Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6571-2024
https://doi.org/10.5194/gmd-17-6571-2024
Development and technical paper
 | 
03 Sep 2024
Development and technical paper |  | 03 Sep 2024

Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system

Máté Mile, Stephanie Guedj, and Roger Randriamampianina

Related authors

Observation Preprocessing System for RC LACE (OPLACE)
Alena Trojáková, Máté Mile, and Martina Tudor
Adv. Sci. Res., 16, 223–228, https://doi.org/10.5194/asr-16-223-2019,https://doi.org/10.5194/asr-16-223-2019, 2019
Short summary
The use of GNSS zenith total delays in operational AROME/Hungary 3D-Var over a central European domain
Máté Mile, Patrik Benáček, and Szabolcs Rózsa
Atmos. Meas. Tech., 12, 1569–1579, https://doi.org/10.5194/amt-12-1569-2019,https://doi.org/10.5194/amt-12-1569-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024,https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary

Cited articles

Aires, F., Prigent, C., Bernardo, F., Jiménez, C., Saunders, R., and Brunel, P.: A tool to estimate land-surface emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. Roy. Meteor. Soc., 137, 690–699, https://doi.org/10.1002/qj.803, 2011. a
Baordo, F. and Geer, A. J.: Assimilation of SSMIS humidity-sounding channels in all-sky conditions over land using a dynamic emissivity retrieval, Q. J. Roy. Meteor. Soc., 142, 2854–2866, https://doi.org/10.1002/qj.2873, 2016. a
Bauer, P., Geer, A. J., Lopez, P., and Salmond, D.: Direct 4D-Var assimilation of all-sky radiances: Part I. Implementation, Q. J. Roy. Meteor. Soc., 136, 1868–1885, https://doi.org/10.1002/qj.659, 2010. a
Benáček, P. and Mile, M.: Satellite Bias Correction in the Regional Model ALADIN/CZ: Comparison of Different VarBC Approaches, Mon. Weather Rev. 147, 3223–3239, https://doi.org/10.1175/MWR-D-18-0359.1, 2019. a
Bormann, N.: Slant path radiative transfer for the assimilation of sounder radiances, Tellus A, 69, 1272779, https://doi.org/10.1080/16000870.2016.1272779, 2017. a, b
Download
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.