Articles | Volume 17, issue 12
https://doi.org/10.5194/gmd-17-5023-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-5023-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Alberto Martilli
CORRESPONDING AUTHOR
Atmospheric Modelling Unit, Environmental Department, CIEMAT, Madrid 28040, Spain
Negin Nazarian
School of Built Environment, University of New South Wales, Sydney, Australia
ARC Centre of Excellence for Climate Extremes, Sydney, Australia
E. Scott Krayenhoff
School of Environmental Sciences, University of Guelph, Guelph, Canada
Jacob Lachapelle
School of Environmental Sciences, University of Guelph, Guelph, Canada
Jiachen Lu
School of Built Environment, University of New South Wales, Sydney, Australia
ARC Centre of Excellence for Climate Extremes, Sydney, Australia
Esther Rivas
Atmospheric Modelling Unit, Environmental Department, CIEMAT, Madrid 28040, Spain
Alejandro Rodriguez-Sanchez
Atmospheric Modelling Unit, Environmental Department, CIEMAT, Madrid 28040, Spain
Beatriz Sanchez
Atmospheric Modelling Unit, Environmental Department, CIEMAT, Madrid 28040, Spain
José Luis Santiago
Atmospheric Modelling Unit, Environmental Department, CIEMAT, Madrid 28040, Spain
Related authors
Gianluca Pappaccogli, Andrea Zonato, Alberto Martilli, Riccardo Buccolieri, and Piero Lionello
EGUsphere, https://doi.org/10.5194/egusphere-2025-219, https://doi.org/10.5194/egusphere-2025-219, 2025
Short summary
Short summary
We present the MLUCM BEP+BEM model that bridges mesoscale and microscale phenomena within the urban canopy, capturing scale interactions and feedback. The accuracy and low computational cost of this one-dimensional model makes it ideal for offline climate projections to assess urban climate impacts under different emission scenarios. The model's features allow analyzing urban overheating, energy demands, and evaluating the efficiency of strategies like green/cool roofs, and photovoltaic panels.
Jiachen Lu, Negin Nazarian, Melissa Anne Hart, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 17, 2525–2545, https://doi.org/10.5194/gmd-17-2525-2024, https://doi.org/10.5194/gmd-17-2525-2024, 2024
Short summary
Short summary
This study enhances urban canopy models by refining key assumptions. Simulations for various urban scenarios indicate discrepancies in turbulent transport efficiency for flow properties. We propose two modifications that involve characterizing diffusion coefficients for momentum and turbulent kinetic energy separately and introducing a physics-based
mass-fluxterm. These adjustments enhance the model's performance, offering more reliable temperature and surface flux estimates.
Matthias Demuzere, Jonas Kittner, Alberto Martilli, Gerald Mills, Christian Moede, Iain D. Stewart, Jasper van Vliet, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, https://doi.org/10.5194/essd-14-3835-2022, 2022
Short summary
Short summary
Because urban areas are key contributors to climate change but are also susceptible to multiple hazards, one needs spatially detailed information on urban landscapes to support environmental services. This global local climate zone map describes this much-needed intra-urban heterogeneity across the whole surface of the earth in a universal language and can serve as a basic infrastructure to study e.g. environmental hazards, energy demand, and climate adaptation and mitigation solutions.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Gianluca Pappaccogli, Andrea Zonato, Alberto Martilli, Riccardo Buccolieri, and Piero Lionello
EGUsphere, https://doi.org/10.5194/egusphere-2025-219, https://doi.org/10.5194/egusphere-2025-219, 2025
Short summary
Short summary
We present the MLUCM BEP+BEM model that bridges mesoscale and microscale phenomena within the urban canopy, capturing scale interactions and feedback. The accuracy and low computational cost of this one-dimensional model makes it ideal for offline climate projections to assess urban climate impacts under different emission scenarios. The model's features allow analyzing urban overheating, energy demands, and evaluating the efficiency of strategies like green/cool roofs, and photovoltaic panels.
Jiachen Lu, Negin Nazarian, Melissa Anne Hart, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 17, 2525–2545, https://doi.org/10.5194/gmd-17-2525-2024, https://doi.org/10.5194/gmd-17-2525-2024, 2024
Short summary
Short summary
This study enhances urban canopy models by refining key assumptions. Simulations for various urban scenarios indicate discrepancies in turbulent transport efficiency for flow properties. We propose two modifications that involve characterizing diffusion coefficients for momentum and turbulent kinetic energy separately and introducing a physics-based
mass-fluxterm. These adjustments enhance the model's performance, offering more reliable temperature and surface flux estimates.
Matthias Demuzere, Jonas Kittner, Alberto Martilli, Gerald Mills, Christian Moede, Iain D. Stewart, Jasper van Vliet, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, https://doi.org/10.5194/essd-14-3835-2022, 2022
Short summary
Short summary
Because urban areas are key contributors to climate change but are also susceptible to multiple hazards, one needs spatially detailed information on urban landscapes to support environmental services. This global local climate zone map describes this much-needed intra-urban heterogeneity across the whole surface of the earth in a universal language and can serve as a basic infrastructure to study e.g. environmental hazards, energy demand, and climate adaptation and mitigation solutions.
Mohsen Moradi, Benjamin Dyer, Amir Nazem, Manoj K. Nambiar, M. Rafsan Nahian, Bruno Bueno, Chris Mackey, Saeran Vasanthakumar, Negin Nazarian, E. Scott Krayenhoff, Leslie K. Norford, and Amir A. Aliabadi
Geosci. Model Dev., 14, 961–984, https://doi.org/10.5194/gmd-14-961-2021, https://doi.org/10.5194/gmd-14-961-2021, 2021
Short summary
Short summary
The Vertical City Weather Generator (VCWG) is an urban microclimate model developed to predict temporal and vertical variation of potential temperature, wind speed, and specific humidity. VCWG is forced by climate variables at a nearby rural site and coupled to radiation and building energy models. VCWG is evaluated against field observations of the BUBBLE campaign. It is run under exploration mode to assess its performance given urban characteristics, seasonal variations, and climate zones.
Brian N. Bailey, María A. Ponce de León, and E. Scott Krayenhoff
Geosci. Model Dev., 13, 4789–4808, https://doi.org/10.5194/gmd-13-4789-2020, https://doi.org/10.5194/gmd-13-4789-2020, 2020
Short summary
Short summary
Numerous models of plant radiation interception based on a range of assumptions are available in the literature, but the importance of each assumption is not well understood. In this work, we evaluate several assumptions common in simple models of radiation interception in canopies with widely spaced plants by comparing against a detailed 3-D model. This yielded a simple model based on readily measurable parameters that could accurately predict interception for a wide range of architectures.
Cited articles
Borge, R., Santiago, J. L., de la Paz, D., Martín, F., Domingo, J., Valdés, C., Sánchez B., Rivas, E., Rozas, M. T., Lázaro, S., Pérez, J., and Fernández, A.: Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode-Part II: Assessment from multi-scale modelling, Sci. Total Environ., 635, 1574–1584, https://doi.org/10.1016/j.scitotenv.2018.04.323, 2018.
Bougeault, P. and Lacarrere, P.: Parameterization of Orography-Induced Turbulence in a Mesobeta–Scale Model, Mon. Weather Rev., 117, 1872–1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989.
Broadbent, A. M., Krayenhoff, E. S., and Georgescu, M.: The motley drivers of heat and cold exposure in 21st century US cities, P. Natl. Acad. Sci. USA, 117, 21108–21117, https://doi.org/10.1073/pnas.2005492117, 2020.
Brousse, O., Martilli, A., Foley, M., Mills, G., and Bechtel, B.: WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid, Urban Clim., 17, 116–134, https://doi.org/10.1016/j.uclim.2016.04.001, 2016.
Brown, M. J., Lawson, R. E., DeCroix, D. S., and Lee, R. L.: Comparison of centerline velocity measurements obtained around 2D and 3D building arrays in a wind tunnel, Int. 40 Soc. Environ. Hydraulics, Tempe, AZ, 5, 495, OSTI ID: 783425, https://digital.library.unt.edu/ark:/67531/metadc716934/m2/1/high_res_d/783425.pdf (last access: 25 June 2024), 2001
Coceal, O., Dobre, A., Thomas, T. G., and Belcher, S. E.: Structure of turbulent flow over regular arrays of cubical roughness, J. Fluid Mech., 589, 375–409, https://doi.org/10.1017/S002211200700794X, 2007.
Franke, J., Hellsten, A., Schlünzen, H., and Carissimo, B.: The Best Practise Guideline for the CFD simulation of flows in the urban environment: an outcome of COST 732, in: The Fifth International Symposium on Computational Wind Engineering (CWE2010), 1–10, ISBN 3-00-018312-4, 2010.
Frigo, M. and Johnson, S. G.: FFTW: an adaptive software architecture for the FFT, in: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), vol. 3, 1381–1384, https://doi.org/10.1109/ICASSP.1998.681704, 1998.
Gagge, A. P., Fobelets, A. P., and Berglund, L.: A standard predictive index of human response to the thermal environment, ASHRAE T., 92, 709–731, 1986.
Geletič, J., Lehnert, M., Savić, S., and Milošević, D.: Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic, Sci. Total Environ., 624, 385–395, https://doi.org/10.1016/j.scitotenv.2017.12.076, 2018.
Giannaros, T. M., Lagouvardos, K., Kotroni, V., and Matzarakis, A.: Operational forecasting of human-biometeorological conditions, Int. J. Biometeorol., 62, 1339–1343, 2018.
Giannaros, C., Agathangelidis, I., Papavasileiou, G., Galanaki, E., Kotroni, V., Lagouvardos, K., and Matzarakis, A.: The extreme heat wave of July–August 2021 in the Athens urban area (Greece): Atmospheric and human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the local climate zone framework, Sci. Total Environ., 857, 159300, https://doi.org/10.1016/j.scitotenv.2022.159300, 2023.
Höppe, P.: The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment, Int. J. Biometeorol., 43, 71–75, https://doi.org/10.1007/s004840050118, 1999.
Jendritzky, G., de Dear, R., and Havenith, G.: UTCI – Why another thermal index?, Int. J. Biometeorol., 56, 421–428, https://doi.org/10.1007/s00484-011-0513-7, 2012.
Jiang, T., Krayenhoff, E. S., Voogt, J. A., Warland, J., Demuzere, M., and Moede, C.: Dynamically downscaled projection of urban outdoor thermal stress and indoor space cooling during future extreme heat, Urban Clim., 51, 101648, https://doi.org/10.1016/j.uclim.2023.101648, 2023.
Jin, L., Schubert, S., Fenner, D., Salim, M. H., and Schneider, C.: Estimation of mean radiant temperature in cities using an urban parameterization and building energy model within a mesoscale atmospheric model, Meteorol. Z., 31, 31–52, 2022.
Kracht, O., Santiago, J., Martin, F., Piersanti, A., Cremona, G., Righini, G., Vitali, L., Delaney, K., Basu, B., Ghosh, B., Spangl, W., Brendle, C., Latikka, J., Kousa, A., Pärjälä, E., Meretoja, M., Malherbe, L., Letinois, L., Beauchamp, M., Lenartz, F., Hutsemekers, V., Nguyen, L., Hoogerbrugge, R., Eneroth, K., Silvergren, S., Hooyberghs, H., Viaene, P., Maiheu, B., Janssen, S., Roet, D., and Gerboles, M., Spatial representativeness of air quality monitoring sites: Outcomes of the FAIRMODE/AQUILA intercomparison exercise, EUR 28987 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-77218-4, JRC108791, https://doi.org/10.2760/60611, 2017.
Krayenhoff, E. S., Moustaoui, M., Broadbent, A. M., Gupta, V., and Georgescu, M.: Diurnal interaction between urban expansion, climate change and adaptation in US cities, Nat. Clim. Change, 8, 1097–1103, https://doi.org/10.1038/s41558-018-0320-9, 2018.
Krayenhoff, E. S., Jiang, T., Christen, A., Martilli, A., Oke, T. R., Bailey, B. N., and Crawford, B. R.: A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate, Urban Clim., 32, 100590, https://doi.org/10.1016/j.uclim.2020.100590, 2020.
Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F.: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models, Bound.-Lay. Meteorol., 101, 329–358, 2001.
Lachapelle, J. A., Krayenhoff, E. S., Middel, A., Meltzer, S., Broadbent, A. M., and Georgescu, M.: A microscale three-dimensional model of urban outdoor thermal exposure (TUF-Pedestrian), Int. J. Biometeorol., 66, 833–848, https://doi.org/10.1007/s00484-022-02241-1, 2022.
Lemonsu, A., Viguié, V., Daniel, M., and Masson, V.: Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France), Urban Clim., 14, 586–605, https://doi.org/10.1016/j.uclim.2015.10.007, 2015.
Leroyer, S., Bélair, S., Spacek, L., and Gultepe, I.: Modelling of radiation-based thermal stress indicators for urban numerical weather prediction, Urban Clim., 25, 64–81, https://doi.org/10.1016/j.uclim.2018.05.003, 2018.
Lu, J., Nazarian, N., and Hart, M.: OSM2LES – A Python-based tool to prepare realistic urban geometry for LES simulation from OpenStreetMap (0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6566346, 2022.
Lu, J., Nazarian, N., Hart, M., Krayenhoff, S., and Martilli, A.: Novel geometric parameters for assessing flow over realistic versus idealized urban arrays, J. Adv. Model. Earth Sy., 15, e2022MS003287, https://doi.org/10.1029/2022MS003287, 2023a.
Lu, J., Nazarian, N., Hart, M., Krayenhoff, S., and Martilli, A.: Representing the effects of building height variability on urban canopy flow, Q. J. Roy. Meteor. Soc., 150, 46–67, https://doi.org/10.1002/qj.4584, 2023b.
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020.
Martilli, A.: WRF-comfort, Zenodo [code], https://doi.org/10.5281/zenodo.7951433, 2023a.
Martilli, A.: data shown in manuscript “WRF-Comfort: Simulating micro-scale variability of outdoor heat stress at the city scale with a mesoscale model”, Zenodo [data set], https://doi.org/10.5281/zenodo.8199017, 2023b.
Martilli, A., Clappier, A., and Rotach, M. W.: An Urban Surface Exchange Parameterisation for Mesoscale Models, Bound.-Lay. Meteorol., 104, 261–304, https://doi.org/10.1023/A:1016099921195, 2002.
Martilli, A., Sanchez, B., Rasilla, D., Pappaccogli, G., Allende, F., Martin, F., Róman-Cascón, C., Yagüe, C., and Fernandez, F: Simulating the meteorology during persistent Wintertime Thermal Inversions over urban areas, The case of Madrid, Atmos. Res., 263, 105789, https://doi.org/10.1016/j.atmosres.2021.105789, 2021.
Martilli, A., Sánchez, B., Santiago, J. L., Rasilla, D., Pappaccogli, G., Allende, F., Martín, F., Roman-Cascón, C., Yagüe, C., and Fernández, F.: Simulating the pollutant dispersion during persistent Wintertime thermal Inversions over urban areas. The case of Madrid, Atmos. Res., 270, 106058, https://doi.org/10.1016/j.atmosres.2022.106058, 2022.
Masson, V.: A physically-based scheme for the urban energy budget in atmospheric models, Bound.-Lay. Meteorol., 94, 357–397, 2000.
Matzarakis, A., Rutz, F., and Mayer, H.: Modelling radiation fluxes in simple and complex environments – application of the RayMan model, Int. J. Biometeorol., 51, 323–334, https://doi.org/10.1007/s00484-006-0061-8, 2007.
Middel, A. and Krayenhoff, E. S.: Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform, Sci. Total Environ., 687, 137–151, 2019.
Nazarian, N., Fan, J., Sin, T., Norford, L., and Kleissl, J.: Predicting outdoor thermal comfort in urban environments: A 3D numerical model for standard effective temperature, Urban Clim., 20, 251–267, https://doi.org/10.1016/j.uclim.2017.04.011, 2017.
Nazarian, N., Martilli, A., and Kleissl, J.: Impacts of realistic urban heating, part I: spatial variability of mean flow, turbulent exchange and pollutant dispersion, Bound.-Lay. Meteorol., 166, 367–393, 2018.
Nazarian, N., Acero, J. A., and Norford, L.: Outdoor thermal comfort autonomy: Performance metrics for climate-conscious urban design, Build. Environ., 155, 145–160, https://doi.org/10.1016/j.buildenv.2019.03.028, 2019.
Nazarian, N., Krayenhoff, E. S., and Martilli, A.: A one-dimensional model of turbulent flow through “urban” canopies (MLUCM v2.0): updates based on large-eddy simulation, Geosci. Model Dev., 13, 937–953, https://doi.org/10.5194/gmd-13-937-2020, 2020.
Nazarian, N., Krayenhoff, E. S., Bechtel, B., Hondula, D. M., Paolini, R., Vanos, J., Cheung, T., Chow, W. T. L., de Dear, R., Jay, O., Lee, J. K. W., Martilli, A., Middel, A., Norford, L. K., Sadeghi, M., Schiavon, S., and Santamouris, M.: Integrated assessment of urban overheating impacts on human life, Earths Future, 10, e2022EF002682, https://doi.org/10.1029/2022ef002682, 2022.
Piacsek, S. A. and Williams, G. P.: Conservation properties of convection difference schemes, J. Comput. Phys., 6, 392–405, https://doi.org/10.1016/0021-9991(70)90038-0, 1970.
Pigliautile, I., Pisello, A. L., and Bou-Zeid, E.: Humans in the city: Representing outdoor thermal comfort in urban canopy models, Renew. Sustain Energ. Rev., 133, 110103, https://doi.org/10.1016/j.rser.2020.110103, 2020.
Potchter, O., Cohen, P., Lin, T. P., and Matzarakis, A.: Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification, Sci. Total. Environ., 1, 390–406, https://doi.org/10.1016/j.scitotenv.2018.02.276, 2018.
Rodriguez-Sanchez, A.: Simulación de olas de calor en la ciudad de Madrid, Master Thesis, Universidad Complutense de Madrid, https://www.researchgate.net/publication/353350538_Simulacion_de_olas_de_calor_en_la_ciudad_de_Madrid#fullTextFileContent (last access: 24June 2024), 2020.
Salamanca, F., Krpo, A., Martilli, A., and Clappier, A.: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. formulation, verification, and sensitivity, Theor. Appl. Climatol., 99, 331–344, https://doi.org/10.1007/s00704-009-0142-9, 2010.
Salamanca, F., Martilli, A., and Yagüe, C.: A numerical study of the Urban Heat Island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies, Int. J. Climatol., 32, 2372–2386, https://doi.org/10.1002/joc.3398, 2012.
Santiago, J. L., Krayenhoff, E. S., and Martilli, A.: Flow simulations for simplified urban configurations with microscale distributions of surface thermal forcing, Urban Clim., 9, 115–133, https://doi.org/10.1016/j.uclim.2014.07.008, 2014.
Santiago, J. L., Rivas, E., Sanchez, B., Buccolieri, R., and Martin, F.: The impact of planting trees on NOx concentrations: The case of the Plaza de la Cruz neighbourhood in Pamplona (Spain), Atmosphere, 8, p. 131, https://doi.org/10.3390/atmos8070131, 2017.
Santiago, J. L., Sanchez, B., Quaassdorff, C., de la Paz, D., Martilli, A., Martín, F., Borge, R., Rivas, E., Gómez-Moreno, F. J., Díaz, E. and Artiñano, B., Yagüe, C., and Vardoulakis, S.: Performance evaluation of a multiscale modelling system applied to particulate matter dispersion in a real traffic hot spot in Madrid (Spain), Atmos. Pollut. Res., 11, 141–155, https://doi.org/10.1016/j.apr.2019.10.001, 2020.
Sanchez, B., Santiago, J. L., Martilli, A., Palacios, M., Núñez, L., Pujadas, M., and Fernández-Pampillón, J.: NOx depolluting performance of photocatalytic materials in an urban area – Part II: assessment through computational fluid dynamics simulations, Atmos. Environ., 246, 118091, https://doi.org/10.1016/j.atmosenv.2020.118091, 2021.
Sanchez, B., Santiago, J. L., Martilli, A., Martin, F., Borge, R., Quaassdorff, C., and de la Paz, D.: Modelling NOx concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model, Atmos. Environ., 163, 155–165, https://doi.org/10.1016/j.atmosenv.2017.05.022, 2017.
Siemens Digital Industries, Simcenter STAR-CCM+ software, Software, https://plm.sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm/ (last access: 25 June 2024), 2023.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huag, X.-Y.: A description of the advanced research WRF model version 4, National Center for Atmospheric Research, Boulder, CO, USA, 145, 550, https://doi.org/10.5065/1dfh-6p97, 2019.
Thorsson, S., Lindberg, F., Eliasson, I., and Holmer, B.: Different methods for estimating the mean radiant temperature in an outdoor urban setting, Int. J. Climatol., 27, 1983–1993, 2007.
Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Peterson, P., and Evans, T.: Global urban population exposure to extreme heat, P. Natl. Acad. Sci. USA, 118, e2024792118, https://doi.org/10.1073/pnas.2024792118, 2021.
Zhang, J., Li, Z., and Hu, D.: Effects of urban morphology on thermal comfort at the micro-scale, Sustain. Cities Soc., 86, 104150, https://doi.org/10.1016/j.scs.2022.104150, 2022.
Zhao, L., Oleson, K., Bou-Zeid, E., Krayenhoff, E. S., Bray, A., Zhu, Q., Zheng, Z., Chen, C., and Oppenheimer, M.: Global multi-model projections of local urban climates, Nat. Clim. Chang., 11, 152–157, https://doi.org/10.1038/s41558-020-00958-8, 2021.
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Here, we present a model that quantifies the thermal stress and its microscale variability at a...