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Abstract. This work proposes a hybrid approach that com-
bines physics and artificial intelligence (AI) for cloud cover
nowcasting. It addresses the limitations of traditional deep-
learning methods in producing realistic and physically con-
sistent results that can generalise to unseen data. The pro-
posed approach, named HyPhAICC, enforces a physical be-
haviour. In the first model, denoted as HyPhAICC-1, a multi-
level advection dynamics is considered a hard constraint for a
trained U-Net model. Our experiments show that the hybrid
formulation outperforms not only traditional deep-learning
methods but also the EUMETSAT Extrapolated Imagery
model (EXIM) in terms of both qualitative and quantitative
results. In particular, we illustrate that the hybrid model pre-
serves more details and achieves higher scores based on sim-
ilarity metrics in comparison to U-Net. Remarkably, these
improvements are achieved while using only one-third of the
data required by the other models. Another model, denoted as
HyPhAICC-2, adds a source term to the advection equation,
it impaired the visual rendering but displayed the best per-
formance in terms of accuracy. These results suggest that the
proposed hybrid physics–AI architecture provides a promis-
ing solution to overcome the limitations of classical AI meth-
ods and contributes to open up new possibilities for combin-
ing physical knowledge with deep-learning models.

1 Introduction

Meteorological services are responsible for providing accu-
rate and timely weather forecasts and warnings to ensure
public safety and mitigate damage to property caused by
severe weather events. Traditionally, these forecasts have
been based on numerical weather prediction (NWP) mod-
els, which provide predictions of atmospheric variables such
as temperature, humidity, and wind speed. However, NWP
models have inherent limitations in their ability to capture
small-scale weather phenomena such as thunderstorms, tor-
nadoes, and localised heavy-rainfall events (Schultz et al.,
2021; Matte et al., 2022; Joe et al., 2022).

To address this limitation, the concept of nowcasting has
emerged as a valuable tool in meteorology (Lin et al., 2005;
Sun et al., 2014). Nowcasting refers to the process of us-
ing recently acquired high-resolution observations to gener-
ate short-term forecasts of weather conditions, typically on a
timescale of minutes to a few hours. Nowcasting techniques
exploit various observational data sources, including radar,
satellite, lightning, and ground-based observations, to gener-
ate real-time estimates of weather conditions and can take ad-
vantage of these recent data to significantly outperform NWP
on short lead times (Lin et al., 2005; Sun et al., 2014).

Cloud cover nowcasting is a critical component of weather
forecasting. It is used to predict the likelihood of precipi-
tation, thunderstorms, and other hazardous weather events.
Accurate cloud cover forecasts on a short timescale are par-
ticularly important for weather-sensitive applications such as
aviation, agriculture, and renewable energy production.
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Traditionally, cloud cover forecasting has been done us-
ing physics-based methods, relying on the laws of physics to
model the evolution of cloud cover, e.g. cloud motion vectors
as in Bechini and Chandrasekar (2017) and García-Pereda
et al. (2019), optical flow (Wood-Bradley et al., 2012), or
NWP-based data assimilation (Ballard et al., 2016). How-
ever, with the recent advances in artificial intelligence (AI)
and machine learning (ML), data-driven methods have be-
come increasingly popular for these types of tasks (e.g. Es-
peholt et al., 2022; Ravuri et al., 2021; Trebing et al., 2021;
Ayzel et al., 2020; Berthomier et al., 2020; Shi et al., 2015).

Among these data-driven methods, long short-term mem-
ory (LSTM) networks, introduced by Hochreiter and
Schmidhuber (1997), stand out. LSTMs are a type of re-
current neural network capable of learning long-term depen-
dencies; they are useful for time series predictions, as they
can learn from past entries to predict future values. In tasks
involving multidimensional data, they are commonly used
with convolutional layers, forming what is known as a con-
volutional LSTM. This neural architecture excels in captur-
ing spatio-temporal correlations compared to fully connected
LSTMs (Shi et al., 2015). Spatio-temporal LSTM (Wang
et al., 2018) increases the number of memory connections
within the network, allowing efficient flow of spatial infor-
mation. This model was further optimised by adding stacked
memory modules (Wang et al., 2019). U-Net is another pop-
ular architecture; it was originally designed by Ronneberger
et al. (2015) for biomedical image segmentation. Unlike
LSTMs, U-Net has no explicit memory modelling, yet it has
shown good performance for a binary cloud cover nowcast-
ing task as shown in Berthomier et al. (2020). Furthermore,
it has found application in precipitation nowcasting, as high-
lighted by Ayzel et al. (2020), and a modified version was
used for a similar task in Trebing et al. (2021).

Machine learning models hold great promise for address-
ing scientific challenges associated with processes that can-
not be fully simulated due to either a lack of resources or
the complexity of the physical process. However, their appli-
cation in scientific domains faced challenges, including con-
straints related to large data needs, difficulty in generating
physically coherent outcomes, limited generalisability, and
issues related to explainability (Karpatne et al., 2017). To
overcome these challenges, incorporating physics into ML
models is of paramount importance. It leverages the inher-
ent structure and principles of physical laws to improve the
interpretability of the model, handle limited labelled data, en-
sure consistency with known scientific principles during op-
timisation, and ultimately improve the overall performance
and applicability of the models, making them more likely
to be generalisable to out-of-sample scenarios. As discussed
by Willard et al. (2022) and Cheng et al. (2023), the avail-
able hybridisation techniques leverage different aspects of
ML models, e.g. the cost function, the design of the archi-
tecture, or the weights’ initialisation.

Figure 1. Illustration of error modelling. The physics-based model
is used to predict the output, and the ML model is used to predict
the residuals. Adapted from Forssell and Lindskog (1997).

A common method to ensure the consistency of ML mod-
els with physical laws is to embed physical constraints within
the loss function (Karpatne et al., 2017). This involves in-
corporating a physics-based term weighted by a hyperpa-
rameter, alongside the supervised error term. This addition
enhances prediction accuracy and accommodates unlabelled
data. It has proven to be effective in addressing a range of
problems, including uncertainty quantification, parameteri-
sation, and inverse problems (Daw et al., 2021; Jia et al.,
2019; Raissi et al., 2019). However, one drawback lies in the
challenge of appropriately tuning the hyperparameter.

Given the necessity for an initial choice of model pa-
rameters in many ML models, researchers explore ways to
inform the initial state of a model with physical insights.
One possible way is transfer learning, where a pre-trained
model is fine-tuned with limited data (Jia et al., 2021). Addi-
tionally, simulated data from physics-based models can be
employed for pre-training, akin to methods used in com-
puter vision. This technique has found application in diverse
fields, including biophysics (Sultan et al., 2018), temperature
modelling (Jia et al., 2019), and autonomous vehicle train-
ing (Shah et al., 2017). However, this method requires the
assumption that the underlying physics of the simulated data
aligns with the real-world data.

To address imperfections in physics-based models, a com-
mon strategy is error modelling. Here, an ML model learns to
predict the errors (also called residuals) made by the physics-
based model (Forssell and Lindskog, 1997). This approach
leverages learned biases to correct predictions (see Fig. 1).

A more general approach that does not deal only with er-
rors is to create hybrid models merging physics-based mod-
els and ML models. For example, in scenarios where the dy-
namics of physics are fully defined, the output of a physics-
based model can be used as input to an ML model. This ap-
proach has demonstrated enhanced predictions in tasks such
as lake temperature modelling (Daw et al., 2021). However,
in cases where a physical model contains unknown elements
requiring coupling with an ML model for joint resolution,
a viable strategy involves substituting a segment of a com-
prehensive physics-based model with a neural network. An
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illustrative example is found in sea surface temperature pre-
diction, where de Bezenac et al. (2018) employed a neural
network to estimate the motion field. In alignment with this
strategy, our study proposes leveraging physical knowledge
based on the advection equation to address the cloud cover
nowcasting task. This results in simulating the advection of
clouds by winds while using a neural network to estimate un-
known variables, such as the two components of the velocity
field.

Moreover, our study introduces an additional requirement,
cloud type classification. Specifically, our dataset contains
cloud cover observations with pre-existing categorical clas-
sifications based on cloud types (e.g. very low clouds, low
clouds). This necessitates adopting a probabilistic approach
in our hybrid architecture, which, to the best of our knowl-
edge, has not been explored in geophysics. Indeed, adopting
a probabilistic approach with probability maps allows us to
account for the inherent variability and uncertainties associ-
ated with the model’s predictions. This also provides a more
natural framework for such a classification problem for fur-
ther extensions of the modelling beyond the advection.

Rather than using the theoretical solution of the equa-
tion as proposed in de Bezenac et al. (2018), our hybrid
approach solves a system of partial differential equations
(PDEs) within a neural network, which makes the architec-
ture more flexible. However, it poses some implementation
challenges, as explained in Appendix B. This paper is or-
ganised as follows. Section 2 introduces the hybrid architec-
ture. Section 3 is dedicated to presenting results and perfor-
mance analysis compared to state-of-the-art models. Finally,
in Sect. 4, we draw conclusions based on our findings.

2 Methodology

In this work, we address applications involving dynamics
with unknown variables that require estimation. For example,
the cloud motion field is one of the unknown variables in the
application considered. In such cases, as discussed in Sect. 1,
a joint resolution approach is more appropriate. Here, the
physical model utilises the neural network outputs to com-
pute predictions, integrating the two models as follows:

y = φ ◦ fθ (x) ,

where x is the input, fθ represents the neural network, φ de-
notes the physical model, and y is the output. In this setup,
φ implicitly imposes a hard constraint on the outputs, po-
tentially accelerating the convergence of the neural network
during training.

This method raises some trainability challenges as the
physics-based model is involved in the training process, and
it should be differentiable, in the sense of automatic differ-
entiation, in order to allow the back-propagation of gradi-
ents (refer to Appendix B). We show in Appendix B how
spatial derivatives of PDEs can be approximated within a

neural network in a differentiable way using convolution
operations. This allows us to compute gradients and back-
propagate them during the training process. This fundamen-
tal knowledge serves as a foundation for our investigation
of novel hybrid physics–AI architectures. With these estab-
lished principles, we present in this section the proposed hy-
brid architecture, which is applied to cloud cover nowcasting.

In this section, we introduce our hybrid physics–AI archi-
tecture, detailed in Sect. 2.1. Section 2.2 explains the differ-
ent physical modelling approaches investigated in this study.
Following that, Sect. 2.3, 2.4, and 2.5 present the training
procedure, evaluation metrics, and benchmarking procedure,
respectively.

2.1 The HyPhAICC architecture

The proposed hybrid architecture is a dual-component sys-
tem (see Fig. 2). The first component is composed of one
or more classical deep-learning models. These models pro-
cess the most recent observations, yielding predictions for
the physical unknowns of interest. The second block takes
as inputs the physical variables, whether known or predicted
by the neural networks, along with initial conditions. This
second component time integrates one or multiple PDEs to
generate the subsequent state of the system. The fourth-order
Runge–Kutta (RK4) method is used for time integration.
These PDEs encode essential physical knowledge. As dis-
cussed in the Appendix B4, the spatial derivatives are ap-
proximated using convolutional layers.

The parameters of the first component are trainable; they
are optimised during training to estimate the unknown vari-
ables. However, we froze the parameters of the second block,
as it represents already-known operations. This ensures that
the second block maintains its fixed structure, representing
the known physical knowledge encoded in the equations,
while the trainable block focusses on learning and predicting
the unknown aspects of the system. This architecture com-
bines the physical knowledge encoded in the equations with
the pattern extraction capabilities of neural networks.

In the following, we employ this architecture for cloud
cover nowcasting, with different models being implemented,
each using a different physical modelling approach.

2.2 Physical modelling

Before delving into the details of the proposed models, let us
first establish the essential characteristics of the data at hand.
In this work, we investigate cloud cover nowcasting over
France using cloud cover satellite images captured by the
Meteosat Second Generation (MSG) satellite at 0° longitude.
The spatial resolution of the data over France is≈ 4.5 km and
the time step is 15 min, and each image is of size 256× 256.
These images have been processed by EUMETSAT (García-
Pereda et al., 2019), classifying each pixel into 16 distinct
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Figure 2. HYPHAICC-1. The proposed hybrid model consists of a U-Net Xception-style model to estimate the velocity field from the last
observations; the estimated velocity field is smoothed using a Gaussian filter. The equation is numerically integrated using the fourth-order
Runge–Kutta method over multiple time steps. The initial condition (f0) is updated after each time step to the current state, allowing the
computation of the next state.

Figure 3. HYPHAICC-2. The second version of the proposed hybrid model. It consists of a U-Net Xception-style model to estimate the
velocity field and a second U-Net model to estimate the source term from the last observations. We highlighted the additional parts compared
to Fig. 2 and faded the unchanged ones.

categories. We only considered cloud-related categories, 12
in total.

In what follows, we introduce two models: HYPHAICC-
1 which uses an advection equation to capture the motion of
clouds, and HYPHAICC-2 which extends this by incorporat-
ing a simple source term in the advection equation.

2.2.1 Advection equation: HyPhAICC-1

To easily model the advection of these maps with different
cloud types, we adopt a probabilistic approach; i.e. rather
than representing a single map showing assigned labels, we
use 12 maps, each representing the likelihood or probabil-
ity of a specific cloud type being present at a given location.
These maps must satisfy the following properties.

1. Non-negativity. P(x, t)≥ 0 for all x and t , with x=
(x,y), which ensures that the probabilities remain non-
negative.

2. Bound preservation. P(x, t)≤ 1 for all x and t , which
ensures that no probability exceeds 1.

3. Probability conservation.
∑C
i=1P

i
X(x, t)= 1 for all x

and t , with C = 12 being the total number of cloud
types. This property guarantees that the sum of all prob-
abilities is equal to 1.

This approach, known as “one-hot encoding”, is more natural
to address classification tasks. It involves using 12 distinct
advection equations, each corresponding to a specific cloud
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type, as described below:

∂tPj +V ·∇Pj = 0 ∀j ∈ {1,2, . . .,C} , (1)

where Pj (x) represents the classification probability of the
j th cloud type and V (x) is the velocity field, which has two
components, i.e. u(x) and v(x). Finally, ∇ denotes the gradi-
ent operator.

Although one might initially perceive similarities between
this modelling and a Fokker–Planck equation (Fokker, 1914;
Pavliotis and Stuart, 2008, Chap. 6), the modelling approach
presented here deviates significantly from the Fokker–Planck
equation. In contrast, the Fokker–Planck equation is typi-
cally employed to depict the evolution of probability distri-
butions for time-continuous Markov processes over continu-
ous states, e.g. Brownian motion. On the other hand, Eq. (1)
characterises the probability advection for each finite state.

Nevertheless, by employing equations in the following
form:

∂tPj +L
(
Pj
)
= 0 ∀j ∈ {1,2, . . .,C} , (2)

where L represents a differential operator with non-zero
positive derivative orders, we demonstrate in Appendix D
that the probability conservation property is maintained over
time. This assertion holds even in scenarios where the dis-
cretisation scheme introduces some diffusion or dispersion
effects during the resolution process (see Appendix D2 and
Appendix E). However, the non-negativity and bound preser-
vation properties are compromised when a discretisation
scheme with dispersion effects is used, unlike the diffusive
schemes. Consequently, we opt for the first-order upwind
diffusive discretisation scheme (see Appendix E2 for details
about the equivalent equation) along with the RK4 for time
integration. During the time integration process, we perform
the integration by subdividing the time step 1t = 1 (rep-
resenting 15 min) into smaller steps δt = 0.1 to satisfy the
Courant–Friedrichs–Lewy (CFL) condition (Courant et al.,
1928); this condition ensures the stability of the numerical
solution.

In the first hybrid model, denoted as HYPHAICC-1, we
use a U-Net Xception-style model (Tamvakis et al., 2022)
inspired by the Xception architecture (Chollet, 2017). It takes
the last four observations stacked on the channel axis and
estimates the velocity field (see Fig. 2). This model will be
guided during training by the advection equation to learn the
cloud motion patterns.

2.2.2 Advection with source term: HyPhAICC-2

As the advection alone does not take into account other phys-
ical processes, especially class change, appearance, and dis-
appearance of clouds, we propose adding a trainable source
term to capture them. In this first attempt, we use a simple
source term:

∂tPj = tanh(Sj ) ∀j ∈ {1,2, . . .,C} , (3)

where Sj is a 2D map. The hyperbolic tangent activation
function (tanh) is used to keep the values of the source term
in a range of [−1,1], preventing it from exploding.

The second version of the hybrid model, denoted as
HYPHAICC-2, adds this source term to the advection. This
modelling is described in the following equation:

∂tPj +V ·∇Pj = tanh(Sj ) ∀j ∈ {1,2, . . .,C} , (4)

where Sj is estimated using a second U-Net model (see
Fig. 3).

While the previous modelling describes the missing phys-
ical process in the advection, it does not satisfy the probabil-
ity conservation property. Thus, this modelling does not con-
serve the probabilistic nature of P over time. To ensure the
appropriate dynamics of probability, a robust framework is
provided by continuous-time Markov processes across finite
states (Pavliotis and Stuart, 2008, Chap. 5). In this frame-
work, the probability trend is controlled by linear dynamics,
ensuring the bound preservation, positivity, and probability
conservation. Two other models based on this framework,
named HyPhAICC-3 and HyPhAICC-4, are presented in Ap-
pendix A1 and Appendix A2, respectively. However, these
models did not show any performance improvement com-
pared to the simpler HyPhAICC-1.

Indeed, beyond the performance aspect, this hybridisation
framework is flexible, is not limited to the advection, and can
be extended to other physical processes.

2.3 Training procedure

The training was carried out on a dataset containing about 3
years of data from 2017 to 2019, with a total of 105 120 im-
ages. The images with zero cloud cover were removed, then
we assembled all the sequences with 12 consecutive images.
After this cleaning step, we randomly split the dataset, 8224
sequences were used for training, and 432 for validation. The
test set was performed on a separate dataset from the same
region but from 2021.

To improve the diversity of the training set and take into
account a possible overfitting on the typical movements of
clouds in the western Europe region, we randomly applied
simple transformations to the images. More precisely, we
applied rotations of 90, 180, and 270°, which increased the
dataset size and improved the model’s ability to learn various
cloud motion patterns.

PyTorch framework is used to implement the models, and
the cross-entropy loss function is employed for training. This
function is given by

l(Y,p)=−
1
N

N∑
i=1

C∑
j=1

Yi,j log(pi,j ), (5)

where N represents the total number of pixels, C denotes the
number of classes, pi,j is the predicted probability of the ith
pixel belonging to the j th class, and Yi corresponds to the
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one-hot encoded ground truth at the ith pixel, i.e. Yi,j = 0,
except for the correspondent cloud type, where Yi,j = 1.

The training of the model parameters is achieved through
gradient-based methods. Here, an Adam optimiser (Kingma
and Ba, 2017) is used with a learning rate of 10−3 and a batch
size of 4 with 16 accumulation steps, allowing us to simulate
a batch size of 64. The training was performed using a single
Nvidia A100 GPU for 30 epochs.

You can find the source code for our project on
GitHub at https://github.com/relmonta/hyphai (last access:
7 June 2024).

2.4 Performance metrics

To evaluate the performance of competing models in this
study, we employed various metrics. Firstly, standard clas-
sification metrics are used to evaluate the statistical aspect,
then the Hausdorff distance is introduced to evaluate the
qualitative aspect of the results.

2.4.1 Classic classification metrics

The selected metrics include accuracy, precision, recall, F1
score, and critical success index (CSI, Gilbert, 1884), also
called intersection over union (IoU) or Jaccard index. These
metrics offer multiple insights into different aspects of model
performance. Accuracy measures the proportion of correct
predictions, while precision quantifies the proportion of cor-
rect positive predictions relative to the total number of pos-
itive predictions. Recall evaluates the proportion of correct
positive predictions relative to the total number of positive
cases. The F1 score provides a balance between precision
and recall. The CSI measures the overlap between prediction
and ground truth, providing a measure of similarity.

To compute these metrics for the j th class, we use the fol-
lowing formulas:

Accuracyj =
TPj +TNj

TPj +TNj +FPj +FNj
,

Recallj =
TPj

TPj +FNj
,

Precisionj =
TPj

TPj +FPj
,

F1j =
2×Precisionj ×Recallj

Precisionj +Recallj
,

CSIj =
TPj

TPj +FPj +FNj
.

These metrics are calculated separately for each class, where
TP denotes instances correctly identified as positive cases,
TN refers to instances correctly identified as negative cases,
FP represents cases misclassified as positives, and FN is the
number of positive cases that are classified as negative.

To obtain an overall performance evaluation of the accu-
racy, we use the following formula:

Accuracy=

∑
jTPj

Total number of cases
.

For the remaining metrics, we can calculate two types of av-
erage: the macro-average and the micro-average. The macro-
average is the arithmetic mean of the metric scores computed
for each class, while the micro-average considers all classes
as a single entity (Takahashi et al., 2022). Given the highly
imbalanced distribution of labels in our dataset, we adopted
the macro-average to evaluate the models’ performance (Fer-
nandes et al., 2020; Wang et al., 2021). The macro-averaged
F1 is defined as in Sokolova and Lapalme (2009) as follows:

F1macro =
2×Precisionmacro×Recallmacro

Precisionmacro+Recallmacro
,

where the macro-averaged precision and recall are defined as
follows:

Precisionmacro =
1
C

C∑
j=1

Precisionj .

Recallmacro =
1
C

C∑
j=1

Recallj .

We define the macro-averaged CSI following the same
method as follows:

CSImacro =
1
C

C∑
j=1

CSIj .

These pixel-wise metrics are commonly used for evaluat-
ing image segmentation tasks or more generally classifica-
tion tasks, but it is important to note the limitations of these
metrics and evaluation approaches. Although selected met-
rics provide valuable insights, they do not capture all aspects
of model performance, for instance, because they do not take
into account the spatial correspondence between predicted
and ground-truth cloud structures. This means that a model
can statistically perform well using pixel-wise metrics but
still have poor performance in identifying the correct cloud
structures or miss a significant amount of detail. As a result,
evaluating cloud cover forecasting models based solely on
pixel-wise metrics may not be sufficient to ensure their ef-
fectiveness in real-world applications.

2.4.2 Hausdorff distance

The Hausdorff distance is a widely used metric for medical
image segmentation (e.g. Karimi and Salcudean, 2019; Ay-
din et al., 2021). This metric measures the similarity between
the predicted region and the ground-truth region by compar-
ing structures rather than just individual pixels. It can be ex-
pressed using either Eq. (6) or Eq. (7), which are described
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Figure 4. Illustration of the minp∈Ad(p,q1) and minq∈Bd(p1,q)
quantities used to compute the Hausdorff distance; for each point,
we look for the closest point in the other region.

as follows:

h1(A,B)=
1
|A|

∑
p∈A

min
q∈B

d(p,q), (6)

h2(A,B)=max
p∈A

min
q∈B

d(p,q), (7)

where d(p,q) is the Euclidean distance between p and q.
The former computes the mean distance between each point
A and the closest point in B, providing an overall measure
of similarity. The latter measures the maximum distance be-
tween a point in A and the closest point in B (Fig. 4), this
formulation is a more conservative measure that focuses on
the largest discrepancies between the sets. Both formulations
exhibit sensitivity to the loss of small structures. Specifically,
when small regions in the ground truth are non-empty while
their corresponding regions in the prediction are empty, the
search area expands, which increases the overall distance.
We opt to limit this search region to the maximum distance
traversable by a cloud. Consequently, we introduce the re-
stricted Hausdorff distance (rHD), which is defined as fol-
lows:

h3(A,B)=
1
|A|

∑
p∈A

min
q∈Br (p)

d(p,q), (8)

where Br(p) is the ball of radius r centred at p. In our ex-
periments, we set r to 10 pixels, which corresponds to a ra-
dius of approximately 45–50 km, corresponding to the max-
imum distance crossed by clouds in one time step, consider-
ing 200 km h−1 as the cloud’s maximum speed. This means
that for each pixel in the first set, we compute the distance
to the closest pixel in the second set, but we only do this if
it is within a radius of 10 pixels. This allows us to reduce
the impact of small regions in the ground truth that are not

Figure 5. The U-Net architecture considered in the comparison. U-
Net is iteratively used to predict the next state given the previous
ones.

present in the prediction, while still rewarding the model if it
correctly predicts them.

The Hausdorff distance is a directed metric,
i.e. hp(A,B) 6= hp(B,A); thus, we consider the maxi-
mum of the two directed distances as follows:

H(S, Ŝ)=max
(
h3(S, Ŝ),h3(Ŝ,S)

)
, (9)

where S and Ŝ are the coordinates of positive pixels in the
ground truth and prediction, respectively.

2.5 Benchmarking procedure

To assess the performance of the proposed models, we con-
sider established benchmarks. In the comparative evalua-
tion, we included the well-known U-Net (Ronneberger et al.,
2015). This classical U-Net is different from the one used to
estimate the velocity in the proposed hybrid models (refer to
Figs. 2 and 3). The choice of this classical U-Net for com-
parison is justified by the fact that it is the most widely used
in the literature for the same task (e.g. Ayzel et al., 2020;
Berthomier et al., 2020; Trebing et al., 2021). U-Net archi-
tecture is structured with a contracting path and an expansive
path connected by a bottleneck layer. The contracting path
comprises four levels of convolutional layers, each followed
by a max pooling layer. The number of filters we used in
these convolutional layers progressively increases from 32
to 64, 128, and finally 256. On the other hand, the expan-
sive path consists of four sets of convolutional layers, each
followed by an upsampling layer. These layers help in the re-
construction and expansion of the feature maps to match the
original input size. We iterate over U-Net, as illustrated in
Fig. 5, to generate predictions for multiple future time steps.

In addition to U-Net, we consider in our comparison
a product called EXIM (for extrapolated imagery), devel-
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Figure 6. Performance comparison between our HyPhAICC-1, U-Net, EXIM, and the persistence baseline using five metrics: averaged F1
score (%), precision (%), recall (%), accuracy (%), CSI (%), and Hausdorff distance (defined in Eq. 9). These scores were computed over
1000 random samples covering France in 2021. See Fig. A3 for confidence intervals.

oped by EUMETSAT as part of their NWCSAF/GEO prod-
ucts (García-Pereda et al., 2019). This product involves ap-
plying the atmospheric motion vector field multiple times to
a current image to produce forecasts. Each pixel’s new lo-
cation is calculated using the motion vector, and this pro-
cess is repeated assuming a constant displacement field. For
continuous variables like brightness temperature, the method
uses weighted contributions to forecast pixel values, ensur-
ing that there are no gaps by interpolating values from ad-
jacent pixels if necessary. For categorical variables such as
cloud type, the pixel value is directly assigned to the new lo-
cation, and conflicts are resolved by overwriting. If a pixel
is not touched by any trajectory, the value is determined by
the majority class of its nearest neighbours (García-Pereda
et al., 2019) (https://www.nwcsaf.org/exim_description, last
access: 4 July 2024). This approach is also called kinematic
extrapolation.

We also included a commonly used meteorological base-
line method known as “persistence”. This method predicts
future time steps by simply using the last observation, a
relevant approach in nowcasting since weather changes oc-
cur slowly, making the last observation a strong prediction,
which makes the persistence baseline challenging to outper-
form.

We tested the competing models using 1000 satellite im-
ages samples captured over France from January 2021 to Oc-
tober 2021.

3 Experiments and results

We trained the hybrid models, in addition to the U-Net model
used for comparison, on 3 years of data. The models were
designed to predict a 2 h forecast at 15 min intervals.

3.1 Quantitative analysis

Diving into the numerical evaluations, here we present a
comparative analysis based on standard metrics used in im-
age classification tasks. Figure 6 shows a score comparison
using different metrics over multiple lead times up to 2 h.
The confidence intervals, indicating statistical significance,
are computed using a resampling method called bootstrap,
which is a statistical technique that involves repeatedly sam-
pling from a single dataset to generate numerous simulated
samples (Efron, 1979). Through this method, standard er-
rors, confidence intervals, and hypothesis testing can be com-
puted. Table 1 and Fig. 6 show that HyPhAICC-2 is slightly
better in terms of precision and accuracy than the model us-
ing advection equation without source term (HyPhAICC-1),
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Table 1. Score comparison at the 120 min lead time (↑: higher is better; ↓: lower is better). The best scores are indicated in bold font.

Model ↑ F1 score ↑ precision ↑ recall ↑ accuracy ↑ CSI ↓ Hausdorff distance (H)

HYPHAICC-1 26.6 % 27.5 % 25.9 % 55.4 % 17.2 % 6.23
HYPHAICC-2 26.5 % 27.6 % 25.7 % 57.3 % 17.1 % 6.54
U-Net 24.9 % 25.6 % 24.5 % 56.0 % 16.1 % 6.90
EXIM 23.5 % 23.5 % 23.6 % 49.4 % 14.9 % 5.08
Persistence 21.8 % 21.9 % 21.8 % 47.9 % 13.8 % 5.53

Figure 7. Case study of different models’ forecasts. The left column shows ground truth at different time steps. The middle columns show,
from left to right, HyPhAICC-1, HyPhAICC-2, and the U-Net predictions, respectively. The right column shows EXIM’s predictions. The
light beige colour corresponds to the land areas, and the “ST” abbreviation in the legend stands for “semi-transparent”.

and both of these hybrid models significantly outperform the
U-Net model in terms of F1 score, precision, and CSI and
perform similarly in terms of accuracy and recall. This is be-
cause the U-Net model tends to give more weight to the dom-
inant classes at the expense of the other classes, resulting in
a higher false positive rate.

Although quantitative performance metrics offer a numer-
ical assessment of a model’s ability to predict weather states,
providing crucial insights into the reliability and precision
of forecasts, they are not sufficient on their own. Qualita-
tive aspects also play a significant role, including the visual
interpretation of model predictions and an assessment of its
capability to capture complex atmospheric patterns and phe-
nomena.

3.2 Qualitative analysis

Figure 7 presents a case study involving multiple mod-
els, highlighting that HyPhAICC-1 produces more realis-
tic and less blurry forecasts compared to the U-Net model.
To substantiate this claim, we used the restricted Hausdorff
distance (rHD), described in Eq. (8), to assess the sharp-
ness of predicted cloud boundaries. Both HyPhAICC-1 and
HyPhAICC-2 models outperformed the U-Net model in this
metric, as shown in Fig. 6. EXIM and the persistence baseline
exhibit superior results in terms of the Hausdorff metric, and
the gap between them and the other models increases with
the lead time, which is visually expected. The reason behind
this result is that the hybrid models, especially HyPhAICC-
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Figure 8. Estimated velocity field by the U-Net Xception-style ar-
chitecture used in the HyPhAICC-1 model.

1, preserve more details compared to the U-Net model. The
lost details in HyPhAICC-1’s predictions are only due to the
numerical scheme. In ideal conditions, HyPhAICC-1 should
preserve the same details during the advection process, and
there is no other trainable part in between that can smooth
the predictions; however, the upwind discretisation used a
scheme that adds a numerical diffusion and crushing the
small cloud cells (refer to Appendix E for more details).
In contrast, U-Net focuses more on dominant structures and
labels, which are more likely to persist over time, which
is statistically relevant. Nevertheless, EXIM and the persis-
tence baseline still outperform the other models in this re-
gard. This observation aligns with the fact that the persis-
tence uses the last observation as its predictions, and EXIM
is advecting the last observation using the kinematic extrap-
olation, which keeps the same level of details without diffu-
sion effects (García-Pereda et al., 2019). However, EXIM is
slightly more accurate, compared to persistence, in terms of
predicted cloud positions.

In Fig. 8, we present the estimated velocity field generated
by the HyPhAICC-1 model, illustrated in Fig. 2. This field
exhibits a high level of coherence with the observed cloud
cover displacements, with exceptions in cloud-free areas, as
expected. It is important to emphasise that this velocity field
is derived exclusively from cloud cover images, without re-
lying on external wind data or similar sources. This aspect
adds a layer of interest, especially in the context of other ap-
plications beyond the cloud cover nowcasting.

3.3 Time efficiency

In what follows, we focus only on the HyPhAICC-1 model.
By including physical constraints into these hybrid models,
we expect a decrease in training time compared to that of
the U-Net model. Indeed, Fig. 9 illustrates the evolution of
the validation F1 score for both the U-Net and HyPhAICC-

1 models across epochs. HyPhAICC-1 converges faster than
U-Net. Its convergence does indeed occur after just about 10–
15 epochs. Each epoch of the HyPhAICC-1 training takes ap-
proximately 55 min using a single Nvidia A100 GPU, while
the entire training over 30 epochs takes 27 h. On the other
hand, U-Net necessitates up to 200 epochs for achieving sim-
ilar performance, with each epoch taking around 23 min us-
ing the same hardware, which corresponds to about 3 d of
training. This difference implies that training U-Net is sig-
nificantly more expensive compared to HyPhAICC-1.

In inference mode, the hybrid models and U-Net generate
predictions within a few seconds, while EXIM’s predictions
are produced within 20 min (Berthomier et al., 2020), which
is one of the main drawbacks of this product.

3.4 Data efficiency

To delve deeper into the efficiency of the proposed
HyPhAICC-1 model, we conducted various experiments us-
ing different training data sizes. In each experiment, both
HyPhAICC-1 and U-Net were trained with 70 %, 50 %,
30 %, and 10 % of the available training data (Figs. 9, 10).
Notably, we observed a more significant performance drop
for U-Net compared to HyPhAICC-1. Interestingly, the hy-
brid model exhibited a similar performance using only 30 %
of the training data to it when it used the entire dataset
(Fig. 9). This finding indicates that this hybrid model is re-
markably data efficient, capable of delivering satisfactory
performance even with limited training data, which has been
highlighted by other studies (Schweidtmann et al., 2024;
Cheng et al., 2023). This quality is very important, partic-
ularly for tasks with insufficient provided data.

3.5 Application to Earth’s full disc

To check HyPhAICC-1’s capabilities on broader scales after
training it on a small region, we tested it on a much larger
domain, an entire hemisphere of the Earth – also called a
full disc – centred at 0° longitude. The satellite observations
of this expansive full-disc domain are of size 3712× 3712,
which is 210.25 times larger than the size of the training ones.
It has diverse meteorological conditions and includes pro-
jection deformations when mapped onto a two-dimensional
plane, while the extreme deformations at the edge of the disc
make this data less useful for operation purposes, it still pro-
vides an interesting testing ground for HyPhAICC-1’s gen-
eralisation ability. In this analysis, we focus only on visual
aspects. Despite the significant differences between the train-
ing domain and the full disc, we observed good qualita-
tive forecasts of the HyPhAICC-1 model on this new do-
main without any specific training on it (see Figs. 11 and
A4). The cloud motion estimation on the full disc was found
to be visually consistent (a Video Supplement is provided
at https://doi.org/10.5281/zenodo.10375284, El Montassir et
al., 2023b).
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Figure 9. Per epoch validation F1 score comparison between HyPhAICC-1 and U-Net. Scores were calculated from 100 random samples
covering France (averaged over all lead times).

Figure 10. Total training time and maximum validation F1 scores
over the last five epochs for U-Net and HyPhAICC-1 using different
training data sizes (averaged over all lead times).

This successful transferability of the model highlights its
potential robustness and suggests that the underlying princi-
ples of cloud motion captured during training are applicable
across different domain sizes and different projections (see
Appendix C for a formal explanation). Note that the model
requires a data size divisible by 2d , where d is the number
of the encoder blocks within the U-Net-Xception model. In-
deed, the possibility of running a model using different data
sizes is one of the advantages of fully convolutional networks
(FCNs) as the convolution operation is independent of the in-
put size.

Overall, HyPhAICC-1 offers an effective and cheaper ap-
proach compared to EXIM, with higher efficiency, requiring
fewer data compared to U-Net, with the potential to outper-

form existing models and enable more accurate and efficient
weather forecasting. The ability of HyPhAICC-1 to adapt
and perform well on the full-disc data, despite being trained
on a smaller domain, demonstrates the generalisation capa-
bilities of this hybrid model. This is an important property
for weather forecasting models, as it is not always possible
to train a model on full-disc data due to the high computa-
tional cost.

4 Conclusions

In this study, we introduced a hybrid physics–AI framework
that combines the insights from partial differential equations,
representing physical knowledge, with the pattern extraction
capabilities of neural networks. Our primary focus was on
applying this hybrid approach to the task of cloud cover now-
casting, also involving cloud type classification. To lever-
age continuous physical advection phenomena for this dis-
crete classification task, we proposed a probabilistic mod-
elling strategy based on the advection of probability maps.
This flexible approach was easy to adapt to include the pre-
diction of source terms, demonstrating its versatility.

The first model, HyPhAICC-1, leverages the advection
equation and slightly outperforms the widely used U-Net
model in the quantitative metrics, while showing a signifi-
cantly better performance in the qualitative aspect. This hy-
brid model requires a significantly lower amount of data and
converges faster, cutting down the training time, which is ex-
pected as the physical modelling implicitly imposes a con-
straint on the trainable component. Notably, the estimated
velocity field demonstrated high accuracy compared to ac-
tual cloud displacements. This accuracy suggests that this ar-
chitecture could find utility in diverse tasks, such as wind
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Figure 11. Full-disc cloud cover nowcasting predictions. Zoomed-in views of the 120 min observation and prediction.

speed estimation using only satellite observations. The sec-
ond version, HyPhAICC-2, adds a source term to the advec-
tion equation. This model impaired the visual rendering but
displayed the best performance in terms of accuracy.

The HyPhAICC architecture demonstrated an effective
path towards uniting the strengths of a continuous physics-
informed phenomenon with a data-driven approach in the
context of a discrete classification task.

Despite these successes, the models still exhibit some dif-
fusiveness. However, in the case of HyPhAICC-1, it is only
attributed to the use of the first-order upwind discretisation
scheme. Exploring less diffusive schemes could potentially
mitigate this effect, especially in inference mode, where there
is no differentiability constraint.

The CFL condition is designed to guarantee stability by
imposing a restriction on the time step size relative to the
maximum velocity in the system. However, in our scenario,
where the maximum velocity of the cloud is unknown, set-
ting the time step becomes challenging. This uncertainty may
lead to stability issues if the time step is not small enough,
particularly if the predicted velocity turns out to be unex-
pectedly high, highlighting the importance of carefully con-
sidering and addressing potential instability concerns in such
cases.

While HyPhAICC-3 (see Appendix A1) and HyPhAICC-
4 (see Appendix A2) presented interesting modelling varia-
tions, the study acknowledges limitations in not obtaining the
desired variables. We suggest that modifying the approach
to estimate these variables may lead to improved results,
e.g. penalising the dominant classes.

As we move forward, the integration of green computing
principles into AI research becomes crucial. The success of

the HyPhAICC models in achieving these results with low
data requirement and rapid convergence encourages further
exploration of energy-efficient AI models and methodolo-
gies. This emphasises the importance of balancing computa-
tional power with environmental responsibility in the pursuit
of scientific advancements.

Appendix A: Additional resources

A1 Advection with source term: HyPhAICC-3

We introduced another version of the HYPHAICC models
using a source term based on Markov inter-class transitions.
This preserves the probabilistic properties as discussed in
Sect. 2.2.2. This dynamics is expressed using the following
equations:

∂tPj =

C∑
i=1

3j,iPi ∀j ∈ {1,2, . . .,C} ,

where

3(x)=
5(x)ᵀ− I

1t
,

with 5(x) being a stochastic matrix, i.e. a non-negative
square matrix where the sum of each row is equal to one.
This constraint ensures that the probabilistic properties are
maintained over time.

Physically, 3j,i(x) represents the transition rate from
cloud type i to cloud type j at grid point x, 1t represents
the time step, and I (x) denotes the identity matrix.
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Figure A1. HYPHAICC-3. The third version of the proposed hy-
brid model. It consists of a U-Net Xception-style model to estimate
the velocity field and a second U-Net model to estimate the per-
pixel transition matrices from the last observations.

The third version of the hybrid model (see Fig. A1), de-
noted as HYPHAICC-3, uses this source term combined
with the advection as shown in the following equations:

∂tPj +V ·∇Pj =

C∑
i=1

3j,iPi ∀j ∈ {1,2, . . .,C} , (A1)

where the stochastic property of 5 is ensured by construction
using the Softmax function as follows:

5i,k = Softmax(Mi)k =
eMi,k∑C
j=1e

Mi,j
,

where the matrix M is generated using a U-Net model.
This representation of cloud cover dynamics offers a com-

prehensive description of cloud formation and dissipation.
However, it increases the output dimension size of U-Net,
as a C×C transition matrix is generated for each pixel. This
makes the U-Net model poorly constrained. Furthermore, in
our experiments, we noticed an increased memory usage dur-
ing the training.

A2 Advection with source term: HyPhAICC-4

To reduce the number of values output by U-Net, we assume
a limited number of transition regimes, each representing one
of the most frequent transitions. For instance, in the case of
two regimes, the source term is described as follows:

∂tPj = α
1
·

C∑
i=1

31
j,iP

i
+α2
·

C∑
i=1

32
j,iP

i,

where 31 and 32 are the transition matrices and α1 and α2

are positive factors. These factors determine which regime to
consider at each pixel, with the constraint that α1

+α2
≤ 1.

The fourth version of the hybrid model, denoted as
HYPHAICC-4, uses this source term in addition to the ad-
vection as described in the following equations:

∂tPj +V ·∇P j = α
1
·

C∑
i=1

31
j,iP

i
+α2
·

C∑
i=1

32
j,iP

i, (A2)

Figure A2. HYPHAICC-4. The fourth version of the proposed hy-
brid model. It consists of a U-Net Xception-style model to estimate
the velocity field and a second U-Net model to estimate the α factors
from the last observations. These factors are used to choose which
transition regime to consider for each pixel.

where α1 and α2 are estimated using U-Net and 31 and 32

are learned as model parameters (see Fig. A2).
HyPhAICC-3 and HyPhAICC-3 are trained using the

same dataset and training procedure as for HyPhAICC-1 and
HyPhAICC-2. However, during training the 3 matrices in
Eqs. (A1) and (A2) are consistently estimated as zeros. In
other words, no inter-class transitions were captured.

A3 Scores

Figure A3 represents the score comparison shown in Fig. 6
but with additional confidence intervals. These confidence
intervals were estimated using bootstrapping with a thresh-
old of 99 %.

A4 Full-disc predictions

Figure A4 shows predictions of the HyPhAICC-1 model on
the Earth’s full disc centred at 0° longitude.
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Figure A3. Performance comparison between HyPhAICC-1, U-Net, EXIM, and the persistence baseline using five metrics, including aver-
aged F1 score (%), precision (%), recall (%), accuracy (%), CSI (%), and Hausdorff distance (defined in Eq. 9). These scores were computed
over 1000 random samples covering France in 2021. The confidence intervals were estimated using bootstrapping with a threshold of 99 %.

Figure A4. Full-disc cloud cover nowcasting predictions. The predictions were generated by our model without any specific training on the
full disc data (of size 3712× 3712).
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Appendix B: Bridging neural networks and numerical
modelling

In this section, we present fundamental components for im-
plementing the proposed hybrid architecture. In Sect. B1 we
explore the integration of physics within a neural network.
We then explain the trainability challenges associated with
this architecture in Sect. B2. Following this, in Sect. B3 we
provide a brief introduction to numerical methods for solv-
ing PDEs. Finally, in Sect. B4 and B5, we present the method
used to approximate derivatives and perform time integration
within a neural network.

B1 Combining neural networks and physics

An artificial neural network is a function fθ parameterised
by a set of parameters θ . It results from the composition of
a sequence of elementary non-linear parameterised functions
called layers that process and transform input data x into out-
put predictions y as follows:

y = fθ (x) . (B1)

Physics-based models aim to represent the underlying phys-
ical processes or equations that govern the behaviour of a
system. To incorporate physics into the neural network, one
possible approach involves feeding the output of the physics-
based model as an input to the neural network as follows:

y = fθ
(
x,φ

(
xPhy

))
, (B2)

where xPhy are the inputs of the physics-based model φ. This
method could be effective when the physics-based model
is self-contained and its components are explicitly known.
However, it becomes impractical in scenarios where the
physics-based model presents unknown variables that need
to be estimated. This is the case in the application considered
in this work, where the cloud motion field is unknown. In
such instances, a more suitable approach is to pursue a joint
resolution. Here, the physical model takes the outputs of the
neural network and computes the predictions, resulting in a
composition of fθ and φ as follows:

y = φ ◦ fθ
(
x,xPhy

)
. (B3)

In this approach, φ implicitly applies a hard constraint on
these outputs. This might contribute to accelerate the conver-
gence of the neural network during the training process.

Unlike the first method (Eq. B2), where the physics-based
model φ is passive and not involved in the training proce-
dure, the second method raises some challenges concerning
the trainability of the architecture.

B2 Training a neural network

Neural networks learn to minimise a loss function Lθ by ad-
justing its set of parameters θ using data. The loss function

measures the error between the predicted outcomes ŷ and the
ground truth y. It is expressed as

Lθ =
1
N

N∑
k=1

l(yk,fθ (xk)), (B4)

where N is the sample size and l is a measure of the discrep-
ancy between the ground truth yi and the model’s production
associated with the input xi , i.e. fθ ◦φ (xi). For instance, us-
ing l(a,b)=‖ a− b‖2 is the measure used to calibrate a re-
gression model, and Lθ is then the so-called mean-squared
error (MSE).

During this training process, an algorithm called back-
propagation is used to optimise model parameters. Backprop-
agation involves computing the gradient of the loss func-
tion with respect to the network’s parameters. It indicates
how much each weight contributed to the error. This gradi-
ent is then used to update the parameters in the direction that
minimises Lθ , following a sequential optimisation algorithm
such as gradient descent, as described below:

θupdated = θold− γ∇Lθold , (B5)

where γ is the magnitude of the descent. In order to perform
the backpropagation, we assume that the gradient of the loss
function with respect to the model’s parameters could be cal-
culated using the chain rule. This assumption is called differ-
entiability. Indeed, neural networks rely on activation func-
tions and operations that are differentiable, allowing the gra-
dients to be propagated backward through the network layers.

In this proposed hybrid approach, PDEs are solved to pro-
duce model predictions. If the PDE solver includes non-
differentiable steps, the chain rule breaks down, making it
impossible to compute gradients within the standard deep-
learning frameworks. In what follows, we describe our strat-
egy for modelling and solving PDEs using basic differen-
tiable operations commonly employed in neural networks.

B3 Numerical methods for partial differential
equations

Numerical weather prediction involves addressing equations
of the form

∂tf = F
(
f,∂xf,∂

2
xf, . . .

)
, (B6)

governing the evolution of a univariate or multivariate field f
over time. Computers cannot directly solve symbolic PDEs,
and a common approach involves a two-stage process to
transform the PDE into a mathematical formulation more
suitable for computational handling. This process begins by
discretising the partial derivatives with respect to spatial co-
ordinates, resulting in an ordinary differential equation. Sub-
sequently, a temporal integration describes the evolution of
the system over time.

Spatial discretisation can be performed using several
methods, e.g. finite volumes, finite elements, or spectral
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methods. However, the simplest one, the finite-difference
method, consists of replacing spatial derivatives of f with
quantities that depend on the values of f on a grid. For ex-
ample, on a 1D periodic domain [0,L] of coordinate x, dis-
cretised inN grid points (xi)[0,n−1] (xn = x0), the central dif-
ference method of the first-order spatial derivative reads

∂xf (t,xi)≈
f (t,xi+1)− f (t,xi−1)

2δx
, (B7)

where δx = xi+1− xi represents the grid resolution. Follow-
ing spatial discretisation, Eq. (B6) can be written as an ordi-
nary differential equation as follows:

df
dt
= F̂ (f), (B8)

where f(t) is the discretised form of f over the spatial do-
main, i.e. the vector of grid-point values of f at time t , giving
f(t)= (f (t,xi))i in the 1D domain mentioned above.

For the time integration, various methods can also be em-
ployed, e.g. Euler’s method or a fourth-order Runge–Kutta
method (RK4) (Runge, 1895; Kutta, 1901). These methods
differ in their accuracy, stability, and computational cost. An
explicit Euler time integration of Eq. (B8) reads

fq+1 = fq + δtF̂ (fq), (B9)

where fq = f(tq) and tq = qδt is the discretised time of time
step δt .

For the sake of illustration, we consider the advection over
the above-mentioned 1D periodic domain, given by the fol-
lowing equation:

∂tf + u∂xf = 0, (B10)

where u is a velocity field, whose values on the grid are de-
noted as (ui)i∈[0,n−1]. Applying central difference and an Eu-
ler scheme discretisation yields the following sequential evo-
lution:

fq+1,i = fq,i −
δt

2δx
ui (fi+1− fi−1) . (B11)

This example illustrates the integration of the advection
equation over time using a simple explicit method. However,
depending on the problem characteristics and requirements,
other time integration schemes may be more suitable.

In this study, we propose to model and solve PDEs within
a neural network, e.g. equations of the form Eq. (B6). This is
achieved by describing the equivalent of spatial and temporal
discretisation in the frame of neural network layers, i.e. how
it can be implemented in a deep-learning (DL) framework as
TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al.,
2019).

B4 Finite-difference methods and convolutional layers

To implement a finite-difference discretisation, one viable
approach is to employ the convolution operation. For in-
stance, the 1D convolution associated with Eq. (B7) can be

Figure B1. In order to calculate the numerical derivative of f , a
kernel K1 is used to slide across an input vector, which is a dis-
cretised version of f with N elements, multiplying values element-
wise within its window and summing the results to approximate the
derivative at each position. The result is a new vector of size N − 2
containing the numerical derivative of f (padding at the bounds
with zeros or duplicated values in the input vector can be applied to
produce an output vector of size N ). This is equivalent to a convo-
lution between K1 and f and can be reproduced using a 1D convo-
lutional layer with K1 as a kernel.

mathematically written as follows:

(K1
· f ) [i]=

M−1∑
m=0

K1 [i]f [m+ i] , (B12)

where K1 is the kernel or filter used for the convolution and
expressed as

K1
=
[
−1
2δx 0 1

2δx

]
,

and f represents the input data. The variable M corresponds
to the size of the kernel. It is the number of finite-difference
coefficients, also called stencil size. In this case, a three-point
stencil is considered (M = 3). Finally, ∗ is the convolution
operator.

This leads to an interesting interaction with DL frame-
works. Indeed, convolutional neural networks (CNNs) rely
on the operation

ConvLayer(f ) [i]= σ

(
M−1∑
m=0

K [m]f [m+ i]+ b

)
,

where σ is called activation function and b is a parameter
representing the bias. Observing that using data where sigma
is equal to identity and b is equal to 0 leads to the same oper-
ation as in Eq. (B12), one can leverage deep-learning frame-
works to approximate derivatives, which enables derivative-
based operations in neural networks, as shown in Fig. B1.
The same principle applies to higher derivative orders. For
any positive integer α, we can write the approximation of the
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Figure B2. Illustration of a residual block.

αth derivative of f as

∂αf ≈Kα
∗f, (B13)

where Kα are the finite-difference coefficients for the αth
derivative.

Finally, using convolutions is a straightforward method to
model the spatial term of a PDE, also called the trend, as
follows

F̂ (f )=N (f ). (B14)

This results in a neural network that can be used for time
integration.

B5 Temporal schemes and residual networks

The time integration expressed in Eq. (B9) can be written
using the neural network implementation N of the trend as

fn+1 = fn+1tN (fn). (B15)

Interestingly, this formulation is very similar to that of a
building block commonly used in deep neural networks
called a residual block (see Fig. B2), proposed in the ResNet
architecture (He et al., 2016). It is formulated as follows:

y = x+F(x), (B16)

where x is the input to the block, y is the output, and F is
called a residual function and is made up of multiple neu-
ral layers. These layers represent the difference between the
input and output. This function aims to capture the addi-
tional information or adjustments needed to transform the
input into the desired output. This similarity between resid-
ual blocks and time schemes, also observed in Ruthotto
and Haber (2020), Chen et al. (2018), and Fablet et al.
(2017), suggests that the time integration step can be done
inside a neural network. All we need is the residual func-
tion, which can be modelled using convolutional layers, as
shown previously. Pannekoucke and Fablet (2020) proposed
a general framework (called PDE-NetGen (https://github.
com/opannekoucke/pdenetgen, last access: 7 June 2024) to
model a PDE in a neural network form using this method.
Residual blocks were originally designed to address vanish-
ing gradient issues in image classification tasks. Intriguingly,

these blocks proved to function similarly to time schemes,
where they introduce small changes over incremental time
steps. This challenges the traditional black box perception of
neural networks, although full interpretability remains a dis-
tant goal.

Appendix C: Robustness of hybrid formulation to
changes in coordinates

In a given coordinate system x = (xi), the advection of a pas-
sive scalar c(t,x) by a velocity field u= (ui) reads as fol-
lows:

∂tc+ ui∂xi c = 0. (C1)

A change in coordinate system from the coordinate system
x to the coordinate system y = (yj ) related by x = x(y)

changes this to the following equation:

∂tC+ vj∂yjC = 0, (C2)

where C(t,y)= c(t,x(y)) and the velocity v = (vj ) is de-
duced from the chain rule

vj = ui∂xiyj , (C3)

(using Einstein’s summation convention).
Since HyPhAICC architecture estimates a velocity field

from the data that is either u or v depending on the choice
of the coordinate system, it implicitly accounts for the chain
rule Eq. (C3). As a result, the HyPhAICC architecture is not
sensitive to the coordinate system and can apply to regional
domain and global projections. However, numerical effects
due to the finite spatio-temporal resolution associated with
the discretisation can lead to abnormal distortion of signals
after several time steps of integration; e.g. the disc result-
ing from an orthographic projection of the Earth may be de-
formed by the advection near its boundaries unless the veloc-
ity field is close to zero, meaning that the apparent displace-
ment is small.

Note that this relative invariance of HyPhAICC to the
choice of coordinate is because it only concerns the advec-
tion of a scalar field. Covariant transport of vector or ten-
sor fields would imply additional terms (Christoffel symbols,
e.g. Nakahara, 2003) that would break the invariance of Hy-
PhAICC as it is formulated here.
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Figure C1. Estimated velocity field from the U-Net Xception-style
architecture used in the HyPhAICC-1 model.

Appendix D: Probability advection

Here, we are considering a three-class problem where we
have a discrete random variable X with values in the set
1,2,3, and we denote X(t,x) using the value of X at time
t and space x, with t ∈ [0,T ] and x ∈ [0,L]. We are inter-
ested in studying the evolution of the state probabilities of X
with respect to t and x. For this purpose, we define a vector
P as

P =

 P 1
X

P 2
X

P 3
X

 .
Here, P cX(t,x) represents the probability of the cth class:

P cX(t,x)= P(X(t,x)= c).

For the sake of simplicity, a 1D problem is considered, but
the same analysis applies to the 2D case and for N -class
problems with N ≥ 2. Let us consider the following partial
differential equation governing the evolution of P(x, t):

∂tP(x, t)+L(P(x, t))= 0, (D1)

where L is a differential operator. This equation can be writ-
ten component-wise as follows:
∂tP

1
X(x, t)+L

(
P 1
X(x, t)

)
= 0

∂tP
2
X(x, t)+L

(
P 2
X(x, t)

)
= 0

∂tP
3
X(x, t)+L

(
P 3
X(x, t)

)
= 0

. (D2)

As already discussed in Sect. 2.2.1, three properties should
be checked in order to ensure the probabilistic nature of P .

1. Non-negativity. P(x, t)≥ 0 for all values of x and t ,
with x= (x,y), which ensures that the probabilities re-
main non-negative.

2. Bound preservation. P(x, t)≤ 1 for all values of x and
t , which ensures that no probability exceeds 1.

3. Probability conservation.
∑C
i=1P

i
X(x, t)= 1 for all val-

ues of x and t , with C = 12 being the total number of
cloud types. This property guarantees that the sum of
all probabilities is equal to 1.

D1 Probability conservation

Property. The probability conservation property is ensured
if L is a linear differential operator with non-zero positive
spatial derivative orders.

Proof. Let us sum the three equations in Eq. (D2) for the
specific case where L is a linear differential operator with
non-zero positive spatial derivative orders.

3∑
i=1

∂tP
i
X(x, t)+L

(
P iX(x, t)

)
= 0

∂t

3∑
i=1

P iX(x, t)=−

3∑
i

L
(
P iX(x, t)

)
.

Assuming
∑3
i=1P

i
X(x, t0)= 1, the linearity property of L al-

lows us to interchange the summation and the operator, re-
sulting in the following equation:

3∑
i

L
(
P iX(x, t0)

)
=−L

(
3∑
i=1

P iX(x, t0)

)
=−L(1)
= 0.

L(1)= 0 as L only has derivatives with positive non-zero
orders.

Applying and summing the first-order Taylor expansion at
t0 on each of the time derivatives of Eq. (D2) gives

3∑
i

Pi(x, t0+ δt)−Pi(x, t0)

δt
+O(1)=−

3∑
i

L
(
P iX(x, t)

)
= 0

3∑
i

Pi(x, t0+ δt)=

3∑
i

Pi(x, t0)+O(δt),

when δt is small enough,
∑3
i Pi(x, t0+ δt)= 1.

Iteratively, starting from t0, ∀t

3∑
i

Pi(x, t)=

3∑
i

Pi(x, t0)= 1.
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Figure D1. Here it can be seen that the advection of probabilities using central finite-difference discretisation presents a dispersion effect.

Figure D2. Here the probability conservation property is main-
tained even in presence of dispersion effects.

In this study, we consider the advection equation using the
same velocity field for all probability maps, where the oper-
ator L is written as follows:

L(Pi)= u · ∂xPi, i ∈ {1,2, ·,12}.

This differential operator is linear and has a non-zero positive
derivative order. Therefore, the sum of probabilities is con-
served over time and remains equal to the initial value. This
property is illustrated numerically in Figs. D2 and D4, and it
is maintained independently of the discretisation scheme.

D2 Non-negativity and bound preservation

In order to check the two other properties, we need to study
the discretisation schemes.

Out of the four numerical schemes studied (central finite
differences, semi-Lagrangian, and first- and second-order up-
wind), only the semi-Lagrangian and the first-order upwind
discretisation satisfy the first and second properties. The re-
maining two schemes exhibit some form of dispersion.

Details about central finite difference and first-order up-
wind scheme are given in Sect. E.
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Figure D3. Here the advection of probabilities using first-order upwind discretisation presents a diffusion effect.

Figure D4. Here the probability conservation property is main-
tained even in presence of diffusion effects.
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Appendix E: Discretisation schemes

Here, we will derive the equivalent equation of central differ-
ences and upwind scheme applied to the following advection
equation:

∂F (x, t)

∂t
+ u

∂F(x, t)

∂x
= 0. (E1)

E1 Central differences: equivalent equation

We consider the second-order central discretisation in space
and a first-order explicit forward difference in time applied
to the advection equation.

F n+1
i −F ni

1t
+ ui

Fi+1−Fi−1

21x
= 0 (E2)

Using the Taylor formulas in Eq. (E2), we get

∂tF +
1t

2
∂2
t F +O(1t2)

=−u

(
∂xF −

1x2

6
∂3
xF +O(1x2)

)
. (E3)

However, when we only require a first-order expansion in
time, we can replace the second-order time derivative with
another term coming from a Taylor first-order expansion of
Eq. (E2) :

∂t (∂tF)+O(1t)=−∂t (u∂xF)+O(1x), (E4)

which leads to

∂2
t F =−∂tu∂xF − u∂

2
xtF +O(1t,1x).

Using the same approach as in Eq. (E4), the derivative ∂2
xtF

can be computed as follows:

∂x(∂tF)=−∂xu∂xF − u∂
2
xF +O(1t,1x).

We replace the derivative ∂2
xtF in the last equation as follows:

∂2
t F =−∂tu∂xF − u

(
−∂xu∂xF − u∂

2
xF
)

+O(1t,1x) . (E5)

Finally, we replace the second-order derivative in Eq. (E3)
with the expression in Eq. (E5):

∂tF +
1t

2

(
−∂tu∂xF − u

(
−∂xu∂xF − u∂

2
xF
))

=−u

(
∂xF −

1x2

6
∂3
xF

)
+O

(
1t2,1x2

)
.

Hence,

∂tF + ũ∂xF =−
1t

2
u2∂2

xF +
1x2

6
u∂3
xF

+O
(
1t2,1x2

)
, (E6)

where ũ= u− 1t
2 ∂tu+

1t
2 u∂xu.

E2 First-order upwind scheme: equivalent equation

Now let us consider the first-order upwind discretisation of
the spatial term given by F n+1

i −F ni
1t

+ u
Fi−Fi−1
1x

= 0 if u≥ 0
F n+1
i −F ni
1t

+ u
Fi+1−Fi
1x

= 0 if u < 0
.

These two equations can be written as follows:

F n+1
i −F ni

1t
+

(
u+i
Fi −Fi−1

1x
+ u−i

Fi+1−Fi

1x

)
= 0, (E7)

where u+i =max(ui,0) and u−i =min(ui,0).
Considering the case of u≥ 0 of Eq. (E7), using the Taylor

formulas, we get:

∂tF +
1t

2
∂2
t F +O

(
1t2

)
=−u

(
∂xF −

1x

2
∂2
xF +O

(
1x2

))
. (E8)

As in the case of the central differences, we replace the
second-order derivative ∂2

t F in Eq. (E8) with the expression
in Eq. (E5).

∂tF +
1t

2

(
−∂tu∂xF − u

(
−∂xu∂xF − u∂

2
xF
))

=−u

(
∂xF −

1x

2
∂2
xF

)
+O

(
1t2,1x2

)
Hence,

∂tF + ũ∂xF = vnum∂
2
xF +O

(
1t2,1x2

)
, (E9)

where ũ= u− 1t
2 ∂tu+

1t
2 u∂xu and vnum = u

2 (1x− u1t).
The equivalent equation of the second case of Eq. (E7)

(case u≤ 0) is written as follows:

∂tF + ũ∂xF = vnum∂
2
xF +O

(
1t2,1x2

)
, (E10)

where vnum =
u
2 (−1x− u1t)

From Eqs. (E9) and (E10) we can write the equivalent
equation as follows:

∂tF + ũ∂xF = vnum∂
2
xF +O

(
1t2,1x2

)
, (E11)

where ũ= u− 1t
2 ∂tu+

1t
2 u∂xu and vnum =

u
2 (sign(u)1x− u1t)..

E3 Conclusion

It should be noted that the finite central difference scheme ex-
hibits instability due to the presence of negative diffusion in
the second term in Eq. (E6). However, when using a temporal
scheme of higher order than two, the negative diffusion term
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in 1t can be eliminated, rendering the scheme stable. Nev-
ertheless, the scheme becomes dispersive due to the third-
order spatial derivative term, resulting in oscillations during
the propagation of sharp signals, such as a front or Heaviside
function.

Alternatively, the first-order upwind scheme offers stabil-
ity but introduces numerical diffusion, affecting the accu-
racy of the solution, this diffusion is due to the second-order
derivative term in Eq. (E11).

Finally, the choice of numerical scheme depends on the
specific requirements of the problem, such as the desired ac-
curacy and stability of the solution. To respect the properties
described above, we use the first-order upwind scheme, as
it does not introduce oscillations in the solution. The first-
order upwind scheme is also easy to implement in a differ-
entiable mode. Despite the limitation on the time step linked
to the CFL condition, we consider it to be a more appro-
priate scheme to integrate probability advection in a neural
network.

Code and data availability. The code used in this study is available
at https://github.com/relmonta/hyphai (last access: 7 June 2024) and
at https://doi.org/10.5281/zenodo.11518540 (El Montassir, 2024).
The weights of the pre-trained HyPhAICC-1, HyPhAICC-2, and
U-Net are available at https://doi.org/10.5281/zenodo.10393415 (El
Montassir et al., 2023a). The training data are not provided as
they are proprietary data from EUMETSAT. However, data can
be obtained from EUMETSAT for research purposes. A sample
of the test data used in this study is available on the GitHub
repository, and a sample of the training data is available at
https://doi.org/10.5281/zenodo.10642094 (European Organisation
for the Exploitation of Meteorological Satellites, 2024).

Interactive computing environment. Three Jupyter notebooks are
provided at https://github.com/relmonta/hyphai/tree/main/examples
(last access: 7 June 2024) or at https://github.com/relmonta/
hyphai/tree/main/examples (last access: 7 June 2024) and at
https://doi.org/10.5281/zenodo.11518540 (El Montassir, 2024).
Each notebook corresponds to an example of the use of HyPhAICC-
1, HyPhAICC-2, and the baseline U-Net model.

Video supplement. A video supplement of a 2 h forecast is avail-
able at https://doi.org/10.5281/zenodo.10375284 (El Montassir et
al., 2023b).
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