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Abstract. Various ground-based observing techniques pro-
vide precipitable water vapor (PWV) products with differ-
ent spatial resolutions. To effectively integrate these prod-
ucts, especially in terms of vertical orientation, spatial in-
terpolation is essential. In this context, we have developed
a model to characterize PWV variation with altitude over
our study area. Our model, known as RF-PWV (a PWV
vertical correction grid model with a 1°× 1° resolution),
is constructed using random forest based on the relation-
ship between the differences in different pressure level PWV
data from the fifth-generation European Centre for Medium-
Range Weather Forecasts reanalysis (ERA5) monthly aver-
age hourly data and corresponding differences in their height
differences over time. When validated against 1 h ERA5
PWV profiles, RF-PWV exhibits a 99.84 % reduction in bias
and a 63.41 % decrease in the RMSE compared with the
most recent model, C-PWVC1. Furthermore, when validated
against radiosonde data, RF-PWV shows a 96.36 % reduc-
tion in bias and a 5 % decrease in the RMSE compared with
C-PWVC1. Additionally, RF-PWV outperforms C-PWVC1
in terms of resistance to seasonal and height difference inter-
ference. The model eliminates the need for meteorological
parameters, allowing for high-precision PWV vertical cor-
rection by inputting only time and height differences. Con-
sequently, RF-PWV can significantly reduce errors in verti-
cal correction, enhance PWV fusion product accuracy, and
provide insights into PWV vertical distribution, thereby con-
tributing to climate research.

1 Introduction

Precipitable water vapor (PWV), the most abundant green-
house gas, primarily resides in the troposphere and plays a
pivotal role in the global energy budget, hydrological cy-
cle, and climate change (Zhang et al., 2018; Li et al., 2022b;
Dessler and Sherwood, 2009; Raval and Ramanathan, 1989;
Rocken et al., 1997). Various observation platforms, includ-
ing radiosondes (RSs), microwave water vapor radiometers
(WVRs), satellite remote sensing, ground-based global nav-
igation satellite system (GNSS) data, and reanalysis data,
have amassed extensive PWV data through long-term data
accumulation (Huang et al., 2022). Combining multisource
data enables more accurate and comprehensive water va-
por monitoring and meteorological research (B. Zhang et
al., 2019; Li et al., 2022a; Alshawaf et al., 2015). However,
inconsistent pressure levels (heights) for storing PWV data
from different sources hinder the fusion and reliability anal-
ysis of PWV multisource data (Chen et al., 2023b; Yang et
al., 2023). Therefore, precise PWV vertical corrections are
indispensable with respect to the utilization of PWV fusion
products. The vertical distribution of PWV is closely related
to the formation and distribution of rainfall and clouds, which
is the pivot of weather forecasting and is also one of the fac-
tors affecting convection and monsoon climates (Bevis et al.,
1992; Keil et al., 2008; Rose and Rencurrel, 2016). The ver-
tical distribution and temporal variability of PWV are essen-
tial for understanding regional weather and global climate,
improving the climate models, and predicting future climate
change (Jacob, 2001; Renju et al., 2015). Hence, proposing a
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more accurate and applicable PWV vertical correction model
is of paramount importance.

Common methods for PWV vertical correction involve es-
tablishing empirical vertical correction models to enhance
the applicability of PWV vertical correction (Emardson and
Johansson, 1998; Dousa and Elias, 2014; Huang et al.,
2023). Reitan (1963) introduced an empirical formula de-
scribing water vapor density’s exponential decrease in the
vertical direction, based on the relationship between PWV
near the surface and at high altitudes. The PWV lapse rate
(−0.5 mm km−1), estimated by Kouba (2008) using the In-
ternational GNSS Service (IGS) and the Vienna Mapping
Function 1 (VMF1), has been widely adopted. However,
considering the seasonal variations in the PWV lapse rate
as constant introduces significant errors in PWV vertical
correction (Tomasi, 1977; Leckner, 1978; H. X. Zhang et
al., 2019; Zhang et al., 2022). Huang et al. (2021) devel-
oped a PWV vertical correction model that accounts for sea-
sonal variations in the PWV lapse rate, offering greater ac-
curacy and stability than the classic PWV vertical correction
model (PWV lapse rate=−0.5 mm km−1) in China. Wang et
al. (2022) incorporated spherical harmonic functions to de-
velop a PWV vertical correction model, achieving high ac-
curacy in the Tibetan Plateau. Nevertheless, many existing
models assume PWV’s exponential decrease and represent
PWV lapse rate variations using periodic functions, failing to
address complex nonlinear variations beyond daily/sub-daily
and seasonal variations in the PWV lapse rate.

Neural network techniques are well suited for handling
nonlinear problems and have found applications in various
industries (Zheng et al., 2022). Machine learning has demon-
strated promising potential in modeling tropospheric param-
eters (Ravuri et al., 2021; Lam et al., 2022). Senkal (2015)
developed a model for predicting PWV in Turkey (Türkiye)
using a resilient propagation (RP) neural network, which pro-
vides PWV estimates for a given location. Validation with
RS PWV data in the study area revealed good agreement be-
tween the new model and RS PWV data. Zhu et al. (2022)
created a weighted-mean temperature (Tm) vertical correc-
tion grid model (CTm-FNN) employing a feedforward neural
network in China. This model outperformed the Chinese Tro-
pospheric Model (CTrop) and Global Pressure and Tempera-
ture 3 (GPT3), reducing the root-mean-square error (RMSE)
by 86 % and 83 %, respectively.

Therefore, this paper presents a random-forest-based pre-
cipitable water vapor vertical correction grid model, termed
RF-PWV, for China and surrounding areas, harnessing ran-
dom forest’s powerful nonlinear fitting capability and the
high temporal resolution of monthly average hourly PWV
data. With RF-PWV, PWV differences can be obtained by
simply inputting time and height differences, allowing for
high-precision PWV vertical correction. The model offers
PWV vertical correction techniques for multisource PWV fu-
sion, weather forecasting, and climate studies.

We begin by providing an overview of the study area and
the experimental dataset. Subsequently, we describe the data
processing strategy and modeling methodology. Next, we
evaluate the performance of the RF-PWV model. Finally, we
conclude our study and outline future directions.

2 Data and methods

2.1 Study area

The study area includes the region between 15 and 55° N and
between 70 and 135° E, covering mainland China and its sur-
rounding areas, characterized by extensive land and ocean.
China’s topography exhibits significant variation, with higher
elevations in the west gradually sloping to lower elevations
in the east. Influenced by the monsoon climate, the summer
monsoon brings substantial moisture from the ocean into the
region, while winter introduces cold, dry air inland (Sun et
al., 2019; W. X. Zhang et al., 2019). These geographical and
climatic factors contribute to a complex spatiotemporal vari-
ation in PWV. As a result, the vertical distribution of PWV
in this area presents a challenging problem to characterize,
making it a suitable choice for our experimental area.

2.2 Datasets

2.2.1 ERA5 PWV

ERA5, the fifth-generation atmospheric reanalysis prod-
uct developed by the European Centre for Medium-Range
Weather Forecasts (ECMWF), offers access to 1 h meteoro-
logical data across 37 pressure levels, with a horizontal res-
olution as fine as 0.25°× 0.25°. This dataset can be down-
loaded from https://cds.climate.copernicus.eu/ (last access:
29 March 2024) (Albergel et al., 2018). ERA5 is renowned
for its superior accuracy compared with its predecessor,
ERA-Interim, and has gained widespread usage in meteoro-
logical research (Hersbach et al., 2020; Lu et al., 2023; Chen
et al., 2023a). Moreover, the monthly averaged dataset, in
terms of accuracy, rivals the daily dataset while demonstrat-
ing greater stability (Dogan and Erdogan, 2022). Addition-
ally, the monthly average hourly dataset offers the advantage
of capturing both seasonal variations in meteorological data
and finer-grained sub-daily variations. In this study, we uti-
lize the monthly average hourly dataset, which provides 1 h
data at 37 pressure levels with a spatial resolution of 1°× 1°.
The PWV for each pressure level is determined through in-
tegration, as described by Y. L. Zhang et al. (2019) and X.
M. Wang et al. (2016):

PWVi =
∑n−1

i

(qi + qi+1) · (pi+1−pi)

2 · ρw·
, (1)

g = 9.780325 ·
[

1+ 0.00193185 · sin(ϕ)2

1− 0.00669435 · sin(ϕ)2

]0.5

. (2)
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Here, n represents the total number of layers; PWVi , qi , and
pi represent the PWV (mm), specific humidity (kg kg−1),
and pressure (Pa) at the i layer, respectively; ρw is the den-
sity of liquid water, which is standardized to 1000 kg m−3;
g is the gravitational acceleration (m s−2); and ϕ denotes the
latitude (rad).

It is crucial to emphasize that the upper boundary of
the troposphere lies at approximately 10 km altitude (Ding,
2020). Consequently, PWV effectively approaches 0 mm
when situated at elevations exceeding 12 km vertically. As
a result, we restrict our PWV calculations to cover pressure
levels within the range of 0 to 12 km above the grid point for
all subsequent analyses and investigations.

2.2.2 RS PWV

RSs are widely recognized for their high-precision PWV
measurements and are commonly considered a refer-
ence standard for evaluating other measurement techniques
(Adeyemi and Joerg, 2012; Wang et al., 2021; Zhao et al.,
2022). We obtained RS PWV data from the Integrated Global
Radiosonde Archive (IGRA), accessible at https://www1.
ncdc.noaa.gov/pub/data/IGRA (last access: 29 March 2024
), with a temporal resolution of 12 h. We made use of meteo-
rological data from 148 stations, focusing on pressure levels
within the 0–12 km altitude range (as illustrated in Fig. 1).
The specific humidity at each pressure level was determined
by employing Eqs. (3) and (4), which are as follows (Zhai
and Eskridge, 1997; Ross and Elliott, 1996):

e =
RH · es

100
, (3)

q =
0.622 · e

p− 0.378 · e
. (4)

Here, RH represents relative humidity (%), es signifies sat-
urated vapor pressure (Pa), e denotes water vapor pressure
(Pa), and q represents specific humidity (kg kg−1). Subse-
quently, RS PWV values for various pressure levels were cal-
culated using Eq. (1).

2.3 Establishment of the RF-PWV model

Random forest (RF), an ensemble learning method that com-
bines multiple weak learners to form a single strong learner,
typically improves generalization performance and model ro-
bustness (Breiman, 2001; Sagi and Rokach, 2018). Com-
pared with the backpropagation neural network (BPNN), ran-
dom forests are less prone to overfitting, especially with nois-
ier datasets like PWV. Random forests handle noisy data and
outliers more efficiently, making new models more robust
and often easier to tune (L. A. Wang et al., 2016; Tyralis et
al., 2019). In addition, our previous study has shown that RF
outperforms BPNN with respect to modeling spatiotempo-
ral variability in tropospheric parameters (Li et al., 2023a).
Thus, RF is employed to model the height dependency of

Figure 1. Distribution of the selected radiosonde sites.

PWV. The equation governing random forest’s prediction is
expressed as follows:

Y (X)=
1
B

∑B

b=1
Tb(X). (5)

Here, Y (X) is the final prediction result, Tb(X) represents the
predicted value of each decision tree, andB denotes the num-
ber of decision trees. The selection of an appropriate number
of decision trees is pivotal in modeling; too few trees may
lead to overfitting, whereas too many trees can result in ex-
cessively long modeling times (Sun et al., 2021; Probst and
Boulesteix, 2017).

2.3.1 Defining the primary parameter

To assess the performance of machine learning models, 10-
fold cross-validation is a commonly employed technique
(Rodriguez et al., 2010; Zhang and Yao, 2021). In this con-
text, 10-fold cross-validation was employed to ascertain the
optimal number of decision trees based on the RMSE. The
fundamental principle of 10-fold cross-validation entails di-
viding the input data into 10 groups. Subsequently, nine ran-
domly selected groups are utilized as the training set, and the
remaining group serves as the validation set. This process
is reiterated 10 times to ensure that all data are included in
both training and testing. This approach provides results that
closely approximate the accuracy of the final model while
guarding against overfitting (Santos et al., 2018). Based on
our experience, we experimented with decision tree num-
bers ranging from 5 to 95, with a step size of 10, to train
the model and evaluate its performance under varying deci-
sion tree quantities (Li et al., 2023a). The results, depicted
in Fig. 2, exhibit a significant decline in the RMSE as the
number of decision trees increases from 5 to 75, reaching
a minimum at 75. However, increasing the number of trees
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Figure 2. Cross-validation RMSE for different numbers of decision
trees.

to 75 does not significantly enhance accuracy, and it incurs
longer training times. In consideration of the need for model-
ing at multiple grid points and balancing fitting quality with
training time, a final decision was made to employ 55 trees
to build the model.

2.3.2 Training the model

During the model training phase, we performed individual
modeling at each grid point (1°× 1°) using ERA5 monthly
average hourly PWV data at pressure levels ranging from
1000 to 225 hPa, within the 0 to 12 km altitude range, span-
ning the years 2008 to 2017. The ith PWV differences
(1PWVi = PWVi −PWV0, where 0 stands for the bot-
tom level) between the i level and the bottom level and
the responding height differences (1GPHi = GPHi−GPH0)
were all computed and utilized as the training dataset. In
essence, each grid point contained 63 360 samples (22 lev-
els× 24 h× 12 months× 10 years), and the region consisted
of 2706 grid points (66 longitudes× 41 latitudes) at a 1°× 1°
resolution. The model, denoted as the RF-PWV model, char-
acterizes the relationship between 1PWV and 1GPH, as il-
lustrated in Fig. 3. The input data included year, day of the
year (doy is the first day of the corresponding month), hour of
the day (hod), and1GPH; the output data were1PWV. The
reason why “year” was included as an input variable to RF-
PWV is that the PWV lapse rate has a significant periodic
function with a year (Du et al., 2023; Huang et al., 2023).
When users employ the model, they are only required to pro-
vide the geopotential height of the target point, the datum
PWV, the time (year, doy, hod), and the height difference of
the target point concerning the datum point (1GPH). They
can obtain the corresponding 1PWV and can then get the
PWV of the target height by adding the datum PWV to the
1PWV.

Figure 3. Network structure of the RF-PWV model based on the
random forest algorithm.

In the application of the RF-PWV model, the four grid
points surrounding the target point are determined based on
the target point’s geographical coordinates (latitude and lon-
gitude). Then, the 1PWV at the corresponding height of the
four selected points is calculated using the RF-PWV model.
Finally, the 1PWV at the target point’s location is deter-
mined through bilinear interpolation. This process involves
calculating the difference between the target point’s GPH and
the reference station’s GPH0 to get the1GPH. Next, the time
information is input into the models for the four nearest grid
points to the target point, yielding the 1PWV at the corre-
sponding height of these grid points. Finally, bilinear inter-
polation is employed to calculate the 1PWV at the target
point’s location. This method offers the advantage of not re-
quiring an exceptionally strong spatial generalization ability
for a single model. It comprehensively considers the relation-
ship between the target point and the four nearest grid points
within the limited spatial context, resulting in enhanced con-
sistency and higher accuracy at each grid point, ensuring the
overall model’s robustness.

3 Accuracy validation and analysis

To validate the RF-PWV model, we employed hourly ERA5
and RS pressure level data from the study area in 2018 as the
test set, while also selecting a newly developed PWV verti-
cal correction model (C-PWVC1) for comparison. Note that
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the authors of the C-PWVC model suggest using C-PWVC1
directly for PWV vertical correction in the study area, so C-
PWVC2 is ignored. C-PWVC1 has been proven to be more
accurate than the classical PWV vertical correction model
(PWV lapse rate=−0.5 mm km−1) in the study area (Huang
et al., 2021). C-PWVC1 is a model using the exponential
function to account for the height dependency of PWV. C-
PWVC1 can be expressed as follows:

PWVh1 = PWVh2 · exp(β (h1−h2)) , (6)

β (doy)=−0.35− 0.026cos
(

doy
365.25

2π
)
− 0.015sin

(
doy

365.25
2π
)

+ 0.008cos
(

doy
365.25

4π
)
+ 0.026sin

(
doy

365.25
4π
)
. (7)

Here, PWVh1 and PWVh2 denote the PWV at h1 and h2, re-
spectively; β is the PWV lapse rate; and doy is the day of
the year. C-PWVC1 requires inputs of datum height, datum
PWV, target height, and time to provide the PWV correction
value at the target height, but the model is unable to capture
nonlinear variations in the vertical direction. Then, the accu-
racy metrics employed for evaluation are bias and RMSE, as
outlined below:

Bias=
1
n

∑n

i=1

(
Xi −X

′

i

)
, (8)

RMSE=

√
1
n

∑n

i=1
(Xi −X

′

i)
2. (9)

Here, X′ is the reference values, X denotes model outputs,
and n is the number of samples.

3.1 Validation of RF-PWV using ERA5 PWV

The RF-PWV model and C-PWVC1 were applied to ver-
tically correct the hourly ERA5 bottom-level PWV data
(1°× 1°) for the year 2018 to other pressure levels within
the 0–12 km altitude range, excluding the bottom level. The
results were then compared with ERA5 data, and the over-
all bias and RMSE are presented in Table 1. RF-PWV ex-
hibited a bias close to 0 mm, indicating minimal systematic
bias between the interpolated PWV and ERA5 PWV. More-
over, it reduced bias by 1.42 mm compared with C-PWVC1,
corresponding to a remarkable optimization of 99.84 %. The
bias values for RF-PWV were observed to fluctuate slightly
within the range of −0.01 to 0.01 mm. Additionally, the RF-
PWV RMSE showed a substantial reduction of 63.40 % com-
pared with C-PWVC1. Furthermore, the RMSE values for
RF-PWV demonstrated a more stable fluctuation pattern with
a considerably narrower range. Overall, RF-PWV exhibited
significantly higher accuracy than C-PWVC1, with corrected
results showing better agreement with the reference values.

To provide a spatial illustration of the models’ consistency
with respect to accuracy, Fig. 4 displays the bias and RMSE
values for each grid point for both RF-PWV and C-PWVC1.
Notably, C-PWVC1 exhibited a significant north–south dif-
ference in bias, with larger values in the south and smaller

values in the north. In contrast, RF-PWV demonstrated a
substantial reduction in bias across almost all grid points in
the study area, approaching 0 mm, effectively eliminating the
north–south discrepancy. The most noteworthy improvement
in accuracy was observed in the Tibetan Plateau and low-
latitude regions. Despite the challenging climate conditions
in the Tibetan Plateau and the strong land–sea interactions
in the study area’s low latitudes, which contribute to com-
plex PWV variations, RF-PWV still achieved a bias close
to 0 mm. These results highlight RF-PWV’s adaptability to
diverse weather conditions and its wide applicability. Fur-
thermore, C-PWVC1 displayed a north–south difference in
the RMSE. Higher RMSE values were concentrated in the
southwestern and southeastern regions, reaching a maximum
of 4.25 mm. This phenomenon is mainly attributable to the
proximity of these regions to the ocean, frequent water va-
por exchange between land and sea, and the complexity of
PWV variations. However, RF-PWV’s RMSE in these re-
gions was significantly smaller than that of C-PWVC1, con-
sistently measuring below 2 mm. Overall, RF-PWV’s RMSE
was lower than that of C-PWVC1 across the study area.
Furthermore, RF-PWV exhibited excellent agreement, with
values mostly hovering around 0.75 mm, nearly independent
of spatial variations. These outcomes underscore the higher
accuracy and improved spatial accuracy consistency of RF-
PWV across the study area.

To further evaluate the models’ performance across differ-
ent seasons, we calculated the bias and RMSE values for four
representative grid points using data from 2018. These grid
points were selected to represent various regions: 40.00° N,
80.00° E in the northwestern region; 15.00° N, 95.00° E in
the southwestern region; 25.00° N, 110.00° E in the south-
eastern region; and 45.00° N, 125.00° E in the northeast-
ern region. Figure 5a, b, g, and h illustrate that C-PWVC1
exhibited the highest bias and RMSE values during June–
September, reaching 5.41 and 6.23 mm at 40.00° N, 80.00° E
and 6.85 and 7.75 mm at 45.00° N, 125.00° E, respectively.
Conversely, the lowest bias and RMSE values were recorded
during January–February and November–December, hover-
ing around 0 mm, with discernible seasonal fluctuations. This
pattern is primarily attributed to significant PWV variations
during the wet and rainy northern summers, compared with
relatively mild PWV variations during the cold and dry win-
ters. In contrast, Fig. 5c, d, e, and f show that the seasonal dif-
ferences in the bias and RMSE for C-PWVC1 were less pro-
nounced in the southern regions than in the northern regions.
At 25.00° N, 110.00° E, which experiences abundant PWV
changes and heavy rainfall throughout the year, the model’s
accuracy was relatively lower, with no noticeable seasonal
variations. Similarly, near the Equator (15.00° N, 95.00° E),
overall bias and RMSE values were more significant, with
minimal seasonal differences. Notably, RF-PWV achieved
substantially lower bias and RMSE values than C-PWVC1
during the summer months. Throughout the year, RF-PWV’s
bias and RMSE exhibited relatively stable patterns, with min-
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Table 1. Validation results of the RF-PWV and C-PWVC1 models tested using ERA5 data.

Model Bias (mm) RMSE (mm)

Mean Min Max Mean Min Max

RF-PWV 0.00 −0.01 0.01 0.75 0.39 1.22
C-PWVC1 1.42 −0.96 3.65 2.05 0.72 4.25

Figure 4. Distributions of bias and RMSE for RF-PWV and C-PWVC1 with respect to the ERA5 data.

imal fluctuations around 0 mm. Conversely, Fig. 5c, d, e, and
f reveal that RF-PWV maintained bias and RMSE values
around 0 mm, offering greater accuracy compared with C-
PWVC1 in the southern grid points. In summary, RF-PWV
exhibited enhanced resistance to seasonal variations, main-
taining stable and accurate performance throughout the year
across the study area.

Given that more than three-quarters of the water vapor
is concentrated in the lower atmosphere, in practice, most
of the vertical correction of PWV occurs in the lower at-
mosphere (Yang et al., 2020). The bias and RMSE for C-
PWVC1 and RF-PWV are statistically determined based on
height differences, divided into 12 sections ranging from 0
to 6 km with intervals of 500 m. This division helps assess
the applicability of the two models across different height
segments, as shown in Fig. 6. Notably, C-PWVC1 exhibits a
positive bias in every height difference segment, with the bias
increasing as the height difference rises from 0 to 2.5 km, ul-
timately stabilizing at around 2.0 mm. RF-PWV bias tends to
approach 0 mm in all height difference segments and shows
negative bias after the height difference exceeds 2.5 km, with
the absolute value increasing and reaching a maximum value

of less than 0.2 mm. In each height difference segment be-
tween 0 and 6 km, RF-PWV bias is closer to 0 mm than C-
PWVC1 bias, indicating that the corrected value of RF-PWV
is more consistent with the reference value across differ-
ent height difference segments. Additionally, the RF-PWV
RMSE is significantly smaller than that of C-PWVC1 in all
height difference segments. The RMSE for C-PWVC1 ex-
hibits the same increasing trend as bias, stabilizing around
3 mm after the height difference exceeds 2.5 km. In contrast,
the RF-PWV RMSE is less than 1 mm in all height difference
segments. These findings demonstrate that RF-PWV offers
improved correction effectiveness and higher accuracy com-
pared with C-PWVC1. This enhanced adaptability to height
differences enables a finer-scale description of the vertical
distribution of PWV.

3.2 Validation of RF-PWV using RS PWV

To further validate the applicability of RF-PWV, the PWV
data for all pressure levels within the 0–12 km altitude range
from 148 RS stations in 2018 were used to assess the accu-
racy of RF-PWV and C-PWVC1. As the sounding stratified
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Figure 5. Time series of RF-PWV and C-PWVC1 bias and RMSE for four selected grid points.

Figure 6. Accuracy of RF-PWV and C-PWVC1 in each height difference segment with respect to ERA5 data.
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data are not uniformly distributed vertically, the variation in
PWV with elevation was fitted using an exponential function
based on the 2018 PWV data from each sounding station.
Using the fitting results, the PWV data of neighboring levels
were interpolated using inverse distance weighting (IDW) to
generate a sequence of PWV values within the range of 0–
12 km with intervals of 500 m. This sequence of PWV values
served as reference values. The datum PWV is the PWV cor-
responding to the surface height of the RS station. For each
RS station, the four grid points (1°× 1°) in proximity were
selected, and the 1PWVi (i = 1, 2, 3, 4, where i denotes
the four proximity grid points) of the target height relative
to the datum height was computed based on the RF model
of each grid point. Then 1PWVi values were bilinearly in-
terpolated to the corresponding location of the RS station to
obtain the RF-PWV result. To account for systematic bias be-
tween modeling data and reference values data, the average
difference between the corrected RF-PWV value and the cor-
responding reference value was computed as the systematic
bias for each level at the RS station. Finally, the statistical
accuracy of RF-PWV and C-PWVC1, after eliminating the
systematic bias, is presented in Table 2.

Table 2 reveals that the accuracy of C-PWVC1 is signifi-
cantly lower than that of RF-PWV. C-PWVC1 exhibits a bias
of 1.36 mm, ranging from −6.62 to 3.46 mm, whereas the
RF-PWV bias is only 0.05 mm, reduced by 1.31 mm and im-
proved by 96.36 %. The range of variation is notably reduced
to−0.25 to 0.33 mm. Moreover, the RF-PWV RMSE is con-
siderably smaller and more stable, with the RMSE reduced
to 2.59 mm, ranging from 0.49 to 4.89 mm, corresponding
to a decline rate of approximately 5 % compared with C-
PWVC1. Consequently, RF-PWV demonstrates superior ac-
curacy and stability in vertical PWV correction at 148 RS
stations in the study area. Moreover, these results show that
the accuracy analyzed by RS data is slightly lower than that
estimated by ERA5 data. This is because of the significant
systematic bias between ERA5 and RSs (Zhu et al., 2022;
Sun et al., 2019), but such accuracy can still meet the meteo-
rological requirements for PWV accuracy.

The bias and RMSE values for each RS station are also
computed to further illustrate the application capabilities of
the two models, as shown in Fig. 7. As depicted in Fig. 7a and
c, C-PWVC1 exhibits a positive bias for almost all stations
except for the RS stations in the Yunnan–Guizhou Plateau,
where the bias is less pronounced. In contrast, the RF-PWV
bias is consistently less than 0.5 mm and closer to 0 mm.
Compared with C-PWVC1, the absolute value of the RF-
PWV bias is effectively reduced in the Yunnan–Guizhou
Plateau region, with the most significant reduction reach-
ing 3.13 mm. Meanwhile, the positive bias in other areas is
also reduced to varying degrees. Figure 7b and d demonstrate
that the RF-PWV RMSE exhibits a certain degree of reduc-
tion compared with C-PWVC1, with the most substantial de-
cline occurring in the sites located in the Yunnan–Guizhou
Plateau. Given the complex terrain and significant undula-

tions in the Yunnan–Guizhou Plateau, where the difference
in height between the target point and the reference grid can
be up to 1–2 km (Chen et al., 2011), the RF-PWV RMSE at
all RS stations is less than 5 mm, with a maximum RMSE re-
duction of 11.65 mm. Therefore, RF-PWV demonstrates su-
perior performance and more stable accuracy compared with
C-PWVC1 across the entire study area. This advantage is
particularly pronounced in regions with significant variations
in height.

The bias and RMSE values of RF-PWV and C-PWVC1
were also statistically analyzed for each month to assess
the models’ performance under different seasonal conditions.
These results are presented in Fig. 8. The RF-PWV bias
demonstrates improvement in every month compared with
C-PWVC1. Both models exhibit seasonal variation charac-
teristics, with lower accuracy during summer and higher pre-
cision in winter. This seasonal variation is attributed to the
warm and humid weather with abundant rainfall in summer,
leading to significant PWV fluctuations. Nevertheless, RF-
PWV still shows notable bias optimization compared with
C-PWVC1. Winters are typically drier and experience less
rainfall, resulting in relatively smoother PWV changes. Con-
sequently, both models can accurately capture PWV vari-
ations during this period, with RF-PWV having a distinct
bias advantage. Furthermore, the RMSE of RF-PWV and C-
PWVC1 exhibits similar variations to bias. While the RF-
PWV RMSE is slightly larger than that of C-PWVC1 in late
autumn and winter, it is smaller than C-PWVC1 in other
months, particularly during summer and early autumn. RF-
PWV’s advantage becomes more pronounced when deal-
ing with spatiotemporal PWV variations that are more dras-
tic. It is important to note that differences between valida-
tion results based on radiosonde and ERA5 data may be at-
tributed to certain systematic deviations between radiosonde
and ERA5 data. In summary, RF-PWV demonstrates supe-
rior performance in vertical PWV correction under various
seasonal conditions.

To further evaluate the models’ application in the vertical
direction, the bias and RMSE of RF-PWV and C-PWVC1
in different height difference segments were examined, and
the results are depicted in Fig. 9. In Fig. 9a and c, for C-
PWVC1, when the height difference is less than 0 km, the
bias and RMSE are −1.81 and 2.89 mm, respectively. As the
height difference increases, both the bias and RMSE increase
as well. When the height difference exceeds 2.5 km, the bias
stabilizes at 2–2.5 mm, while the RMSE remains around
3.5 mm. RF-PWV demonstrates higher accuracy and stabil-
ity across all height difference segments, with the bias ap-
proaching 0 mm and the RMSE being smaller than that of C-
PWVC1. Figure 9b and d depict the improvement rates of the
absolute values of bias and RMSE for RF-PWV compared
with C-PWVC1 (positive values indicate improvement). The
absolute value of the bias exhibits an improvement rate of
over 80 %, with the maximum value approaching 100 %.
Meanwhile, the improvement rate of the RMSE is signifi-
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Table 2. Validation results of the RF-PWV and C-PWVC1 models tested using RS data.

Model Bias (mm) RMSE (mm)

Mean Min Max Mean Min Max

RF-PWV 0.05 −0.25 0.33 2.59 0.94 4.89
C-PWVC1 1.36 −6.62 3.46 2.71 0.72 16.55

Figure 7. Distributions of the bias and RMSE for RF-PWV and C-PWVC1 with respect to the RS data.

cantly larger when the height difference is less than 3.5 km; it
decreases slightly when the height difference exceeds 3.5 km
but still remains around 5 %. In summary, RF-PWV offers
higher vertical correction accuracy and improved stability
across various height differences, demonstrating its strong
applicability at different elevations.

4 Conclusions and outlooks

Modeling accurate PWV vertical corrections benefits PWV
fusion and provides detailed PWV vertical distribution in-
formation for meteorological studies. The complex terrain in
China, characterized by varying climates and frequent water
vapor exchanges, makes it challenging to accurately capture
PWV variations at different heights. Consequently, this pa-
per aims to develop a high-precision vertical PWV correction
grid model. The primary contributions of this research can be
summarized as follows:

1. We establish a PWV vertically corrected grid model
(RF-PWV) with a resolution of 1°× 1° by integrating
RF and monthly averaged hourly PWV data. This model

utilizes RF to estimate the vertical variation in PWV at
each grid point and demonstrates excellent applicabil-
ity within a 6 km height difference. It effectively ap-
proximates PWV vertical changes. Validation against
ERA5 data reveals that RF-PWV reduces the bias and
RMSE by 99.84 % and 63.40 %, respectively, compared
with C-PWVC1. RS validation also shows a reduction
of 96.36 % for the bias and of 5 % for the RMSE com-
pared with C-PWVC1. Furthermore, RF-PWV exhibits
robust resistance to seasonal and height difference inter-
ference.

2. RF is employed to model each grid point (1°× 1°), with
the grid serving to decompose spatial variations and
confine RF within the corresponding grid point. This
simplifies the features of training samples for each grid
point RF, potentially reducing the likelihood of RF get-
ting stuck in a local optimum. Simultaneously, during
training, issues with a particular grid will not impact the
models of other grid points, thereby enhancing model-
ing efficiency. This approach also eliminates concerns
about spatial generalization ability and ensures rela-
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Figure 8. The bias and RMSE each month from RF-PWV and C-PWVC1.

Figure 9. Variation in the bias and RMSE with height differences (a, c) and improvement rates of the absolute values of bias and RMSE (b,
d). It is noted that, in order to obtain PWV values that are uniformly distributed in the height direction, we obtained PWV values with heights
in the range of 0–12 km; when the surface heights of some RS stations are greater than 0 km, their height differences relative to a height of
0 km are less than 0 km.

tively stable accuracy across all grid points, contributing
to the model’s robustness.

Comprehensive validation demonstrates that RF-PWV can
more accurately provide PWV vertical corrections in China
and its surrounding areas. This model holds great potential
for PWV vertical correction and is well suited for deliver-
ing detailed PWV vertical distribution information for multi-
source water vapor fusion and meteorological research. Con-
sequently, this method can be used to develop a globally ap-
plicable vertical correction model with higher accuracy, ben-
efiting a wider range of users.

Code and data availability. Radiosonde data are available from
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