Articles | Volume 17, issue 7
https://doi.org/10.5194/gmd-17-2569-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-2569-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A grid model for vertical correction of precipitable water vapor over the Chinese mainland and surrounding areas using random forest
Junyu Li
CORRESPONDING AUTHOR
College of Geomatics and Geoinformation, Guilin University of Technology, Guilin, China
Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin, China
Yuxin Wang
College of Geomatics and Geoinformation, Guilin University of Technology, Guilin, China
Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin, China
Lilong Liu
College of Geomatics and Geoinformation, Guilin University of Technology, Guilin, China
Yibin Yao
School of Geodesy and Geomatics, Wuhan University, Wuhan, China
Liangke Huang
College of Geomatics and Geoinformation, Guilin University of Technology, Guilin, China
Feijuan Li
College of Geomatics and Geoinformation, Guilin University of Technology, Guilin, China
Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin, China
Related authors
Liangke Huang, Shengwei Lan, Ge Zhu, Fade Chen, Junyu Li, and Lilong Liu
Geosci. Model Dev., 16, 7223–7235, https://doi.org/10.5194/gmd-16-7223-2023, https://doi.org/10.5194/gmd-16-7223-2023, 2023
Short summary
Short summary
The existing zenith tropospheric delay (ZTD) models have limitations such as using a single fitting function, neglecting daily cycle variations, and relying on only one resolution grid data point for modeling. This model considers the daily cycle variation and latitude factor of ZTD, using the sliding window algorithm based on ERA5 atmospheric reanalysis data. The ZTD data from 545 radiosonde stations and MERRA-2 atmospheric reanalysis data are used to validate the accuracy of the GGZTD-P model.
Shaofeng Xie, Jihong Zhang, Liangke Huang, Fade Chen, Yongfeng Wu, Yijie Wang, and Lilong Liu
Geosci. Model Dev., 18, 6987–7002, https://doi.org/10.5194/gmd-18-6987-2025, https://doi.org/10.5194/gmd-18-6987-2025, 2025
Short summary
Short summary
We developed a new global atmospheric weighted mean temperature (Tm) model considering time-varying vertical adjustment rate. Firstly, a global Tm vertical adjustment rate model (NGGTm-H) was developed using the sliding-window algorithm. Secondly, the daily variation characteristics of Tm and its relationships with geographical situations were investigated. Finally, a hybrid-grid global Tm model considering the time-varying vertical adjustment rate (NGGTm) was developed.
Liangke Huang, Shengwei Lan, Ge Zhu, Fade Chen, Junyu Li, and Lilong Liu
Geosci. Model Dev., 16, 7223–7235, https://doi.org/10.5194/gmd-16-7223-2023, https://doi.org/10.5194/gmd-16-7223-2023, 2023
Short summary
Short summary
The existing zenith tropospheric delay (ZTD) models have limitations such as using a single fitting function, neglecting daily cycle variations, and relying on only one resolution grid data point for modeling. This model considers the daily cycle variation and latitude factor of ZTD, using the sliding window algorithm based on ERA5 atmospheric reanalysis data. The ZTD data from 545 radiosonde stations and MERRA-2 atmospheric reanalysis data are used to validate the accuracy of the GGZTD-P model.
Y. Xu, G. Liu, S. Liu, H. Wu, R. Wang, and Z. Bai
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-5-W1-2023, 45–52, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-45-2023, https://doi.org/10.5194/isprs-archives-XLVIII-5-W1-2023-45-2023, 2023
Cited articles
Adeyemi, B. and Joerg, S.: Analysis of Water Vapor over Nigeria Using Radiosonde and Satellite Data, J. Appl. Meteorol. Climatol., 51, 1855–1866, https://doi.org/10.1175/jamc-d-11-0119.1, 2012.
Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018.
Alshawaf, F., Fersch, B., Hinz, S., Kunstmann, H., Mayer, M., and Meyer, F. J.: Water vapor mapping by fusing InSAR and GNSS remote sensing data and atmospheric simulations, Hydrol. Earth Syst. Sci., 19, 4747–4764, https://doi.org/10.5194/hess-19-4747-2015, 2015.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS Meteorology – Remote-Sensing of Atmospheric Water-Vapor Using the Global Positioning System, J. Geophys. Res.-Atmos., 97, 15787–15801, https://doi.org/10.1029/92jd01517, 1992.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001.
Chen, B. Y., Jin, L. J., Wang, J. Y., Jin, W. P., and Wang, W.: Wide-Area Retrieval of Water Vapor Field Using an Improved Node Parameterization Tomography, IEEE Geosci. Remote Sens. Lett., 20, 1–5, https://doi.org/10.1109/lgrs.2023.3293824, 2023a.
Chen, B. Y., Tan, J. S., Wang, W., Dai, W. J., Ao, M. S., and Chen, C. H.: Tomographic Reconstruction of Water Vapor Density Fields From the Integration of GNSS Observations and Fengyun-4A Products, IEEE T. Geosci. Remote, 61, 1–12, https://doi.org/10.1109/tgrs.2023.3239392, 2023b.
Chen, Q. M., Song, S. L., Heise, S., Liou, Y. A., Zhu, W. Y., and Zhao, J. Y.: Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China, GPS Solut., 15, 415–425, https://doi.org/10.1007/s10291-010-0200-x, 2011.
Dessler, A. E. and Sherwood, S. C.: Atmospheric Science a Matter of Humidity, Science, 323, 1020–1021, https://doi.org/10.1126/science.1171264, 2009.
Ding, M. H.: A second generation of the neural network model for predicting weighted mean temperature, GPS Solut., 24, 61, https://doi.org/10.1007/s10291-020-0975-3, 2020.
Dogan, A. H. and Erdogan, B.: A new empirical troposphere model using ERA5's monthly averaged hourly dataset, J. Atmos. Sol.-Terr. Phys., 232, 105865, https://doi.org/10.1016/j.jastp.2022.105865, 2022.
Dousa, J. and Elias, M.: An improved model for calculating tropospheric wet delay, Geophys. Res. Lett., 41, 4389–4397, https://doi.org/10.1002/2014gl060271, 2014.
Du, Z., Yao, Y. B., and Zhao, Q. Z.: Novel Validation and Calibration Strategy for Total Precipitable Water Products of Fengyun-2 Geostationary Satellites, IEEE T. Geosci. Remote, 61, 12, https://doi.org/10.1109/tgrs.2023.3295091, 2023.
Emardson, T. R. and Johansson, J. M.: Spatial interpolation of the atmospheric water vapor content between sites in a ground-based GPS network, Geophys. Res. Lett., 25, 3347–3350, https://doi.org/10.1029/98gl02504, 1998.
European Centre for Medium-Range Weather Forecasts: Monthly averaged data on pressure levels, European Centre for Medium-Range Weather Forecasts [data set], https://cds.climate.copernicus.eu/, last access: 29 March 2024.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huang, L., Mo, Z., Liu, L., and Xie, S.: An empirical model for the vertical correction of precipitable water vapor considering the time-varying lapse rate for Mainland China, Acta Geodaetica et Cartographica Sinica, 50, 1320–1330, https://doi.org/10.11947/j.AGCS.2021.20200530, 2021.
Huang, L., Wang, X., Xiong, S., Li, J., Liu, L., Mo, Z., Fu, B., and He, H.: High-precision GNSS PWV retrieval using dense GNSS sites and in-situ meteorological observations for the evaluation of MERRA-2 and ERA5 reanalysis products over China, Atmos. Res., 276, 106247, https://doi.org/10.1016/j.atmosres.2022.106247, 2022.
Huang, L., Liu, W., Mo, Z., Zhang, H., Li, J., Chen, F., Liu, L., and Jiang, W.: A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate, GPS Solut., 27, 170, https://doi.org/10.1007/s10291-023-01506-5, 2023.
Jacob, D.: The role of water vapour in the atmosphere. A short overview from a climate modeller's point of view, Phys. Chem. Earth Pt. A, 26, 523–527, https://doi.org/10.1016/s1464-1895(01)00094-1, 2001.
Keil, C., Röpnack, A., Craig, G. C., and Schumann, U.: Sensitivity of quantitative precipitation forecast to height dependent changes in humidity, Geophys. Res. Lett., 35, L09812, https://doi.org/10.1029/2008gl033657, 2008.
Kouba, J.: Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1), J. Geodesy, 82, 193–205, https://doi.org/10.1007/s00190-007-0170-0, 2008.
Lam, R. R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Pritzel, A., Ravuri, S. V., Ewalds, T., Alet, F., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Stott, J., Vinyals, O., Mohamed, S., and Battaglia, P. W.: GraphCast: Learning skillful medium-range global weather forecasting, arXiv [preprint], https://doi.org/10.48550/arXiv.2212.12794, 2022.
Leckner, B.: The spectral distribution of solar radiation at the earth's surface – elements of a model, Sol. Energy, 20, 143–150, https://doi.org/10.1016/0038-092X78)90187-1, 1978.
Li, H. B., Wang, X. M., Choy, S., Wu, S. Q., Jiang, C. H., Zhang, J. L., Qiu, C., Li, L., and Zhang, K. F.: A New Cumulative Anomaly-Based Model for the Detection of Heavy Precipitation Using GNSS-Derived Tropospheric Products, IEEE T. Geosci. Remote, 60, 1–18, https://doi.org/10.1109/tgrs.2021.3137014, 2022a.
Li, H. B., Wang, X. M., Choy, S., Jiang, C. H., Wu, S. Q., Zhang, J. L., Qiu, C., Zhou, K., Li, L., Fu, E. R., and Zhang, K. F.: Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV, Atmos. Res., 265, 105912, https://doi.org/10.1016/j.atmosres.2021.105912, 2022b.
Li, J., Zhang, Q., Liu, L., Yao, Y., Huang, L., Chen, F., Zhou, L., and Zhang, B.: A refined zenith tropospheric delay model for Mainland China based on the global pressure and temperature 3 (GPT3) model and random forest, GPS Solut., 27, 172, https://doi.org/10.1007/s10291-023-01513-6, 2023a.
Li, J., Wang, Y., Liu, L., Yao, Y., Huang, L., and Li, F.: A Grid Model for Vertical Correction of Precipitable Water Vapor over the Chinese Mainland and Surrounding Areas Using Random Forest, Zenodo [data set], https://doi.org/10.5281/zenodo.10124326, 2023b.
Lu, C. X., Zhang, Y. S., Zheng, Y. X., Wu, Z. L., and Wang, Q. Y.: Precipitable water vapor fusion of MODIS and ERA5 based on convolutional neural network, GPS Solut., 27, 15, https://doi.org/10.1007/s10291-022-01357-6, 2023.
Probst, P. and Boulesteix, A.-L.: To tune or not to tune the number of trees in random forest, J. Mach. Learn. Res., 18, 6673–6690, https://doi.org/10.48550/arXiv.1705.05654, 2017.
Raval, A. and Ramanathan, V.: Observational determination of the greenhouse effect, Nature, 342, 758–761, https://doi.org/10.1038/342758a0, 1989.
Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and Mohamed, S.: Skilful precipitation nowcasting using deep generative models of radar, Nature, 597, 672–677, https://doi.org/10.1038/s41586-021-03854-z, 2021.
Reitan, C. H.: Surface Dew Point and Water Vapor Aloft, J. Appl. Meteorol., 2, 776–779, https://doi.org/10.1175/1520-0450(1963)002<0776:SDPAWV>2.0.CO;2, 1963.
Renju, R., Raju, C. S., Mathew, N., Antony, T., and Moorthy, K. K.: Microwave radiometer observations of interannual water vapor variability and vertical structure over a tropical station, J. Geophys. Res.-Atmos., 120, 4585–4599, https://doi.org/10.1002/2014jd022838, 2015.
Rocken, C., Anthes, R., Exner, M., Hunt, D., Sokolovskiy, S., Ware, R., Gorbunov, M., Schreiner, W., Feng, D., Herman, B., Kuo, Y. H., and Zou, X.: Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res.-Atmos., 102, 29849–29866, https://doi.org/10.1029/97jd02400, 1997.
Rodriguez, J. D., Perez, A., and Lozano, J. A.: Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation, IEEE Trans. Pattern Anal. Mach. Intell., 32, 569–575, https://doi.org/10.1109/tpami.2009.187, 2010.
Rose, B. E. J. and Rencurrel, M. C.: The Vertical Structure of Tropospheric Water Vapor: Comparing Radiative and Ocean-Driven Climate Changes, J. Climate, 29, 4251–4268, https://doi.org/10.1175/jcli-d-15-0482.1, 2016.
Ross, R. J. and Elliott, W. P.: Tropospheric water vapor climatology and trends over North America: 1973–93, J. Climate, 9, 3561–3574, https://doi.org/10.1175/1520-0442(1996)009<3561:Twvcat>2.0.Co;2, 1996.
Sagi, O. and Rokach, L.: Ensemble learning: A survey, Wiley Interdiscip. Rev.-Data Mining Knowl. Discov., 8, e1249, https://doi.org/10.1002/widm.1249, 2018.
Santos, M. S., Soares, J. P., Abreu, P. H., Araujo, H., and Santos, J.: Cross-Validation for Imbalanced Datasets: Avoiding Overoptimistic and Overfitting Approaches, IEEE Comput. Intell. Mag., 13, 59–76, https://doi.org/10.1109/mci.2018.2866730, 2018.
Senkal, O.: Solar radiation and precipitable water modeling for Turkey using artificial neural networks, Meteorol. Atmos. Phys., 127, 481–488, https://doi.org/10.1007/s00703-015-0372-6, 2015.
Sun, Z. Y., Zhang, B., and Yao, Y. B.: An ERA5-Based Model for Estimating Tropospheric Delay and Weighted Mean Temperature Over China With Improved Spatiotemporal Resolutions, Earth and Space Science, 6, 1926–1941, https://doi.org/10.1029/2019ea000701, 2019.
Sun, Z. Y., Zhang, B., and Yao, Y. B.: Improving the Estimation of Weighted Mean Temperature in China Using Machine Learning Methods, Remote Sens., 13, 1016, https://doi.org/10.3390/rs13051016, 2021.
Tomasi, C.: Precipitable water vapor in atmospheres characterized by temperature inversions, J. Appl. Meteorol., 16, 237–243, https://doi.org/10.1175/1520-0450(1977)016<0237:PWW1AC>2.0.C0;2, 1977.
Tyralis, H., Papacharalampous, G., and Langousis, A.: A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources, Water, 11, 910, https://doi.org/10.3390/w11050910, 2019.
University of Wyoming: Radiosonde profiles, University of Wyoming [data set], https://www.ncei.noaa.gov/pub/data/igra/, last access: 29 March 2024.
Wang, L. A., Zhou, X. D., Zhu, X. K., Dong, Z. D., and Guo, W. S.: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data, Crop J., 4, 212–219, https://doi.org/10.1016/j.cj.2016.01.008, 2016.
Wang, X. M., Zhang, K. F., Wu, S. Q., Fan, S. J., and Cheng, Y. Y.: Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend, J. Geophys. Res.-Atmos., 121, 833–852, https://doi.org/10.1002/2015jd024181, 2016.
Wang, X. Z., Chen, F. Y., Ke, F. Y., and Xu, C.: An Empirical Grid Model for Precipitable Water Vapor, Remote Sens., 14, 6174, https://doi.org/10.3390/rs14236174, 2022.
Wang, Y. Z., Liu, H. L., Zhang, Y., Duan, M. Z., Tang, S. H., and Deng, X. B.: Validation of FY-4A AGRI layer precipitable water products using radiosonde data, Atmos. Res., 253, 105502, https://doi.org/10.1016/j.atmosres.2021.105502, 2021.
Yang, F., Guo, J., Meng, X., Shi, J., Zhang, D., and Zhao, Y.: An improved weighted mean temperature (Tm) model based on GPT2w with Tm lapse rate, GPS Solut., 24, 46, https://doi.org/10.1007/s10291-020-0953-9, 2020.
Yang, F., Sun, Y. L., Meng, X. L., Guo, J. M., and Gong, X.: Assessment of tomographic window and sampling rate effects on GNSS water vapor tomography, Satell. Navig., 4, 7, https://doi.org/10.1186/s43020-023-00096-4, 2023.
Zhai, P. M. and Eskridge, R. E.: Atmospheric water vapor over China, J. Climat, 10, 2643–2652, https://doi.org/10.1175/1520-0442(1997)010<2643:Awvoc>2.0.Co;2, 1997.
Zhang, B. and Yao, Y. B.: Precipitable water vapor fusion based on a generalized regression neural network, J. Geodesy, 95, 36, https://doi.org/10.1007/s00190-021-01482-z, 2021.
Zhang, B., Yao, Y. B., Xin, L. Y., and Xu, X. Y.: Precipitable water vapor fusion: an approach based on spherical cap harmonic analysis and Helmert variance component estimation, J. Geodesy, 93, 2605–2620, https://doi.org/10.1007/s00190-019-01322-1, 2019.
Zhang, H. X., Yuan, Y. B., Li, W., and Zhang, B. C.: A Real-Time Precipitable Water Vapor Monitoring System Using the National GNSS Network of China: Method and Preliminary Results, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 12, 1587–1598, https://doi.org/10.1109/jstars.2019.2906950, 2019.
Zhang, K., Wan, M., Wu, S., Zhen, S., Dantong, Z., Sun, P., and Jiang, L.: New Model for Vertical Distribution and Variation of Atmospheric Water Vapor – A Case Study for China, Research Square [preprint], https://doi.org/10.21203/rs.3.rs-1497870/v1, 2022.
Zhang, Q., Ye, J. H., Zhang, S. C., and Han, F.: Precipitable Water Vapor Retrieval and Analysis by Multiple Data Sources: Ground-Based GNSS, Radio Occultation, Radiosonde, Microwave Satellite, and NWP Reanalysis Data, J. Sens., 2018, 3428303, https://doi.org/10.1155/2018/3428303, 2018.
Zhang, W. X., Lou, Y. D., Cao, Y. C., Liang, H., Shi, C., Huang, J. F., Liu, W. X., Zhang, Y., and Fan, B. B.: Corrections of Radiosonde-Based Precipitable Water Using Ground-Based GPS and Applications on Historical Radiosonde Data Over China, J. Geophys. Res.-Atmos., 124, 3208–3222, https://doi.org/10.1029/2018jd029662, 2019.
Zhang, Y. L., Cai, C. S., Chen, B. Y., and Dai, W. J.: Consistency Evaluation of Precipitable Water Vapor Derived From ERA5, ERA-Interim, GNSS, and Radiosondes Over China, Radio Sci., 54, 561–571, https://doi.org/10.1029/2018rs006789, 2019.
Zhao, Y. Y., Zhao, H. W., Li, J. Q., and Xiao, G. W.: Comprehensive Validation and Calibration of MODIS PWV over Mainland China, Atmosphere, 13, 1763, https://doi.org/10.3390/atmos13111763, 2022.
Zheng, Y. X., Lu, C. X., Wu, Z. L., Liao, J. C., Zhang, Y. S., and Wang, Q. Y.: Machine Learning-Based Model for Real-Time GNSS Precipitable Water Vapor Sensing, Geophys. Res. Lett., 49, e2021GL096408, https://doi.org/10.1029/2021gl096408, 2022.
Zhu, M. C., Yu, X. W., and Sun, W.: A coalescent grid model of weighted mean temperature for China region based on feedforward neural network algorithm, GPS Solut., 26, 70, https://doi.org/10.1007/s10291-022-01254-y, 2022.
Short summary
In this study, we have developed a model (RF-PWV) to characterize precipitable water vapor (PWV) variation with altitude in the study area. RF-PWV can significantly reduce errors in vertical correction, enhance PWV fusion product accuracy, and provide insights into PWV vertical distribution, thereby contributing to climate research.
In this study, we have developed a model (RF-PWV) to characterize precipitable water vapor (PWV)...