Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6657-2024
https://doi.org/10.5194/gmd-17-6657-2024
Model description paper
 | 
10 Sep 2024
Model description paper |  | 10 Sep 2024

HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting

Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre

Related authors

Real-time flood forecasting with Machine Learning using scarce rainfall-runoff data
Théo Defontaine, Sophie Ricci, Corentin J. Lapeyre, Arthur Marchandise, and Etienne Le Pape
EGUsphere, https://doi.org/10.5194/egusphere-2023-2621,https://doi.org/10.5194/egusphere-2023-2621, 2024
Short summary
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023,https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021,https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
Producing realistic climate data with generative adversarial networks
Camille Besombes, Olivier Pannekoucke, Corentin Lapeyre, Benjamin Sanderson, and Olivier Thual
Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021,https://doi.org/10.5194/npg-28-347-2021, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021,https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024,https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024,https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024,https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024,https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024,https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: a system for large-scale machine learning, in: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, OSDI'16, pp. 265–283, USENIX Association, USA, ISBN 978-1-931971-33-1, 2016. a
Aydin, O. U., Taha, A. A., Hilbert, A., Khalil, A. A., Galinovic, I., Fiebach, J. B., Frey, D., and Madai, V. I.: On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking, European Radiology Experimental, 5, 4, https://doi.org/10.1186/s41747-020-00200-2, 2021. a
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a, b, c
Ballard, S. P., Li, Z., Simonin, D., and Caron, J.-F.: Performance of 4D-Var NWP-based nowcasting of precipitation at the Met Office for summer 2012, Q. J. Roy. Meteor. Soc., 142, 472–487, https://doi.org/10.1002/qj.2665, 2016. a
Bechini, R. and Chandrasekar, V.: An Enhanced Optical Flow Technique for Radar Nowcasting of Precipitation and Winds, J. Atmos. Ocean. Tech., 34, 2637–2658, https://doi.org/10.1175/JTECH-D-17-0110.1, 2017. a
Download
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.