Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-399-2024
https://doi.org/10.5194/gmd-17-399-2024
Model description paper
 | 
16 Jan 2024
Model description paper |  | 16 Jan 2024

GAN-argcPredNet v2.0: a radar echo extrapolation model based on spatiotemporal process enhancement

Kun Zheng, Qiya Tan, Huihua Ruan, Jinbiao Zhang, Cong Luo, Siyu Tang, Yunlei Yi, Yugang Tian, and Jianmei Cheng

Related authors

GAN–argcPredNet v1.0: a generative adversarial model for radar echo extrapolation based on convolutional recurrent units
Kun Zheng, Yan Liu, Jinbiao Zhang, Cong Luo, Siyu Tang, Huihua Ruan, Qiya Tan, Yunlei Yi, and Xiutao Ran
Geosci. Model Dev., 15, 1467–1475, https://doi.org/10.5194/gmd-15-1467-2022,https://doi.org/10.5194/gmd-15-1467-2022, 2022
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Austin, G. and Bellon, A.: The use of digital weather radar records for short-term precipitation forecasting, Q. J. Roy. Meteor. Soc., 100, 658–664, 1974. 
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. 
Ballas, N., Yao, L., Pal, C., and Courville, A.: Delving deeper into convolutional networks for learning video representations, arXiv [preprint], https://doi.org/10.48550/arXiv.1511.06432, 2015. 
Bowler, N. E., Pierce, C. E., and Seed, A.: Development of a precipitation nowcasting algorithm based upon optical flow techniques, J. Hydrol., 288, 74–91, https://doi.org/10.1016/j.jhydrol.2003.11.011, 2004. 
Chen, H. G., Zhang, X., Liu, Y. T., and Zeng, Q. Y.: Generative Adversarial Networks Capabilities for Super-Resolution Reconstruction of Weather Radar Echo Images, Atmosphere, 10, 555, https://doi.org/10.3390/atmos10090555, 2019. 
Download
Short summary
Radar echo extrapolation is the common method in precipitation nowcasting. Deep learning has potential in extrapolation. However, the existing models have low prediction accuracy for heavy rainfall. In this study, the prediction accuracy is improved by suppressing the blurring effect of rain distribution and reducing the negative bias. The results show that our model has better performance, which is useful for urban operation and flood prevention.