Articles | Volume 17, issue 16
https://doi.org/10.5194/gmd-17-6365-2024
https://doi.org/10.5194/gmd-17-6365-2024
Model experiment description paper
 | 
29 Aug 2024
Model experiment description paper |  | 29 Aug 2024

Impact of ITCZ width on global climate: ITCZ-MIP

Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb

Related authors

Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024,https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Evaluating precipitation distributions at regional scales: a benchmarking framework and application to CMIP5 and 6 models
Min-Seop Ahn, Paul A. Ullrich, Peter J. Gleckler, Jiwoo Lee, Ana C. Ordonez, and Angeline G. Pendergrass
Geosci. Model Dev., 16, 3927–3951, https://doi.org/10.5194/gmd-16-3927-2023,https://doi.org/10.5194/gmd-16-3927-2023, 2023
Short summary
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023,https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary
The potential for structural errors in emergent constraints
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021,https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Latent Linear Adjustment Autoencoder v1.0: a novel method for estimating and emulating dynamic precipitation at high resolution
Christina Heinze-Deml, Sebastian Sippel, Angeline G. Pendergrass, Flavio Lehner, and Nicolai Meinshausen
Geosci. Model Dev., 14, 4977–4999, https://doi.org/10.5194/gmd-14-4977-2021,https://doi.org/10.5194/gmd-14-4977-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary

Cited articles

Barsugli, J., Shin, S.-I., and Sardeshmukh, P. D.: Tropical climate regimes and global climate sensitivity in a simple setting, J. Atmos. Sci., 62, 1226–1240, https://doi.org/10.1175/JAS3404.1, 2005. a
Brayshaw, D. J., Hoskins, B., and Blackburn, M.: The Storm-Track Response to Idealized SST Perturbations in an Aquaplanet GCM, J. Atmos. Sci., 65, 2842–2860, https://doi.org/10.1175/2008jas2657.1, 2008. a
Byrne, M. P. and Schneider, T.: Narrowing of the ITCZ in a warming climate: Physical mechanisms, Geophys. Res. Lett., 43, 11350–11357, https://doi.org/10.1002/2016GL070396, 2016a. a
Byrne, M. P. and Schneider, T.: Energetic constraints on the width of the intertropical convergence zone, J. Climate, 29, 4709–4721, https://doi.org/10.1175/JCLI-D-15-0767.1, 2016b. a
Byrne, M. P. and Thomas, R.: Dynamics of ITCZ Width: Ekman Processes, Non-Ekman Processes, and Links to Sea Surface Temperature, J. Atmos. Sci., 76, 2869–2884, https://doi.org/10.1175/jas-d-19-0013.1, 2019. a
Download
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Share