in the transition region around latitude 45–
55° N, although performance sharply decreases with increas-
ing snow accumulation. Openloop indicates gradually in-
creasing performance as the latitude increases, with the high-

est performance at around 60° N. DA has a higher perfor-
mance across the Northern Hemisphere, especially in the
midlatitude transition region, than AMSR2 or JRA-55. An
exception is for 35–40° N in the Tibetan Plateau, where JRA-
55 used in situ observations. The results suggest that the de-
veloped snow data assimilation system represents not only
the transitional regions but also the regions with high snow
accumulation that are difficult to detect by satellite.

Figure 6 presents the Spearman rank correlation de-
pending on the SWE amount in the Northern Hemisphere.
AMSR2 exhibits higher performance than Openloop for
SWE up to 16 mm. However, the performance of AMSR2
sharply declines beyond that threshold, and Openloop shows
a better performance. Consistent with the results illustrated in
Figs. 4 and 5, DA demonstrates superior performance com-
pared to others. Note that DA performs significantly better in
the transition region with less than 16 mm of SWE. Consid-
ering that the area with less than 16 mm of SWE accounts for
approximately 53 % of the entire area of the Northern Hemi-
sphere (as shown in the pie chart in Fig. 6), the data assimila-
tion impact is identifiable, and it can contribute substantially
to the increase in the prediction skill by improving the simu-
lation of the albedo changes and surface energy balance.

Consistent with the description in Sect. 3.3, this study con-
siders an algorithm based on the highly reliable IMS satellite
SCF data to identify the presence of snow and determine the
assimilation process. Therefore, a further sensitivity test is
conducted to investigate the influence of incorporating IMS
data in snow assimilation. Figure 7 compares the correla-
tion differences between Openloop and the data assimila-
tion result employing both AMSR2 and IMS (DA), as well
as the data assimilation result utilizing solely AMSR2 and
excluding IMS (hereafter referred to as DA_AMSR2). The
results obtained from the snow assimilation show improve-
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Figure 2. (a) Climatology of SCF from IMS used as a reference and (b–e) the differences from IMS for AMSR2, the baseline model simula-
tion (Openloop), JRA-55, and the data assimilation (DA) results for April during 2013–2020. The black line represents the boundary of the
transition region, defined as the climatological mean SWE of less than 16 mm. Each value on the top right is the root mean square difference
with IMS and the accuracy from IMS (parenthesis) for 15 323 pixels over 40–60° N. The accuracy is defined in Supplement Table S1 as in
a previous study (Lee et al., 2015). Negative values (areas) in red shades are indicated with hatching. Here, SCF is dimensionless since it
represents a proportion rather than a physical measurement with units.

ments in the transitional regions where AMSR2 has better
agreement with the observations compared to Openloop. No-
tably, the skill is enhanced significantly in DA by incorpo-
rating the IMS SCF. DA exhibits inferior performance com-
pared to Openloop in certain exceptional cases, which may
be attributed to discrepancies in snow identification between
the CMC observations used for correlation and the IMS data
utilized for data assimilation. Moreover, the performance of
SWE improves even when only AMSR2 is used, but incorpo-
rating IMS leads to a substantial improvement in the transi-

tional regions. This implies that IMS has a positive influence
on the snow data assimilation.

4.2 Kalman gain analysis

In order to better understand the skill enhancement through
snow assimilation of satellite data, this section examines the
Kalman gain. Figure 8 illustrates the spatial distribution of
observation error, model background error, and the Kalman
gain for SWE. A high value of the Kalman gain denotes that
the assimilated result is closer to the AMSR2 observation
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Figure 3. (a) Climatology of SWE (unit: kg m−2 or mm) from CMC used as a reference and (b–e) the differences from CMC for AMSR2, the
baseline model simulation (Openloop), JRA-55, and the data assimilation (DA) results for April during 2013–2020. The black line represents
the boundary of the transition region, defined as the climatological mean SWE of less than 16 mm. Each value on the top right is the pattern
correlation with CMC for 26 482 pixels over 40° N and the root mean square difference (unit: kg m−2 or mm) from CMC (parenthesis) for
15 323 pixels over 40–60° N. Negative values (areas) in red shades are indicated with hatching.

than the model background. The Kalman gain is large when
the background error becomes large, or the observation er-
ror is small. As this study specifies the observation error as
a conservative 10 % of SWE compared to the previous study
(Lee et al., 2015), the observation error basically follows a
distribution similar to the climatological mean values. The
background errors, originating from the 24 ensemble mem-
bers, have higher values in high-latitude regions and mid-
latitude regions. Data assimilation methods such as LETKF
used in this study often face challenges in accurately repre-
senting background errors when the ensemble spread is in-
sufficient. Generally, the magnitude of ensemble spread is

frequently compared to the root mean square error (RMSE).
The ensemble spread in this study demonstrates a sufficiently
valid magnitude in comparison with the RMSE, as illus-
trated in Fig. S1, indicating that it is well estimated. More-
over, the standardized distribution of SWE among the ensem-
ble members exhibits a quasi-Gaussian distribution centered
around zero, with the transition region showing a closer re-
semblance to a standardized Gaussian distribution (Fig. S4).
In the spatial distribution of Kalman gain in Fig. 8c, signif-
icant performance improvement is observed in transition re-
gions, where Kalman gains exhibit larger values. However,
in high-latitude areas with substantial snow accumulation,
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Figure 4. SWE skill measured as the Spearman rank correlation (R) with the CMC for AMSR2, baseline model simulation (Openloop),
JRA-55, and the data assimilation (DA) result. The black line represents the boundary of the transition region, defined as the climatological
mean SWE of less than 16 mm. Each value on the top is the area-average R of the Northern Hemisphere for 26 482 pixels over 40° N and for
8801 pixels over the transition region (parenthesis). Negative values (areas) in red shades are indicated with hatching.

there is a tendency for Kalman gain to have lower values.
These findings agree well with the bar graph in Fig. 9, which
illustrates the Kalman gain as a function of SWE amount.
In the region encompassing the transition region with SWE
amounts below 20 mm, the Kalman gain displays the high-
est values, particularly exceeding 0.8. As the SWE amount
increases, the Kalman gain decreases, with a significant de-

cline observed when the SWE amount reaches 80–100 mm or
higher. Furthermore, in the areas where DA shows improved
skill compared to Openloop, the Kalman gain shows values
generally above 0.7. In contrast, relatively lower values be-
low 0.5 are observed in the areas with decreased skill. This
indicates that in the dominant areas of performance improve-
ment, including the transition region, the background error is
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Figure 5. Zonally averaged Spearman rank correlation (R) along latitude for SWE. The yellow line indicates the climatology of SWE, and
the black, blue, green, and red lines denote the values of AMSR2, baseline model simulation (Openloop), JRA-55, and data assimilation
(DA) results, respectively.

Figure 6. Box plots of the Spearman rank correlation (R) according to SWE (unit: kg m−2 or mm). The pie chart shows the total area
ratio (%) as a function of SWE amount. The black, blue, and red boxes denote the AMSR2, baseline model simulation (Openloop), and
data assimilation (DA) results, respectively. The boxes indicate the 25 % and 75 % percentiles, and the line and point in the boxes show the
median and the mean values. The upper and lower whiskers denote the 10 % and 90 % percentiles, respectively.

significantly larger than the observation error, emphasizing
the substantial influence of observations in data assimilation.
It is found that accurate remote sensing retrievals are well re-
flected in regions with high uncertainty in the LSM through
the snow data assimilation system, leading to performance
improvement.

4.3 Validation of the SWE for the extreme event

In April 2020, Siberia experienced a record-breaking heat-
wave with the highest observed average temperature. This
section investigates the potential benefits of snow assimila-
tion using satellite data for the case of the 2020 Siberian heat-

wave. Previous studies have identified a strong polar vortex
accompanied by AO amplification during winter as a major
cause of cold in the Eurasian region (Overland and Wang,
2021). Additionally, the occurrence of high temperatures in
the Siberian region is found to be closely associated with
large-scale atmospheric waves in the upper atmosphere over
the Eurasian region originating from the Atlantic (De Angelis
et al., 2023). As a result, remarkable snow melting occurred
due to the high surface temperature over the Siberian region
in April 2020, leading to extremely low values of SWE and
SCF as depicted in Fig. S2. This is consistent with previous
studies reporting significant snow depletion in 2020 in the
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Figure 7. The difference in SWE Spearman rank correlation coefficient with CMC between the Openloop and data assimilation results: DA
employing both AMSR2 and IMS and DA_AMSR2 utilizing solely AMSR2 and excluding IMS for April during 2013–2020. The black line
represents the boundary of the transition region, defined as the climatological mean SWE of less than 16 mm. Each value on the top right is
the area average over 40° N and the transition region (parenthesis). Negative values (areas) in red shades are indicated with hatching.

Figure 8. Spatial distribution of observation error (unit: kg m−2 or mm), background error (unit: kg m−2 or mm), and Kalman gain. The
black line represents the boundary of the transition region, defined as the climatological mean SWE of less than 16 mm.

region (Gloege et al., 2022). As shown in Fig. 10, significant
negative anomalies in SWE and SCF are predominant over
the transition region. Substantial snowmelt can contribute
to record-breaking heatwaves through albedo feedback and
changes in the ratio of the latent and sensible heat fluxes from
the exposed surface, coupled with favorable atmospheric cir-
culation patterns (Collow et al., 2022). Collow et al. (2022)

demonstrated that the exposed surface contributed to up to
20 % of the temperature anomaly over Siberia in spring 2020.
This implies the importance of realistic snow initial states in
global coupled model forecasts. For the Siberian region with
extreme high-temperature events marked by the red box in
Fig. 10, DA shows better agreement with the extremely dry
snow conditions, especially in the transitional region, com-
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Figure 9. Bar chart of (a) the Kalman gain according to the SWE amount (unit: kg m−2 or mm) and (b) the Kalman gain (red line) and
background error (blue hatched line) as a function of the difference between Openloop and DA in the Spearman rank correlation coefficient
(R).

pared to Openloop. These results are evident when consider-
ing the observation-to-model ratio in that region. The per-
centage of CMC (IMS) is 83 % (78 %) for Openloop and
93 % (89 %) for DA, indicating that DA with snow data as-
similation based on satellite data effectively replicates the ob-
served snow depletion in comparison with Openloop. Simi-
larly to the 2020 case, we obtained another significant case
in 2014 compared to Openloop, as shown in Fig. S3. Such
extremely dry snow conditions can contribute to significant
heatwave events in the following months.

5 Conclusions and discussion

An advanced SWE data assimilation is developed in this
study with the LETKF data assimilation method and the
JULES LSM. The system assimilates snow water equivalent
retrievals from AMSR2 and IMS snow cover. This consti-
tutes an objective way to optimally combine two imperfect
data sources for SWE from satellite remote sensing data and
the land surface model simulation forced by observed atmo-
spheric data. This study shows that the satellite-derived SWE
has limitations in penetrating deep snow and exhibited high
discrepancy from the SWE obtained from the Openloop LSM
simulations. The SWE assimilation in this study proves the
beneficial impacts of using satellite snow data, maintaining
better analysis quality by dynamically balancing the errors
from satellite observations and the model background states.

It is found that the simulation from Openloop as a baseline
shows superior performance in high-latitude regions with
heavy snow accumulation but relatively inferior performance
in transition regions with much variation of snow in space
and time. Contrastingly, the AMSR2 satellite data represent

poor performance in high-latitude regions but exhibit rela-
tively better performance in the transition regions. The SWE
from the LETKF data assimilation consistently exhibits bet-
ter performance in capturing the climatology and temporal
variation compared to other results. It specifically improves
the analysis in the midlatitude transition regions that cover
approximately 53 % of the entire area of the Northern Hemi-
sphere. It is found that the model background errors esti-
mated from the ensemble spread are significantly larger than
the observation errors, thereby reflecting satellite informa-
tion more in those regions. The LETKF data assimilation also
proves to be a reliable representation in the heavy snow re-
gions due to low ensemble spread and large uncertainty in
the satellite retrievals. Moreover, during the record-breaking
heatwave in Siberia in April 2020, the remarkable snow de-
pletion observed due to high surface temperatures is more
realistically reproduced by our snow analysis compared to t
Openloop.

This snow data assimilation framework is anticipated to
contribute to a more precise prediction of atmospheric con-
ditions by realistically capturing the interaction between the
atmosphere and land, given the substantial influence of SWE
on the energy and water balance at the interface of the at-
mosphere and land. Specifically, this applies to the transi-
tional regions with high spatial and temporal variability. The
long-term analysis of snow manifests a pronounced variabil-
ity in the continental interior at interannual timescales, poten-
tially improving the prediction of extreme heatwave events
by global climate models. This study used the gridded CMC
data from in situ observations for the validation. Although
existing snow data are subject to uncertainty and limita-
tions, we expect to obtain comparable conclusions and sig-
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Figure 10. Anomalies of (a) SWE (unit: kg m−2 or mm) from CMC and (b) SCF from IMS as well as the difference (c, d) of variables
between DA and Openloop in April 2020. The bar chart (e, f) indicates the ratio of DA and Openloop to verification data such as CMC and
IMS in the red box (48–65° N and 55–120°E), which is the region associated with extreme high-temperature events focused on this study.
Negative values (areas) in red shades are indicated with hatching.

nificant benefits by optimally combining satellite SWE data
and the LSM simulations through the LETKF data assimila-
tion method.

The quality of observations is crucial in a data assimi-
lation system. Satellite-derived snow cover exhibits signifi-
cantly higher accuracy compared to other data sources, while
SWE has restricted performance due to the limitations of
penetration depth by satellite sensors and relies heavily on
estimation algorithms. Due to these problems, most pre-

vious studies and operational centers primarily depend on
satellite-derived snow cover for snow initialization. How-
ever, the findings from this study highlighted the beneficial
impacts of using satellite-derived SWE, particularly in the
rapidly changing transition areas, to find out which variable
is more important in closing surface energy and water bal-
ance changed by snow. Nevertheless, areas of significance in
large-scale circulation, such as the Tibetan region, which ex-
periences significant uncertainty and degraded performance
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in satellite data, do not exhibit substantial data assimilation
effects. As the performance of SWE derived from various
satellites continues to advance, these issues will be discussed
more.
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