Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-191-2024
https://doi.org/10.5194/gmd-17-191-2024
Development and technical paper
 | 
11 Jan 2024
Development and technical paper |  | 11 Jan 2024

Global Downscaled Projections for Climate Impacts Research (GDPCIR): preserving quantile trends for modeling future climate impacts

Diana R. Gergel, Steven B. Malevich, Kelly E. McCusker, Emile Tenezakis, Michael T. Delgado, Meredith A. Fish, and Robert E. Kopp

Related authors

The Variable Infiltration Capacity model version 5 (VIC-5): infrastructure improvements for new applications and reproducibility
Joseph J. Hamman, Bart Nijssen, Theodore J. Bohn, Diana R. Gergel, and Yixin Mao
Geosci. Model Dev., 11, 3481–3496, https://doi.org/10.5194/gmd-11-3481-2018,https://doi.org/10.5194/gmd-11-3481-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024,https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Architectural insights into and training methodology optimization of Pangu-Weather
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024,https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Evaluation of global fire simulations in CMIP6 Earth system models
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024,https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Evaluating downscaled products with expected hydroclimatic co-variances
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024,https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Software sustainability of global impact models
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024,https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary

Cited articles

Abernathey, R. P., Augspurger, T., Banihirwe, A., Blackmon-Luca, C. C., Crone, T. J., Gentemann, C. L., Hamman, J. J., Henderson, N., Lepore, C., McCaie, T. A., Robinson, N. H., and Signell, R. P.: Cloud-Native Repositories for Big Scientific Data, Comput. Sci. Eng., 23, 26–35, https://doi.org/10.1109/MCSE.2021.3059437, 2021. a
Agbazo, M. N. and Grenier, P.: Characterizing and avoiding physical inconsistency generated by the application of univariate quantile mapping on daily minimum and maximum temperatures over Hudson Bay, Int. J. Climatol., 40, 3868–3884, https://doi.org/10.1002/joc.6432, 2020. a
Bennett, A. R., Hamman, J. J., and Nijssen, B.: MetSim: A Python package for estimation and disaggregation of meteorological data, Journal of Open Source Software, 5, 2042, https://doi.org/10.21105/joss.02042, 2020. a
Bürger, G., Murdock, T. Q., Werner, A. T., Sobie, S. R., and Cannon, A. J.: Downscaling Extremes – An Intercomparison of Multiple Statistical Methods for Present Climate, J. Climate, 25, 4366–4388, https://doi.org/10.1175/JCLI-D-11-00408.1, 2012. a, b
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018. a, b
Download
Short summary
The freely available Global Downscaled Projections for Climate Impacts Research (GDPCIR) dataset gives researchers a new tool for studying how future climate will evolve at a local or regional level, corresponding to the latest global climate model simulations prepared as part of the UN Intergovernmental Panel on Climate Change’s Sixth Assessment Report. Those simulations represent an enormous advance in quality, detail, and scope that GDPCIR translates to the local level.