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Abstract. Precipitation nowcasting has important implica-
tions for urban operation and flood prevention. Radar echo
extrapolation is a common method in precipitation nowcast-
ing. Using deep learning models to extrapolate radar echo
data has great potential. The increase of lead time leads to
a weaker correlation between the real rainfall evolution and
the generated images. The evolution information is easily lost
during extrapolation, which is reflected as echo attenuation.
Existing models, including generative adversarial network
(GAN)-based models, have difficulty curbing attenuation, re-
sulting in insufficient accuracy in rainfall prediction. To solve
this issue, a spatiotemporal process enhancement network
(GAN-argcPredNet v2.0) based on GAN-argcPredNet v1.0
has been designed. GAN-argcPredNet v2.0 curbs attenua-
tion by avoiding blurring or maintaining the intensity. A spa-
tiotemporal image correlation (STIC) prediction network is
designed as the generator. By suppressing the blurring effect
of rain distribution and reducing the negative bias by STIC
attention, the generator generates more accurate images. Fur-
thermore, the discriminator is a channel–spatial (CS) con-
volution network. The discriminator enhances the discrimi-
nation of echo information and provides better guidance to
the generator in image generation by CS attention. The ex-
periments are based on the radar dataset of southern China.
The results show that GAN-argcPredNet v2.0 performs bet-
ter than other models. In heavy rainfall prediction, compared
with the baseline, the probability of detection (POD), the crit-

ical success index (CSI), the Heidke skill score (HSS) and
bias score increase by 18.8 %, 17.0 %, 17.2 % and 26.3 %,
respectively. The false alarm ratio (FAR) decreases by 3.0 %.

1 Introduction

Accurate precipitation nowcasting, especially heavy precip-
itation nowcasting, plays a key role in hydrometeorological
applications such as urban operation safety and flash-flood
warnings (Liu et al., 2015). It can effectively prevent haz-
ards and losses caused by heavy precipitation to the economy
and people (Luo et al., 2020). Radar echo extrapolation is the
method most often used to nowcast precipitation (Reyniers,
2008). The essence is tracking areas of reflectivity to derive
motion vectors and then using the motion vectors to deter-
mine the future location of the reflectivity (Austin and Bel-
lon, 1974).

Traditional radar echo extrapolation methods include
cross-correlation, individual radar echo tracking and the op-
tical flow method (Bowler et al., 2004). Thunderstorm Iden-
tification, Tracking, Analysis and Nowcasting (TITAN) is
a classical centroid tracking algorithm (Dixon and Wiener,
1993). This algorithm achieves precipitation nowcasting by
real-time tracking and automatic identification of individual
storms. However, the tracking performance of TITAN is poor

Published by Copernicus Publications on behalf of the European Geosciences Union.



400 K. Zheng et al.: GAN-argcPredNet v2.0

during multi-cell storms. To address this, an enhanced TI-
TAN (ETITAN) was proposed (Han et al., 2009). By combin-
ing cross-correlation and individual radar echo tracking, ETI-
TAN achieves more accurate tracking and prediction. While
the cross-correlation method is effective, it has lower pre-
diction accuracy when echoes change rapidly. On the other
hand, the optical flow method achieves local prediction by
treating echo motion as fluid (Sakaino, 2013). Additionally,
some traditional nowcasting systems combine different in-
formation and further improve the ability of nowcasting. A
Bayesian precipitation nowcasting system based on the en-
semble Kalman filter was formulated. The system correctly
captures the flow dependence of both the numerical weather
prediction (NWP) forecast and the Lagrangian persistence
of radar observations (Nerini et al., 2019). Furthermore, the
variational algorithm is used to improve the nowcasting sys-
tem to achieve 3 h nowcasting (Chung and Yao, 2020). The
Lagrangian INtegro-Difference equation model with Autore-
gression (LINDA) also performs better for prediction ac-
curacy and duration (Pulkkinen et al., 2021). As the storm
evolves in ways such as merging, splitting, growth and de-
cay, traditional methods are difficult to predict accurately.
Besides, these traditional methods do not intend to utilize
large numbers of historical images.

Deep learning has powerful nonlinear mapping ability. By
analyzing the motion process through a large number of his-
torical radar echo images, deep learning achieves better re-
sults (Shi et al., 2015; Pan et al., 2021). Radar echo extrapo-
lation can be regarded as an image sequence prediction prob-
lem. Therefore, the problem can be solved by implementing
an end-to-end sequence learning method (Sutskever et al.,
2014; Shi et al., 2015). The convolutional gated recurrent
unit (ConvGRU) learns video features through convolution
operation, enabling sparse connection of model units (Ballas
et al., 2015). Convolution operation is also used in convolu-
tional long short-term memory (ConvLSTM). By replacing
the step of internal data state transformation in LSTM, Con-
vLSTM can better extract features (Shi et al., 2015). Con-
volutional recursive structure is position invariant, which is
not consistent with natural motion and transformation. The
trajectory GRU (TrajGRU) was further proposed (Shi et al.,
2017). Both LSTM and GRU models have long-term mem-
ory. However, this capability is limited to historical spatial
information. RainNet utilizes a convolutional network archi-
tecture in precipitation nowcasting, which avoids the brittle-
ness of LSTM structure (Ayzel et al., 2020).

Attention mechanisms are also frequently employed in se-
quential networks. By learning the importance of different
image parts, attention mechanisms can improve prediction
accuracy. For example, the self-attention mechanism com-
bines the spatial relationships of different locations and em-
phasizes important areas (Wang et al., 2018). Eidetic 3D
LSTM (E3D-LSTM) introduces self-attention to enhance
long-term memory in LSTM (Wang et al., 2019). However,
it lacks attention in the channel dimension. Interaction dual-

attention LSTM (IDA-LSTM) expands the spatial and chan-
nel attention based on self-attention to improve represen-
tation learning (Luo et al., 2021). Due to the high hard-
ware load, self-attention is hard to train for high-resolution
images. The convolutional block attention module (CBAM)
was developed simultaneously as a less computational atten-
tion mechanism. It can be flexibly applied in sequential net-
works (Woo et al., 2018).

Compared to sequence prediction networks, generative ad-
versarial network (GAN)-based models have significant ad-
vantages in generating high-quality echo images. High qual-
ity refers to images that are more realistic and structurally
similar to real images (Tian et al., 2020; Xie et al., 2022).
GANs consist of a generator and a discriminator. The gener-
ator is responsible for generating new synthetic data that fol-
low the distribution of the training data. The discriminator is
trained to distinguish between samples generated by the gen-
erator and real samples from the training set. The generator
and discriminator are trained against each other to achieve
balance. GANs have powerful data generation capabilities
(Goodfellow et al., 2020). This is because the model with
anti-loss can better realize multi-modal modeling (Lotter et
al., 2016). For instance, deep generative models of rainfall
(DGMRs) generate more accurate reflectivity by adversarial
training (Ravuri et al., 2021). GANs are also used to generate
realistic details for a broader extrapolation range (Chen et al.,
2019). GA-ConvGRU uses ConvGRU as the generator. The
image quality is far better than ConvGRU, as it implements
multi-modal data modeling (Tian et al., 2020). A number of
studies contribute to improving the stability of GAN training.
An energy-based generative adversarial network (EBGAN)
forecaster combines a convolution structure with a codec
framework to improve stability (Xie et al., 2022). Addition-
ally, our proposed GAN-argcPredNet v1.0 has more advan-
tages in improving the details of predicted echoes and stabi-
lizing GAN training (Zheng et al., 2022).

However, the radar echo images are forecasted for future
time periods based on the real echo sequence. In deep learn-
ing models, the increase of lead time leads to a weaker cor-
relation between the real images at the front of the sequence
and the generated images. The influence of the real echo evo-
lution diminishes rapidly, resulting in the loss of rainfall evo-
lution information. This loss is reflected as the attenuation
of echo shape and intensity in the generated images. Due to
the smaller percentage of heavy rainfall areas, the attenua-
tion is more severe. To the knowledge of the authors, existing
deep learning models, including GAN-based models, lack a
method to curb this attenuation, which leads to low accuracy
in predicting heavy rainfall.

In this study, a spatiotemporal process enhancement net-
work (GAN-argcPredNet v2.0) was proposed based on a
generative adversarial advanced reduced-gate convolutional
deep predictive coding network (GAN-argcPredNet v1.0)
(Zheng et al., 2022), which aims at curbing attenuation.
In GAN-argcPredNet v2.0, a spatiotemporal information
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change (STIC) prediction network is designed as the genera-
tor. The generator focuses on the spatiotemporal variation of
the radar echo feature sequence. The purpose of the generator
is to more accurately forecast future precipitation distribu-
tions by curbing echo attenuation. Furthermore, a channel–
spatial (CS) convolution network is designed as the discrim-
inator. The discriminator aims to guide the generator to bet-
ter retain echo shape and intensity by enhancing the ability
to identify echo information. The generator and discrimina-
tor are trained against each other to achieve accurate rainfall
prediction.

2 Model

2.1 GAN-argcPredNet v1.0 overview

GAN-argcPredNet v1.0 (Fig. 1) uses Wasserstein GAN with
gradient penalty (WGAN-GP) as its predictive framework.
The model solves the problem of training instability by uti-
lizing gradient penalty measures (Gulrajani et al., 2017).
The generator in GAN-argcPredNet v1.0 is an argcPredNet
model responsible for learning the data features of rainfall
and simulating the real echo distribution to generate predic-
tive images. The discriminator is a four-layer CNN model
with a dual-channel input method. The predictive and real
images are fed into the discriminator, which judges the real
images as true and the predictive images as false. Adam is
used as the optimizer, which is an extension of stochastic
gradient descent (Kingma Diederik and Adam, 2014). The
model parameters are updated through adversarial loss opti-
mization. The generator is updated once after every five up-
dates of the discriminator.

2.2 GAN-argcPredNet v2.0 overview

The GAN-argcPredNet v2.0 model was built based on GAN-
argcPredNet v1.0. GAN-argcPredNet v2.0 consists of a STIC
prediction generator and a CS convolution discriminator
(Fig. 2). The STIC prediction generator is designed to re-
duce echo attenuation and consists of the argcPredNet and
the STIC attention module (Fig. 3). The argcPredNet is com-
posed of a series of repeatedly stacked modules, with a total
of four layers (Zheng et al., 2022). Each layer of the module
consists of the input convolutional layer (Al), the recurrent
representation layer (Rl), the prediction convolutional layer
(Âl) and the error representation layer (El). Rl learns im-
age features and generates the feature map RTl ∈ R

H×W×C ,
where l, T , H , W and C denote layer, current prediction
time, map height, map width and feature channel, respec-
tively. The feature map guides the lower layers to generate
images. STIC attention is designed to focus on the impor-
tance of different rainfall regions after the third layer. The
purpose is to better maintain spatiotemporal features dur-
ing information transmission within the model. After pass-
ing through STIC attention, the features are fed to the lower

layers, aiming to avoid blurring or to maintain the intensity
during extrapolation. The calculation method of STIC pre-
diction is

ATl =

{
xT if l = 0
MAXPOOL(γ (f (ETl−1))) 0< l < L, (1)

ÂTl = γ (f (R
T
l )), (2)

ETl =
[
γ
(
ATl − Â

T
l

)
;γ (ÂTl −A

T
l )
]
, (3)

RTl =

argcLSTM
(
ET−1
l ,RT−1

l

)
argcLSTM(ET−1

l ,RT−1
l ,UPSAMPLE(STIC(R0

l+1 : R
T
l+1)))

argcLSTM
(
ET−1
l ,RT−1

l ,UPSAMPLE
(
RTl+1

))
if l = L
if l = 1

l = 0 and 1< l < L.

(4)

Here, xT denotes the initial input, MAXPOOL denotes the
maximum pooling operation, γ denotes ReLU activation
function, f denotes the convolution operation, argcLSTM
denotes advanced reduced-gate convolutional LSTM (Zheng
et al., 2022) and STIC denotes STIC attention.

The CS convolution discriminator is composed of a four-
layer convolution structure and a CS attention module. The
convolution structure is responsible for extracting the echo
features from the input radar echo images. CS attention is
embedded after the first-layer convolution structure. This
module is designed to focus on radar echo features, espe-
cially heavy rainfall features. The purpose is to enhance dis-
criminative ability and provide better guidance for the gener-
ator. The hyperparameters of the generator and discriminator
are provided in the Supplement (Tables S7 and S8).

2.3 STIC attention

STIC attention (Fig. 4) combines MaxPool3D (3D is equal
to map height, map width and time) and AvgPool3D to fo-
cus on the spatial information in feature sequences from both
the maximum and average perspectives. This step focuses
on heavy rainfall echoes while considering non-heavy rain-
fall. The introduction of 3D convolution enables extraction of
spatiotemporal changes in the feature sequences. The module
calculates the importance of evolutionary information. The
detailed steps are below.

Given the feature sequence F ∈ Rt×H×W×C as input,
where t denotes time, two feature sequences F ts

max ∈

Rt×H×W×1 and F ts
avg ∈ R

t×H×W×1 are obtained by pool-
ing operations, which denote the maximum and average fea-
ture along the channel axis, respectively. The feature se-
quences are then connected and 3D-convoluted. The acti-
vation function is hard_sigmoid. By introducing linear be-
havior, hard_sigmoid allows gradients to flow easily in the
unsaturated state and provides a crisp decision in the satu-
rated state, resulting in far less computational expense (Cour-
bariaux et al., 2015; Gulcehre et al., 2016; Nwankpa et
al., 2018). Then, the STIC attention map sequence MSTIC ∈
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Figure 1. The structure of GAN-argcPredNet v1.0. More information about the model can be found in the paper of Zheng et al. (2022).

Figure 2. The structure of GAN-argcPredNet v2.0. A total of 15 radar echo images are used as a test sequence. Here, the first five images
are used as the input sequence, and the last 10 images are used as the ground truth images. The generator generates images based on input
sequences. The discriminator judges both the predictive images and ground truth images. The adversarial loss is then obtained to optimize
the model.

Rt×H×W×1 is obtained. Finally, the output feature sequence
F1 ∈ R

t×H×W×C is calculated by element-wise multiplica-
tion of MSTIC and F . In short, the calculation method of
STIC attention is

MSTIC = σ(f7×7×5((MaxPool3D(F ))

concat(AvgPool3D(F ))))
= σ(f7×7×5(F

ts
maxconcatF ts

avg)) (5)

F1 =MSTIC⊗F. (6)

Here, concat denotes the connection operation, MaxPool3D
denotes the 3D maximum pooling operation, AvgPool3D
denotes the 3D average pooling operation, f7×7×5 denotes
the 3D convolution operation with a convolution kernel of
7×7×5, σ denotes the hard_sigmoid activation function and
⊗ denotes the element-wise multiplication.

2.4 CS attention

CS attention consists of channel attention and spatial atten-
tion (Fig. 5). For input feature F ′ ∈ RH×W×C , the chan-
nel attention map Mc ∈ R

1×1×C is first generated. After
element-wise multiplication with the initial feature image,
the spatial attention map Ms ∈ R

H×W×1 is generated by the
spatial attention module. Finally, the output feature F ′2 ∈
RH×W×C is obtained in the same way. In short, the calcu-
lation process is as follows:

F ′1 =Mc⊗F
′, (7)

F ′2 =Ms⊗F
′

1. (8)

Here, ⊗ denotes the element-wise multiplication, and F ′1 is
the middle feature.

The channel attention module (Fig. 6) studies the relation-
ship among different feature channels. The global maximum
and average pooling is used to gather spatial maximum and
average information for each channel. The combination of
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Figure 3. The STIC prediction structure at time T with four layers
(l = 0,1,2,3). The STIC attention is located between the second
layer (l = 1) and the third layer (l = 2). During prediction, RT

l+1
forms the sequence R0

l+1 : R
T
l+1 with Rl+1 prior to the moment T .

Then, the sequence is fed into the STIC module, which captures the
correlation between the sequences and adjusts RT

l+1. Finally, the
new RT

l+1 is output. See Sect. 2.2 for further explanation.

these methods allows for a more comprehensive judgment of
the importance of different feature channels. Then, the cor-
relation between feature channels is obtained by learning the
respective parameters in a dense layer. The channel attention
module focuses more on meaningful feature channels. The
detailed steps are below.

The feature map F ′ is input into the channel attention
module. Two 1D feature maps F c

max ∈ R
1×1×C and F c

avg ∈

R1×1×C are obtained by applying global pooling, which de-
note the global maximum and global average pooling fea-
tures, respectively. Then, the correlation between these fea-
tures is extracted through dense layers. In order to reduce
parameter overhead, the number of neurons in the first dense
layer is set to C/r , where r is the compression ratio. Finally,
the hard_sigmoid activation function is applied to obtain fi-
nal channel attention map Mc. In short, the channel attention
map is calculated as follows:

Mc = σ(ϕ11(γ (ϕ10(GMP(F ′))))

+ϕ21(γ (ϕ20(GAP(F ′)))))= σ(ϕ11(γ (ϕ10(F
c
max)))

+ϕ21(γ (ϕ20(F
c
avg)))). (9)

Here, GMP denotes the global maximum pooling, GAP de-
notes the global average pooling, ϕ10 and ϕ11 denote the first
and second dense layer of F c

max, ϕ20 and ϕ21 denote the first
and second dense layer of F c

avg, and γ denotes the ReLU ac-
tivation function.

The spatial attention module (Fig. 7) studies the impor-
tance of each part in the same channel. The maximum and
average pooling is used along the channel axis, which ob-

tains echo information of the feature image. The 2D convo-
lution operation extracts feature and generates a spatial atten-
tion map with the same size as the input image. The detailed
steps are below.

After the channel attention module, the feature map F ′1 ∈
RH×W×C is input into the spatial attention module. Two 2D
feature maps F s

max ∈ R
H×W×1 and F s

avg ∈ R
H×W×1 are ob-

tained by applying pooling operation, which denote the max-
imum pool feature and average pool feature on the channel,
respectively. The feature maps are then connected and 2D-
convoluted, using hard_sigmoid as the activation function to
obtain final spatial attention mapMs. In short, the calculation
method of spatial attention map is

Ms = σ(f7×7((MaxPool2D(F ′1))

concat(AvgPool2D(F ′1))))
= σ(f7×7(F

s
maxconcatF s

avg)). (10)

Here, MaxPool2D denotes the 2D maximum pooling opera-
tion, AvgPool2D denotes the 2D average pooling operation
and f7×7 denotes the 2D convolution operation with a con-
volution kernel of 7× 7.

3 Data and experimental setup

3.1 Dataset description

This study used the southern China radar echo data pro-
vided by Guangzhou Meteorological Bureau. The radar mo-
saic comes from 11 weather radars. The median filtering al-
gorithm was used to control radar data quality, which elimi-
nates errors caused by isolated clutter. In addition, the mirror
filling and continuity checks were applied to remove tradi-
tional radar error sources. After quality control, the data con-
tain only an extremely small amount of strong interference,
which has a negligible impact on the training of the model.

From 2015 to 2016, a total of 32 010 consecutive echo
images with rainfall were randomly selected as the train-
ing set. For the testing phase, 7995 consecutive images were
randomly selected from March to May 2017. The origi-
nal resolution of each image is 1050× 880 pixels, covering
an area of 1050 km× 880 km. Each pixel denotes a resolu-
tion of 1 km× 1 km. The reflectivity values range from 0 to
80 dBZ, with the amplitude limit set between 0 and 255. The
data, which are the constant-altitude plan position indicator
(CAPPI) data, were collected every 6 min at a height of 1 km.
To speed up training and reduce hardware load, the central
128× 128 images were segmented.

Due to the relationship between radar reflectivity and rain-
fall type, the value on the radar echo image is converted to
the corresponding rainfall rate. The calculation formula is as
follows:

Z = 10log10a+ 10blog10R. (11)
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Figure 4. The structure of STIC attention. The first line represents the calculation process of the STIC attention map sequence. The second
line represents the process of applying the STIC attention map sequence to the input feature sequence.

Figure 5. The structure of CS attention. The calculation order is first through the channel attention module and then through the spatial
attention module.

Here, a is set to 58.53, b is set to 1.56, Z denotes the radar
reflectivity intensity and R denotes the rainfall intensity. The
correspondence between rainfall rate, radar reflectivity inten-
sity and rainfall level is referred to in Table 1 (Shi et al.,
2017).

3.2 Evaluation metrics

As for evaluation, the study used four metrics to evaluate
the prediction accuracy of all 128× 128 pixels, which are
probability of detection (POD), false alarm ratio (FAR), crit-
ical success index (CSI) and Heidke skill score (HSS). POD
evaluates hit ability, while FAR is the metric of false alarms.
The combination of them can evaluate the model more ob-
jectively. CSI and HSS are composite metrics that provide a
direct judgment of the model effectiveness. CSI measures the
fraction of observed and/or forecast events that are correctly
predicted. HSS measures the fraction of correct forecasts af-
ter eliminating those forecasts which would be correct due
purely to random chance. To measure the blurring effect, the
study also used the bias score, which evaluates the ratio be-
tween the frequency of forecast events and the frequency of
observed events. The formulas for calculating these five met-
rics are as follows:

POD=
TP

TP+FN
, (12)

FAR=
FP

TP+FP
, (13)

CSI=
TP

TP+FN+FP
, (14)

HSS=
2(TP×TN−FN×FP)

(TP+FN)(FN+TN)+ (TP+FP)(FP+TN)
, (15)

Bias=
TP+FP
TP+FN

. (16)

Here, TP denotes that the real and predicted values reach
specified threshold, FN denotes that the real value reaches the
specified threshold and the predicted value does not reach,
FP denotes that the real value does not reach the specified
threshold and the predicted value reaches, and TN denotes
that the real value and predicted value do not reach the spec-
ified threshold. In the study, we applied threshold rain rates
of 0.5, 2, 5, 10 and 30 mm h−1 for calculating these metrics.

In order to evaluate the quality of generated images objec-
tively, mean square error (MSE) and mean structural similar-
ity (MSSIM) were also chosen for the experiment (Wang et
al., 2004; Inoue and Misumi, 2022).
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Figure 6. The structure of channel attention. Channel attention utilizes maximum pooling outputs and average pooling outputs with their
respective networks.

Figure 7. The structure of spatial attention. Spatial attention utilizes the maximum and average pooling outputs along the channel axis and
forwards them to the convolutional layer.

3.3 Experimental setting

Radar echo extrapolation is the prediction of future radar
echo images based on real images. This study set the input
sequenceM and output sequenceN to 5 and 10, respectively.

GAN-argcPredNet v2.0 was first compared with the opti-
cal flow, ConvLSTM, ConvGRU, GA-ConvGRU and GAN-
argcPredNet v1.0 in comparison experiments. The first one is
a traditional method, and the code comes from the pySTEPS
library (Pulkkinen et al., 2019), which we performed using
a local tracking approach (Lucas-Kanade). The last one is
the model we designed before. Other models are commonly
used deep learning models in radar echo extrapolation. The
hyperparameters for deep learning models were provided in
the Supplement (Tables S1–S6). Then the ablation study was
designed to verify the effectiveness of STIC attention and CS
attention.

Before training, each pixel of the radar echo image was
normalized to [0, 1]. All experiments were implemented by
Python. Model training and testing were performed using the
Keras deep learning library with TensorFlow as the back-
end. The operating environment was a Linux workstation
equipped with two NVIDIA RTX 2080 Ti 11G GPUs.

4 Results

4.1 Comparison study

In order to observe the performance of the models and eval-
uate the blurring effect more easily, the average scores of
POD, FAR, CSI, HSS and bias were calculated for 30 and
60 min lead time in the experiment. Figure 8 shows the aver-
age scores of the metrics used for predicting 30 min, and the
scores of GAN-argcPredNet v2.0 are better than the other
models except bias score, especially the thresholds 10 and
30 mm h−1, which indicates that GAN-argcPredNet v2.0 has
a significant advantage in forecasting heavy precipitation. In
bias score, GAN-argcPredNet v2.0 is second only to the op-
tical flow and better than other deep learning models. The
optical flow extrapolates the echo motion as linear, which is
not realistic and leads to poorer forecasts. Figure 9 shows
the average scores of the metrics used for predicting 60 min.
Except for the bias score, most deep learning models have
better scores than the optical flow. Besides the threshold
of 30 mm h−1, the bias score of the optical flow is second
only to GAN-argcPredNet v2.0. In deep learning models,
the FAR score of GAN-argcPredNet v2.0 is slightly higher
than those of ConvGRU and ConvLSTM at thresholds of
0.5 and 2 mm h−1, respectively. However, the other scores
of GAN-argcPredNet v2.0 are always the best. The compre-
hensive score of GAN-argcPredNet v1.0 is second only to
GAN-argcPredNet v2.0. GA-ConvGRU performs better than
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Table 1. The rainfall level table. Rain rate, radar reflectivity intensity and rainfall level correspond to each other.

Rain rate (mm h−1) Radar reflectivity intensity (dBZ) Rainfall level

0≤ R < 0.5 Z < 12.98 No/hardly noticeable
0.5≤ R < 2 12.98≤ Z < 22.37 Light
2≤ R < 5 22.37≤ Z < 28.58 Light to moderate
5≤ R < 10 28.58≤ Z < 33.27 Moderate
10≤ R < 30 33.27≤ Z < 40.72 Moderate to heavy
30≤ R 40.72≤ Z Rainstorm warning

the two non-GAN models in most cases. Between the two
non-GAN models, all scores of ConvLSTM are better than
ConvGRU when the threshold is set to 5 and 10 mm h−1.

GAN-argcPredNet v2.0 shows excellent performance in
heavy rainfall prediction. During 60 min of forecasting, com-
pared to the baseline GAN-argcPredNet v1.0, the POD, CSI,
HSS and bias scores of GAN-argcPredNet v2.0 increase by
20.1 %, 16.0 %, 15.4 % and 25.0 % when the threshold is set
to 10 mm h−1. The FAR score also decreases by 2.3 %. When
the threshold is set to 30 mm h−1, the POD, CSI, HSS and
bias scores increase by 18.8 %, 17.0 %, 17.2 % and 26.3 %,
respectively. The FAR score decreases by 3.0 %.

The experiment selected three prediction examples and
drew the extrapolation comparison images and metric scores
(Figs. 10–13). In Figs. 10, 11 and 12, in the 0–30 min pre-
dictions, the optical flow has an advantage in terms of less
change in echo strength and echo shape preservation. How-
ever, in regions where there are echoes with rapid change,
such as the center region of Fig. 10 and the upper-left region
of Figs. 11 and 12, the optical flow overestimates the strength
of the echoes, especially the strong echoes. In Fig. 11, the
optical flow incorrectly estimates the location of the strong
echoes as the storm grows rapidly. Figure 12 shows that the
optical flow overestimates the intensity and distorts the pre-
dicted echo shape. In contrast, the deep learning model pre-
dicted the changes in the echoes, while GAN-argcPredNet
v2.0 better preserved the shape of the echoes. In 30–60 min
of prediction, all images predicted by the deep learning mod-
els showed echo decay. The GAN-argcPredNet v2.0 decayed
significantly slower. The intensity and shape of the strong
echoes are well maintained in the circular or rectangular la-
beled areas in the figure, and the prediction results are more
consistent with the ground truth. Overall, compared with
other methods, GAN-argcPredNet v2.0 can provide more ac-
curate predictions, showing its stronger prediction ability.
Figure 13 shows the metric scores at 60 min of forecasting
under the 30 mm h−1 threshold for three selected prediction
examples. As the prediction time increases, the change curve
of GAN-argcPredNet v2.0 is the smoothest, and the long-
range curve remains relatively stable, which further verifies
the excellent performance of GAN-argcPredNet v2.0 in fore-
casting heavy rainfall. Specifically, GAN-argcPredNet v2.0
has the best performance in POD, FAR, CSI and HSS curves,

Table 2. The MSE and MSSIM scores of each model. The perfect
score of MSE is 0, while the perfect score for MSSIM is 1. Bold
represents the best score.

Model MSE×102 MSSIM

Optical flow 0.296 0.751
ConvLSTM 0.230 0.775
ConvGRU 0.243 0.763
GA-ConvGRU 0.223 0.782
GAN-argcPredNet v1.0 0.218 0.797
GAN-argcPredNet v2.0 0.213 0.807

and the bias score is only second to the optical flow. Notably,
the POD, CSI, HSS and bias scores of ConvGRU and Con-
vLSTM rapidly drop to 0, and the FAR score rapidly rises
to 1, which indicates that the blurring effect seriously affects
the performance of heavy rainfall prediction.

The optical flow method consistently exhibits overesti-
mation or misestimation in these examples. In deep learn-
ing models, the three GAN-based models also present bet-
ter echo structure and prediction performance compared to
the two non-GAN models. For the echo above 40 dBZ, Con-
vLSTM exhibits the most severe attenuation. This suggests
that echo attenuation and prediction blurring seriously affect
the performance of precipitation prediction, especially heavy
precipitation.

To evaluate the quality of generated images objectively,
the experiment also calculated the MSE and MSSIM met-
rics. Table 2 shows that the optical flow method has the
worst score. In deep learning models, GAN-based mod-
els have better scores in both MSE and MSSIM, with
GAN-argcPredNet v2.0 achieving the best score. Com-
pared to GAN-argcPredNet v1.0, the MSE metric of GAN-
argcPredNet v2.0 decreases by 2.3 %, while the MSSIM met-
ric increases by 1.25 %. In the non-GAN models, ConvL-
STM scores better.

4.2 Ablation study

In the ablation study, we investigated the effects of STIC
attention and CS attention. STIC-GAN and CS-GAN were
constructed by adding the STIC attention module only in
the generator and the CS attention module only in the dis-
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Figure 8. The average scores of (a) POD, (b) FAR, (c) CSI, (d) HSS and (e) bias under different thresholds for forecasting 30 min. All the
time steps were used to compute the scores. The horizontal axis represents the threshold in units of mm h−1. The perfect score of FAR is 0,
while the others are 1.

Figure 9. The average scores of (a) POD, (b) FAR, (c) CSI, (d) HSS and (e) bias under different thresholds for forecasting 60 min. All the
time steps were used to compute the scores. The horizontal axis represents the threshold in units of mm h−1. The perfect score of FAR is 0,
while the others are 1.

criminator. To precisely observe the score differences, the
experiment recorded the average score of each metric in a
tabular format. Table 3 shows that both CS-GAN and STIC-
GAN have better scores than GAN-argcPredNet v1.0. At the
threshold of 0.5 mm h−1, CS-GAN achieves the best score
in the FAR metric, but other metrics still perform worse

than GAN-argcPredNet v2.0. At thresholds of 5, 10 and
30 mm h−1, the metric scores of STIC-GAN exceed those of
CS-GAN, which is closer to GAN-argcPredNet v2.0.

Figure 14 shows that CS-GAN and STIC-GAN retain bet-
ter echo intensity and shape compared to GAN-argcPredNet
v1.0. For heavy rainfall, STIC-GAN shows better prediction
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Figure 10. The example of the growth of a weather system in radar echo extrapolation. From top to bottom are ground truth frames, prediction
by the optical flow, prediction by ConvGRU, prediction by ConvLSTM, prediction by GA-ConvGRU, prediction by GAN-argcPredNet v1.0
and prediction by GAN-argcPredNet v2.0. The circular and rectangular regions represent heavy rainfall prediction, where the performance
of the models in extrapolating heavy rainfall can be observed.

Figure 11. The example of rapid storm growth in radar echo extrapolation. From top to bottom are ground truth frames, prediction by the
optical flow, prediction by ConvGRU, prediction by ConvLSTM, prediction by GA-ConvGRU, prediction by GAN-argcPredNet v1.0 and
prediction by GAN-argcPredNet v2.0. The rectangular region represents the prediction for rapid storm growth.
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Figure 12. The example of storm decay in radar echo extrapolation. From top to bottom are ground truth frames, prediction by the optical
flow, prediction by ConvGRU, prediction by ConvLSTM, prediction by GA-ConvGRU, prediction by GAN-argcPredNet v1.0 and prediction
by GAN-argcPredNet v2.0. The circular and rectangular regions represent heavy rainfall prediction.

Figure 13. The curves of change in (a) POD, (b) FAR, (c) CSI, (d) HSS and (e) bias scores under the threshold of 30 mm h−1 for three
selected prediction examples at 60 min of forecasting. The horizontal axis represents the time in units of minutes. The perfect score of FAR
is 0, while the others are 1.
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Table 3. The average scores of POD, FAR, CSI, HSS and bias under different thresholds. All the time steps were used to compute the scores.
Bold represents the best score.

Model Threshold = 0.5 mm h−1 Threshold = 2 mm h−1

POD FAR CSI HSS Bias POD FAR CSI HSS Bias

GAN-argcPredNet v1.0 0.568 0.237 0.490 0.627 0.720 0.496 0.297 0.419 0.559 0.681
CS-GAN 0.569 0.221 0.496 0.633 0.735 0.529 0.289 0.443 0.588 0.726
STIC-GAN 0.570 0.241 0.490 0.627 0.739 0.512 0.289 0.433 0.576 0.700
GAN-argcPredNet v2.0 0.589 0.229 0.507 0.645 0.755 0.533 0.286 0.448 0.593 0.730

Model Threshold = 5 mm h−1 Threshold = 10 mm h−1

POD FAR CSI HSS Bias POD FAR CSI HSS Bias

GAN-argcPredNet v1.0 0.408 0.372 0.338 0.476 0.615 0.279 0.487 0.231 0.345 0.480
CS-GAN 0.411 0.381 0.340 0.478 0.629 0.283 0.482 0.235 0.351 0.490
STIC-GAN 0.433 0.379 0.354 0.496 0.667 0.317 0.477 0.258 0.383 0.560
GAN-argcPredNet v2.0 0.442 0.361 0.36 0.510 0.668 0.335 0.476 0.268 0.398 0.600

Model Threshold = 30 mm h−1

POD FAR CSI HSS Bias

GAN-argcPredNet v1.0 0.165 0.644 0.135 0.215 0.365
CS-GAN 0.171 0.637 0.141 0.224 0.383
STIC-GAN 0.194 0.632 0.156 0.248 0.457
GAN-argcPredNet v2.0 0.196 0.625 0.158 0.252 0.461

with echoes that are closer to GAN-argcPredNet v2.0. In
rectangular regions, STIC-GAN accurately predicts rainfall
events until 30 min. However, in the circular regions, STIC-
GAN overestimates the echo intensity compared to GAN-
argcPredNet v2.0.

5 Discussion and conclusions

5.1 Discussion

In the comparison study, the bias score of the optical flow
is second only to GAN-argcPredNet v2.0. The result proves
that, compared to other deep learning models, the number of
rainfall events predicted by the optical flow method is closer
to real rainfall events. However, the poor FAR score indicates
that there are many false predictions among these predicted
events. Considering other metrics as well, most deep learning
models perform better than the optical flow method (Figs. 8–
9 and Table 2). In deep learning models, the three GAN-
based models have higher prediction accuracy and better im-
age quality compared to the two non-GAN models. This indi-
cates that GAN structure has more advantages with its pow-
erful image generation capability. Although ConvLSTM and
ConvGRU sometimes have lower FAR scores, according to
metrics such as POD, this is due to the fact that they fail
to predict a large number of rainfall events. As the number
of predicted rainfall events decreases, the false alarm rate
also decreases. Combined with the bias score, ConvLSTM

and ConvGRU generally predict a lower frequency of rainfall
than other models. This indicates that they suffer from a more
severe blurring effect. GA-ConvGRU and GAN-argcPredNet
v1.0 improve the prediction accuracy with GAN structure,
but the phenomenon of echo attenuation also cannot be ig-
nored.

GAN-argcPredNet v2.0 achieves the highest prediction ac-
curacy and quality, suggesting its effectiveness in curbing
echo attenuation compared to other models. This is because
the echo intensity and shape are better maintained by sup-
pressing the blurring effect of rain distribution and reducing
the negative bias. According to the scores at the thresholds of
10 and 30 mm h−1, it can be observed that GAN-argcPredNet
v2.0 exhibits the best improvement in predicting heavy rain-
fall.

GAN-argcPredNet v2.0 maintains the evolution trend
well, but there are still some special cases (Fig. 10). There
are some false predictions on the bottom-right corner, and
the rain area near the top right goes out of the domain. This
is because in the input sequence (Fig. 15), the rainfall on
the bottom-right corner shows a growing trend, and the rain
area near the top right shows a trend of moving towards the
upper left. Our model retains the information and maintains
the trend through the attention mechanism, but there are still
some deviations from ground truth. This may be overcome by
increasing the dataset and strengthening training on special
cases. Also, the strong echoes outside the center of the echo
images are not as well represented as the main features dur-
ing the extrapolation. This is because in the input sequence,
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Figure 14. The example of radar echo extrapolation. From top to bottom are ground truth frames, prediction by GAN-argcPredNet v1.0,
prediction by CS-GAN, prediction by STIC-GAN and prediction by GAN-argcPredNet v2.0. The circular and rectangular regions represent
heavy rainfall prediction.

Figure 15. The input radar image sequence. The example in Fig. 10 is extrapolated based on these five images.

the other strong echoes have a smaller spatial range, mak-
ing them more susceptible to attenuation during extrapola-
tion. In Figs. 10–11, GAN-argcPredNet v2.0 has a clear ad-
vantage for out-of-center regions in curbing the attenuation
compared to other deep learning models, and there are fewer
incorrect predictions compared to the optical flow. This indi-
cates that GAN-argcPredNet v2.0 focuses on the main fea-
tures and also pays more attention to the minor features with
rapid growth than other models. Overall, GAN-argcPredNet
v2.0 is capable of curbing echo attenuation, the center region
is more significant and the overall performance is more com-
petitive.

In the ablation study, we find that the scores of CS-GAN
and STIC-GAN are mostly better than GAN-argcPredNet
v1.0 (Table 3 and Fig. 14). This indicates that both STIC
attention and CS attention can curb echo attenuation and
improve prediction accuracy. As the threshold increases,
the scores of STIC-GAN become closer to that of GAN-
argcPredNet v2.0. This is because STIC attention focuses
more on the rapidly evolving areas of the radar images. CS
attention helps GAN-argcPredNet v2.0 achieve better overall
performance.

5.2 Conclusions

The study improves precipitation nowcasting by reducing
echo attenuation. By avoiding blurring or maintaining the in-

tensity, GAN-argcPredNet v2.0 curbs the attenuation and im-
proves the rainfall prediction accuracy, especially for heavy
rainfall. STIC attention suppresses the blurring effect of rain
distribution and reduces the negative bias, allowing the gen-
erator to generate more accurate images. CS attention en-
ables the discriminator to better guide the generator to main-
tain echo intensity and shape. Meanwhile, the model is de-
signed based on the generative adversarial structure, which
achieves high-quality radar echo extrapolation.

In practice, predictive software has been developed based
on our model. After the software accesses the radar data and
establishes a prediction task, rainfall prediction results are
output as a dataset. Then the dataset can be fed into the ur-
ban flood warning system. The improvement of rainfall pre-
diction has a positive impact on flood prediction and urban
operation safety.

Overall, GAN-argcPredNet v2.0 is a spatiotemporal pro-
cess enhancement model based on GAN, which achieves
more accurate rainfall prediction.

Future work can be considered from two aspects. The pre-
diction accuracy of the model proposed in the study still has
room for improvement. Given the proven efficacy of data as-
similation in numerous fields, exploring the integration of
data assimilation techniques with other meteorological vari-
ables, such as temperature, to study multi-modal models rep-
resents a crucial direction for precipitation nowcasting. High-
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resolution prediction is often limited by hardware, such as
a graphics card. Therefore, it is possible to reduce the need
for hardware by optimizing the algorithm complexity and the
number of parameters.

Code and data availability. The radar data used in the paper come
from Guangdong Meteorological Bureau. Due to the confidentiality
policy, we only provide a sequence of 12 images. If you need to
access more data, please contact Kun Zheng (zhengk@cug.edu.cn)
and Qiya Tan (ses_tqy@cug.edu.cn). The GAN-argcPredNet v2.0
model is open source. You can find the source code from
https://doi.org/10.5281/zenodo.7505030 (Tan, 2022).
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