Articles | Volume 17, issue 6
https://doi.org/10.5194/gmd-17-2325-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-2325-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
Centre for Exploration Targeting (School of Earth Sciences), The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
Mineral Exploration Cooperative Research Centre, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
Kim Frankcombe
ExploreGeo, P.O. Box 1191, Wangara DC, 6947 WA, Australia
Taige Liu
ExploreGeo, P.O. Box 1191, Wangara DC, 6947 WA, Australia
Jeremie Giraud
Centre for Exploration Targeting (School of Earth Sciences), The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
Université de Lorraine, CNRS, GeoRessources, 54000 Nancy, France
Roland Martin
Geosciences Environnement Toulouse, CNRS UMR, 5563 Toulouse, France
Mark Jessell
Centre for Exploration Targeting (School of Earth Sciences), The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
Mineral Exploration Cooperative Research Centre, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
Related authors
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jérémie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 3355–3380, https://doi.org/10.5194/tc-19-3355-2025, https://doi.org/10.5194/tc-19-3355-2025, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent and within these ice shelf cavities, using measurements of the Earth's gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Vitaliy Ogarko and Mark Jessell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1294, https://doi.org/10.5194/egusphere-2025-1294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a new method to reconstruct underground rock layers from drillhole data, using an advanced algorithm to ensure geologically realistic results. By combining data from multiple drillholes, our approach reduces uncertainty and improves accuracy. Tested on South Australian data, it successfully predicted stratigraphy and highlighted ways to enhance data quality. This innovation makes geological analysis more reliable, aiding exploration and resource management.
Mark Douglas Lindsay, Vitaliy Ogarko, Jeremie Giraud, and Mosayeb Khademi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3754, https://doi.org/10.5194/egusphere-2024-3754, 2025
Preprint archived
Short summary
Short summary
Geophysical data is used to understand the Earth's structure. Geophysical inversion is an optimisation technique that constructs a model of the Earth using geophysical data. Inversion is complex and requires constraints to produce a plausible model. Overfitting is a disadvantageous effect that can affect techniques that rely on optimisation. A new feature in an inversion platform reduces overfitting by informing inversion of spatial uncertainty contained within the geophysical data.
Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng
Geosci. Model Dev., 17, 957–973, https://doi.org/10.5194/gmd-17-957-2024, https://doi.org/10.5194/gmd-17-957-2024, 2024
Short summary
Short summary
This study proposes a semi-supervised learning algorithm using pseudo-labels for 3D geological modelling. We establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang and make an uncertainty analysis of this model. The method effectively expands the sample space, which is suitable for geomodelling and uncertainty analysis from boreholes. The modelling results perform well in terms of spatial morphology and geological semantics.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Short summary
To robustly train and test automated methods in the geosciences, we need to have access to large numbers of examples where we know
the answer. We present a suite of synthetic 3D geological models with their gravity and magnetic responses that allow researchers to test their methods on a whole range of geologically plausible models, thus overcoming one of the fundamental limitations of automation studies.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Mahtab Rashidifard, Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 12, 2387–2406, https://doi.org/10.5194/se-12-2387-2021, https://doi.org/10.5194/se-12-2387-2021, 2021
Short summary
Short summary
One motivation for this study is to develop a workflow that enables the integration of geophysical datasets with different coverages that are quite common in exploration geophysics. We have utilized a level set approach to achieve this goal. The utilized technique parameterizes the subsurface in the same fashion as geological models. Our results indicate that the approach is capable of integrating information from seismic data in 2D to guide the 3D inversion results of the gravity data.
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jérémie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 3355–3380, https://doi.org/10.5194/tc-19-3355-2025, https://doi.org/10.5194/tc-19-3355-2025, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent and within these ice shelf cavities, using measurements of the Earth's gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Vitaliy Ogarko and Mark Jessell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1294, https://doi.org/10.5194/egusphere-2025-1294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a new method to reconstruct underground rock layers from drillhole data, using an advanced algorithm to ensure geologically realistic results. By combining data from multiple drillholes, our approach reduces uncertainty and improves accuracy. Tested on South Australian data, it successfully predicted stratigraphy and highlighted ways to enhance data quality. This innovation makes geological analysis more reliable, aiding exploration and resource management.
Mark Douglas Lindsay, Vitaliy Ogarko, Jeremie Giraud, and Mosayeb Khademi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3754, https://doi.org/10.5194/egusphere-2024-3754, 2025
Preprint archived
Short summary
Short summary
Geophysical data is used to understand the Earth's structure. Geophysical inversion is an optimisation technique that constructs a model of the Earth using geophysical data. Inversion is complex and requires constraints to produce a plausible model. Overfitting is a disadvantageous effect that can affect techniques that rely on optimisation. A new feature in an inversion platform reduces overfitting by informing inversion of spatial uncertainty contained within the geophysical data.
Léonard Moracchini, Guillaume Pirot, Kerry Bardot, Mark W. Jessell, and James L. McCallum
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-154, https://doi.org/10.5194/gmd-2024-154, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
To facilitate the exploration of alternative hydrogeological scenarios, we propose to approximate costly physical simulations of contaminant transport by more affordable shortest distances computations. It enables to accept or reject scenarios within a predefined confidence interval. In particular, it can allow to estimate the probability of a fault acting as a preferential path or a barrier.
Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng
Geosci. Model Dev., 17, 957–973, https://doi.org/10.5194/gmd-17-957-2024, https://doi.org/10.5194/gmd-17-957-2024, 2024
Short summary
Short summary
This study proposes a semi-supervised learning algorithm using pseudo-labels for 3D geological modelling. We establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang and make an uncertainty analysis of this model. The method effectively expands the sample space, which is suitable for geomodelling and uncertainty analysis from boreholes. The modelling results perform well in terms of spatial morphology and geological semantics.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022, https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Short summary
Results of a survey launched among practitioners in the mineral industry show that despite recognising the importance of uncertainty quantification it is not very well performed due to lack of data, time requirements, poor tracking of interpretations and relative complexity of uncertainty quantification. To alleviate the latter, we provide an open-source set of local and global indicators to measure geological uncertainty among an ensemble of geological models.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Short summary
To robustly train and test automated methods in the geosciences, we need to have access to large numbers of examples where we know
the answer. We present a suite of synthetic 3D geological models with their gravity and magnetic responses that allow researchers to test their methods on a whole range of geologically plausible models, thus overcoming one of the fundamental limitations of automation studies.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Mahtab Rashidifard, Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 12, 2387–2406, https://doi.org/10.5194/se-12-2387-2021, https://doi.org/10.5194/se-12-2387-2021, 2021
Short summary
Short summary
One motivation for this study is to develop a workflow that enables the integration of geophysical datasets with different coverages that are quite common in exploration geophysics. We have utilized a level set approach to achieve this goal. The utilized technique parameterizes the subsurface in the same fashion as geological models. Our results indicate that the approach is capable of integrating information from seismic data in 2D to guide the 3D inversion results of the gravity data.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Cited articles
Banaszczyk, S., Dentith, M., and Wallace, Y.: Constrained Magnetic Modelling of the Wallaby Gold Deposit, Western Australia, ASEG Extended Abstracts, 2015, 1–4, https://doi.org/10.1071/ASEG2015ab290, 2015.
Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Society for Industrial and Applied Mathematics, https://doi.org/10.1137/1.9781611971538, 1994.
Bhattacharyya, B. K.: MAGNETIC ANOMALIES DUE TO PRISM-SHAPED BODIES WITH ARBITRARY POLARIZATION, GEOPHYSICS, 29, 517–531, https://doi.org/10.1190/1.1439386, 1964.
Buluc, A. and Gilbert, J. R.: On the representation and multiplication of hypersparse matrices, in: 2008 IEEE International Symposium on Parallel and Distributed Processing, Miami, FL, USA, 14–18 April 2008, 1–11, https://doi.org/10.1109/IPDPS.2008.4536313, 2008.
Buluç, A., Fineman, J. T., Frigo, M., Gilbert, J. R., and Leiserson, C. E.: Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks, in: Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures, Calgary, AB, Canada, 11–13 August 2009, 233–244, https://doi.org/10.1145/1583991.1584053, 2009.
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., and Oldenburg, D. W.: SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications, Comput. Geosci., 85, 142–154, https://doi.org/10.1016/j.cageo.2015.09.015, 2015.
Coggon, J.: Magnetism — key to the Wallaby gold deposit, Explor. Geophys., 34, 125–130, https://doi.org/10.1071/EG03125, 2003.
Elllis, R. G., de Wet, B., and Macleod, I. N.: Inversion of Magnetic Data from Remanent and Induced Sources, ASEG Extended Abstracts, 2012, 1–4, https://doi.org/10.1071/ASEG2012ab117, 2012.
Frankcombe, K.: Magnetics in the mountains: An approximation for the magnetic response from topography, Preview, 2020, 34–44, https://doi.org/10.1080/14432471.2020.1773235, 2020.
Gidley, P. R.: The Geophysics of the Trough Tank Gold-Copper Prospect, Australia, Explor. Geophys., 19, 76–78, https://doi.org/10.1071/EG988076, 1988.
Giraud, J., Lindsay, M., Ogarko, V., Jessell, M., Martin, R., and Pakyuz-Charrier, E.: Integration of geoscientific uncertainty into geophysical inversion by means of local gradient regularization, Solid Earth, 10, 193–210, https://doi.org/10.5194/se-10-193-2019, 2019a.
Giraud, J., Ogarko, V., Lindsay, M., Pakyuz-Charrier, E., Jessell, M., and Martin, R.: Sensitivity of constrained joint inversions to geological and petrophysical input data uncertainties with posterior geological analysis, Geophys. J. Int., 218, 666–688, https://doi.org/10.1093/gji/ggz152, 2019b.
Giraud, J., Lindsay, M., Jessell, M., and Ogarko, V.: Towards plausible lithological classification from geophysical inversion: honouring geological principles in subsurface imaging, Solid Earth, 11, 419–436, https://doi.org/10.5194/se-11-419-2020, 2020.
Giraud, J., Ogarko, V., Martin, R., Jessell, M., and Lindsay, M.: Structural, petrophysical, and geological constraints in potential field inversion using the Tomofast-x v1.0 open-source code, Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, 2021.
Giraud, J., Caumon, G., Grose, L., Ogarko, V., and Cupillard, P.: Integration of automatic implicit geological modelling in deterministic geophysical inversion, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-129, 2023a.
Giraud, J., Seillé, H., Lindsay, M. D., Visser, G., Ogarko, V., and Jessell, M. W.: Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application, Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, 2023b.
Goodwin, J. A., Lane, R. J. L.: The North Australian Craton 3D Gravity and Magnetic Inversion Models – A trial for first pass modelling of the entire Australian continent, RECORD 2021/033, Geoscience Australia, Canberra, https://doi.org/10.11636/Record.2021.033, 2021.
Jessell, M.: Three-dimensional geological modelling of potential-field data, Comput. Geosci., 27, 455–465, https://doi.org/10.1016/S0098-3004(00)00142-4, 2001.
Li, Y. and Oldenburg, D. W.: 3-D inversion of magnetic data, GEOPHYSICS, 61, 394–408, https://doi.org/10.1190/1.1443968, 1996a.
Li, Y. and Oldenburg, D. W.: Joint inversion of surface and three-component borehole magnetic data, SEG Technical Program Expanded Abstracts 1996, 1142–1145, https://doi.org/10.1190/1.1826293, 1996b.
Li, Y. and Oldenburg, D. W.: 3-D inversion of gravity data, GEOPHYSICS, 63, 109–119, https://doi.org/10.1190/1.1444302, 1998.
Li, Y. and Oldenburg, D. W.: Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method, Geophys. J. Int., 152, 251–265, https://doi.org/10.1046/j.1365-246X.2003.01766.x, 2003.
Liu, S., Hu, X., Zhang, H., Geng, M., and Zuo, B.: 3D Magnetization Vector Inversion of Magnetic Data: Improving and Comparing Methods, Pure Appl. Geophys., 174, 4421–4444, https://doi.org/10.1007/s00024-017-1654-3, 2017.
Markus, A.: Modern Fortran in Practice, Cambridge University Press, https://doi.org/10.1017/CBO9781139084796, 2012.
Martin, R., Monteiller, V., Komatitsch, D., Perrouty, S., Jessell, M., Bonvalot, S., and Lindsay, M.: Gravity inversion using wavelet-based compression on parallel hybrid CPU/GPU systems: application to southwest Ghana, Geophys. J. Int., 195, 1594–1619, https://doi.org/10.1093/gji/ggt334, 2013.
Martin, R., Ogarko, V., Komatitsch, D., and Jessell, M.: Parallel three-dimensional electrical capacitance data imaging using a nonlinear inversion algorithm and norm-based model regularization, Measurement, 128, 428–445, https://doi.org/10.1016/j.measurement.2018.05.099, 2018.
Martin, R., Giraud, J., Ogarko, V., Chevrot, S., Beller, S., Gégout, P., and Jessell, M.: Three-dimensional gravity anomaly data inversion in the Pyrenees using compressional seismic velocity model as structural similarity constraints, Geophys. J. Int., 225, 1063–1085, https://doi.org/10.1093/gji/ggaa414, 2021.
Nettleton, L. L.: GRAVITY AND MAGNETIC CALCULATIONS, GEOPHYSICS, 7, 293–310, https://doi.org/10.1190/1.1445015, 1942.
Ogarko, V., Giraud, J., Martin, R., and Jessell, M.: Disjoint interval bound constraints using the alternating direction method of multipliers for geologically constrained inversion: Application to gravity data, GEOPHYSICS, 86, G1–G11, https://doi.org/10.1190/geo2019-0633.1, 2021.
Ogarko, V., Frankcombe, K., and Liu, T.: Callisto and Synthetic400 inversion data sets, Zenodo [data set], https://doi.org/10.5281/zenodo.8397794, 2023a.
Ogarko, V., Frankcombe, K., Liu, T., Giraud, J., Martin, R., and Jessell, M.: Tomofast-x 2.0 inversion source code, Zenodo [code], https://doi.org/10.5281/zenodo.8397948, 2023b.
Özgü Arısoy, M. and Dikmen, Ü.: Potensoft: MATLAB-based software for potential field data processing, modeling and mapping, Comput. Geosci., 37, 935–942, https://doi.org/10.1016/j.cageo.2011.02.008, 2011.
Paige, C. C. and Saunders, M. A.: LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares, ACM T. Math. Software, 8, 43–71, https://doi.org/10.1145/355984.355989, 1982.
Pears, G., Reid, J., Chalke, T., Tschirhart, V., and Thomas, M. D.: Advances in geologically constrained modelling and inversion strategies to drive integrated interpretation in mineral exploration, in: Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration, edited by: Tschirhart, V. and Thomas, M. D., 221–238, 2017.
Vallabh Sharma, P.: Rapid computation of magnetic anomalies and demagnetization effects caused by bodies of arbitrary shape, Pure Appl. Geophys., 64, 89–109, https://doi.org/10.1007/BF00875535, 1966.
Short summary
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code...