Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5413-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-5413-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon
Dongyu Zheng
CORRESPONDING AUTHOR
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications, MNR & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
School of Earth and Environment, University of Leeds, Leeds, UK
Andrew S. Merdith
School of Earth and Environment, University of Leeds, Leeds, UK
School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, Australia
Yves Goddéris
Géosciences Environnement Toulouse, CNRS, Toulouse, France
Yannick Donnadieu
Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, CNRS–Aix-Marseille Université, Aix-en-Provence, France
Khushboo Gurung
School of Earth and Environment, University of Leeds, Leeds, UK
Benjamin J. W. Mills
School of Earth and Environment, University of Leeds, Leeds, UK
Related authors
No articles found.
Nina M. Papadomanolaki, Anta-Clarisse Sarr, Anthony Gramoullé, Marie Laugié, Jean-Baptiste Ladant, and Yannick Donnadieu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3458, https://doi.org/10.5194/egusphere-2025-3458, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We model how geography and atmospheric CO2 changed circulation and oxygen concentrations prior to two deoxygenation events of the Cretaceous (severe) and Paleocene. Deep Cretaceous oxygen concentration are lower, but at shallower depths, the two simulations produce similar oxygen concentrations. At these depths, the Cretaceous seafloor likely fortified deoxygenation via sedimentary feedbacks. We show that geographical changes after the Paleocene further enhanced ocean oxygenation in our runs.
Loïc Sablon, Pierre Maffre, Yves Goddéris, Paul J. Valdes, Justin Gérard, Jarno J. C. Huygh, Anne-Christine Da Silva, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2025-1696, https://doi.org/10.5194/egusphere-2025-1696, 2025
Short summary
Short summary
We propose an innovative climate modelling framework that combines statistical methods with climate simulations to study Earth's environmental systems. The model captures how orbital changes and carbon dioxide levels influence climate atmospheric dynamics, offering a detailed and efficient way to explore long-term processes. This tool provides new opportunities to investigate Earth's climate history and its implications for future changes.
Pierre Maffre, Yves Goddéris, Guillaume Le Hir, Élise Nardin, Anta-Clarisse Sarr, and Yannick Donnadieu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-220, https://doi.org/10.5194/gmd-2024-220, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
A new version (v7) of the numerical model GEOCLIM is presented here. GEOCLIM models the evolution of ocean and atmosphere chemical composition on multi-million years timescale, including carbon and oxygen cycles, CO2 and climate. GEOCLIM is associated to a climate model, and a new procedure to link the climate model to GEOCLIM is presented here. GEOCLIM is applied here to investigate the evolution of ocean oxygenation following Earth's orbital parameter variations, around 94 million years ago.
Nick R. Hayes, Daniel J. Lunt, Yves Goddéris, Richard D. Pancost, and Heather L. Buss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2811, https://doi.org/10.5194/egusphere-2024-2811, 2024
Short summary
Short summary
The breakdown of volcanic rocks by water helps balance the climate of the earth by sequestering atmospheric CO2 . The rate of CO2 sequestration is referred to as "weatherability". Our modelling study finds that continental position strongly impacts CO2 concentrations, that runoff strongly controls weatherability, that changes in weatherability may explain long term trends in atmospheric CO2 concentrations, and that even relatively localised changes in weatherability may have global impacts.
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, https://doi.org/10.5194/se-13-1127-2022, 2022
Short summary
Short summary
We have built a community model for the evolution of the Earth's plate–mantle system. Created with open-source software and an open-access plate model, it covers the last billion years, including the formation, breakup, and dispersal of two supercontinents, as well as the creation and destruction of numerous ocean basins. The model allows us to
seeinto the Earth in 4D and helps us unravel the connections between surface tectonics and the
beating heartof the Earth, its convecting mantle.
Agathe Toumoulin, Delphine Tardif, Yannick Donnadieu, Alexis Licht, Jean-Baptiste Ladant, Lutz Kunzmann, and Guillaume Dupont-Nivet
Clim. Past, 18, 341–362, https://doi.org/10.5194/cp-18-341-2022, https://doi.org/10.5194/cp-18-341-2022, 2022
Short summary
Short summary
Temperature seasonality is an important climate parameter for biodiversity. Fossil plants describe its middle Eocene to early Oligocene increase in the Northern Hemisphere, but underlying mechanisms have not been studied in detail yet. Using climate simulations, we map global seasonality changes and show that major contemporary forcing – atmospheric CO2 lowering, Antarctic ice-sheet expansion and particularly related sea level drop – participated in this phenomenon and its spatial distribution.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Jon D. Richey, Isabel P. Montañez, Yves Goddéris, Cindy V. Looy, Neil P. Griffis, and William A. DiMichele
Clim. Past, 16, 1759–1775, https://doi.org/10.5194/cp-16-1759-2020, https://doi.org/10.5194/cp-16-1759-2020, 2020
Short summary
Short summary
Our 40 Myr CO2 reconstruction substantially refines existing late Paleozoic CO2 estimates, provides the best resolved pre-Cenozoic CO2 record, and indicates a close temporal relationship to changes in marine and terrestrial ecosystems. The GEOCLIM model used in our study allows for insight into the relative influences of uplift of the Central Pangean Mountains, intensifying aridity, and increasing mafic-to-granite ratio of outcropping rocks on changes in pCO2 through the late Paleozoic.
Cited articles
Argaw, D. M. and Kweon, I. S.: Long-term video frame interpolation via feature propagation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3543–3552, 2022.
Berner, R. A.: Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling, P. Natl. Acad. Sci. USA, 99, 4172–4177, https://doi.org/10.1073/pnas.032095199, 2002.
Chen, G., Cheng, Q., Lyons, T. W., Shen, J., Agterberg, F., Huang, N., and Zhao, M.: Reconstructing Earth's atmospheric oxygenation history using machine learning, Nat. Commun., 13, 5862, https://doi.org/10.1038/s41467-022-33388-5, 2022.
Cui, C., and Cao, C.: Increased aridity across the Permian–Triassic transition in the mid‐latitude NE Pangea, Geol. J., 56, 6162–6175, 2021.
Dong, J., Ota, K., and Dong, M.: Video frame interpolation: A comprehensive survey, ACM T. Multim. Comput., 19, 1–31, https://doi.org/10.1145/3556544, 2023.
Donnadieu, Y., Pierrehumbert, R., Jacob, R., and Fluteau, F.: Modelling the primary control of paleogeography on Cretaceous climate, Earth Planet. Sc. Lett., 248, 426–437, 2006.
Fielding, C. R., Frank, T. D., McLoughlin, S., Vajda, V., Mays, C., Tevyaw, A. P., Winguth, A., Winguth, C., Nicoll, R. S., Bocking, M., and Crowley, J. L.: Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis, Nat. Commun., 10, 385, https://doi.org/10.1038/s41467-018-07934-z, 2019.
Foster, G. L., Royer, D. L., and Lunt, D. J.: Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8, 14845, https://doi.org/10.1038/ncomms14845, 2017.
Glasspool, I. J. and Scott, A. C.: Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal, Nat. Geosci., 3, 627–630, 2010.
Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V., and Nardin, E.: The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate, Earth-Sci. Rev., 128, 122–138, https://doi.org/10.1016/j.earscirev.2013.11.004, 2014.
Goddéris, Y., Donnadieu, Y., and Mills, B. J. W.: What models tell us about the evolution of carbon sources and sinks over the Phanerozoic, Annu. Rev. Earth Planet. Sci., 51, 471–492, 2023.
Hinton, G. E., Osindero, S., and Teh, Y.-W.: A Fast Learning Algorithm for Deep Belief Nets, Neural Comput., 18, 1527–1554, 2006.
Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, MIT Press, ISBN 9780262035613, 2016.
Lenton, T. M. and Watson, A. J.: Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic, Geophys. Res. Lett., 31, L05202, https://doi.org/10.1029/2003GL018802, 2004.
Lenton, T. M., Crouch, M., Johnson, M., Pires, N., and Dolan, L.: First plants cooled the Ordovician, Nat. Geosci., 5, 86–89, 2012.
Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J. W., Ozaki, K., Saltzman, M. R., and Porada, P.: Earliest land plants created modern levels of atmospheric oxygen, P. Natl. Acad. Sci. USA, 113, 9704–9709, 2016.
Longman, J., Mills, B. J. W., Donnadieu, Y., and Goddéris, Y.: Assessing Volcanic Controls on Miocene Climate Change, Geophys. Res. Lett., 49, 1–11, https://doi.org/10.1029/2021GL096519, 2022.
Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L., and Jagoutz, O.: Arc-continent collisions in the tropics set Earth’s climate state, Science, 364, 181–184, 2019.
Maffre, P., Ladant, J. B., Moquet, J. S., Carretier, S., Labat, D., and Goddéris, Y.: Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?, Earth Planet. Sc. Lett., 493, 174–185, https://doi.org/10.1016/j.epsl.2018.04.034, 2018.
Maher, K. and Chamberlain, C. P.: Hydrologic regulation of chemical weathering and the geologic carbon cycle, Science, 343, 1502–1504, 2014.
Marcilly, C. M., Torsvik, T. H., Domeier, M., and Royer, D. L.: New paleogeographic and degassing parameters for long-term carbon cycle models, Gondwana Res., 97, 176–203, 2021.
Mills, B. J. W.: bjwmills/SCION: v1.1.6 (v1.1.6), Zenodo [code], https://doi.org/10.5281/zenodo.7790169, 2023.
Mills, B. J. W., Donnadieu, Y., and Goddéris, Y.: Spatial continuous integration of Phanerozoic global biogeochemistry and climate, Gondwana Res., 100, 73–86, https://doi.org/10.1016/j.gr.2021.02.011, 2021.
Niklaus, S., Mai, L., and Liu, F.: Video frame interpolation via adaptive separable convolution, in: Proceedings of the IEEE international conference on computer vision, 261–270, 2017.
Park, Y., Maffre, P., Goddéris, Y., MacDonald, F. A., Anttila, E. S. C., and Swanson-Hysell, N. L.: Emergence of the Southeast Asian islands as a driver for Neogene cooling, P. Natl. Acad. Sci. USA, 117, 25319–25326, https://doi.org/10.1073/pnas.2011033117, 2020.
Reda, F., Kontkanen, J., Tabellion, E., Sun, D., Pantofaru, C., and Curless, B.: FILM: Frame Interpolation for Large Motion, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 13667 LNCS, 250–266, https://doi.org/10.1007/978-3-031-20071-7_15, 2022.
Reda, F., Kontkanen, J., Tabellion, E., Sun, D., Pantofaru, C., and Curless, B.: FILM: Frame Interpolation for Large Motion, European Conference on Computer Vision (ECCV) (ECCV), Zenodo [code], https://doi.org/10.5281/zenodo.10602810, 2024.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J., and Beerling, D. J.: CO2 as a primary driver of phanerozoic climate, GSA today, 14, 4–10, 2004.
Scotese, C. R.: An atlas of Phanerozoic paleogeographic maps: the seas come in and the seas go out, Annu. Rev. Earth Planet. Sci., 49, 679–728, 2021.
Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PaleoDEMs, PALEOMAP Project, https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018 (last access: 10 April 2023), 2018.
Scotese, C. R., Song, H., Mills, B. J. W., and van der Meer, D. G.: Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years, Earth-Sci. Rev., 215, 103503, https://doi.org/10.1016/j.earscirev.2021.103503, 2021.
Shi, Z., Xu, X., Liu, X., Chen, J., and Yang, M.-H.: Video frame interpolation transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 17482–17491, 2022.
Valdes, P. J., Scotese, C. R., and Lunt, D. J.: Deep ocean temperatures through time, Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021, 2021.
Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback mechanism for the long-term stabilization of Earth's surface temperature, J. Geophys. Res.-Ocean., 86, 9776–9782, 1981.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality assessment: from error visibility to structural similarity, IEEE T. Image Process., 13, 600–612, 2004.
West, A. J.: Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks, Geology, 40, 811–814, 2012.
Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S., and Sinninghe Damsté, J. S.: Molecular fossils from phytoplankton reveal secular PCO2 trend over the Phanerozoic, Sci. Adv., 4, eaat4556, https://doi.org/10.1126/sciadv.aat4556, 2018.
Wong Hearing, T. W., Pohl, A., Williams, M., Donnadieu, Y., Harvey, T. H. P., Scotese, C. R., Sepulchre, P., Franc, A., and Vandenbroucke, T. R. A.: Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate, Nat. Commun., 12, 1–11, https://doi.org/10.1038/s41467-021-24141-5, 2021.
Wu, H., Zhang, X., Xie, W., Zhang, Y., and Wang, Y.: Boost Video Frame Interpolation via Motion Adaptation, arXiv [preprint], arXiv2306.13933, 2023.
Wu, Q., Zhang, H., Ramezani, J., Zhang, F. F., Erwin, D. H., Feng, Z., Shao, L. Y., Cai, Y. F., Zhang, S. H., Xu, Y. G., and Shen, S. Z.: The terrestrial end-Permian mass extinction in the paleotropics postdates the marine extinction, Sci. Adv., 10, eadi7284, https://doi.org/10.1126/sciadv.adi7284, 2024.
Xu, G., Shen, J., Algeo, T. J., Yu, J., Feng, Q., Frank, T. D., Fielding, C. R., Yan, J., Deconink, J. F., and Lei, Y.: Limited change in silicate chemical weathering intensity during the Permian–Triassic transition indicates ineffective climate regulation by weathering feedbacks, Earth Planet. Sc. Lett., 616, 118235, https://doi.org/10.1016/j.epsl.2023.118235, 2023.
Yang, W., Wan, M., Crowley, J. L., Wang, J., Luo, X., Tabor, N., Angielczyk, K. D., Gastaldo, R., Geissman, J., and Liu, F.: Paleoenvironmental and paleoclimatic evolution and cyclo-and chrono-stratigraphy of upper Permian–Lower Triassic fluvial-lacustrine deposits in Bogda Mountains, NW China – Implications for diachronous plant evolution across the Permian–Triassic boundary, Earth-Sci. Rev., 222, 103741, https://doi.org/10.1016/j.earscirev.2021.103741, 2021.
Zheng, D.: DeepFOAM – creating Figures, Zenodo [code], https://doi.org/10.5281/zenodo.10578608, 2024.
Zheng, D., Wu, S., Ma, C., Xiang, L., Hou, L., Chen, A., and Hou, M.: Zircon classification from cathodoluminescence images using deep learning, Geosci. Front., 13, 101436, https://doi.org/10.1016/j.gsf.2022.101436, 2022.
Zheng, D., Zhong, H., Camps-Valls, G., Cao, Z., Ma, X., Mills, B., Hu, X., Hou, M., and Ma, C.: Explainable deep learning for automatic rock classification, Comput. Geosci., 184, 105511, https://doi.org/10.1016/j.cageo.2023.105511, 2024.
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
This study uses a deep learning method to upscale the time resolution of paleoclimate...