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Abstract. Global climate models (GCMs) are important
tools for understanding the climate system and how it is pro-
jected to evolve under scenario-driven emissions pathways.
Their output is widely used in climate impacts research for
modeling the current and future effects of climate change.
However, climate model output remains coarse in relation to
the high-resolution climate data needed for climate impacts
studies, and it also exhibits biases relative to observational
data. Treatment of the distribution tails is a key challenge in
existing bias-adjusted and downscaled climate datasets avail-
able at a global scale; many of these datasets used quan-
tile mapping techniques that were known to dampen or am-
plify trends in the tails. In this study, we apply the Quantile
Delta Mapping (QDM) method (Cannon et al., 2015) for bias
adjustment. After bias adjustment, we apply a new spatial
downscaling method called Quantile-Preserving Localized-
Analog Downscaling (QPLAD), which is designed to pre-
serve trends in the distribution tails. Both methods are inte-
grated into a transparent and reproducible software pipeline,
which we apply to global, daily GCM surface variable out-
puts (maximum and minimum temperature and total precip-
itation) from the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experiments (O’Neill et al., 2016) for
the historical experiment and four future emissions scenar-
ios ranging from aggressive mitigation to no mitigation,
namely SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Ri-

ahi et al., 2017). We use the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERAS5 (Hersbach et al.,
2020) temperature and precipitation reanalysis as the refer-
ence dataset over the Intergovernmental Panel on Climate
Change (IPCC) Sixth Assessment Report (AR6) reference
period of 1995-2014. We produce bias-adjusted and down-
scaled data over the historical period (1950-2014) and the
future emissions pathways (2015-2100) for 25 GCMs in to-
tal. The output dataset is the Global Downscaled Projec-
tions for Climate Impacts Research (GDPCIR), a global,
daily, 0.25° horizontal-resolution product which is publicly
available and hosted on Microsoft Al for Earth’s Planetary
Computer (https://planetarycomputer.microsoft.com/dataset/
group/cil-gdpcir/, last access: 23 October 2023).

1 Introduction

Global climate models (GCMs) are essential for studying the
climate system and how it will evolve in the future. Sim-
ulations from the Coupled Model Intercomparison Project
(CMIP) are widely used in climate impact studies, explor-
ing human health (e.g., Carleton et al., 2022), energy (e.g.,
Rode et al., 2021), labor productivity (e.g., Parsons et al.,
2022), agriculture crop yields (e.g., Miiller et al., 2021), and
the impacts of climate change on gross domestic product
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(GDP) losses globally (e.g., Warren et al., 2021). However,
despite progress in climate modeling, GCM simulations of-
ten exhibit systematic error (bias) relative to observations
(Francgois et al., 2020) due to the coarse spatiotemporal res-
olution, simplified physics, thermodynamic schemes, and in-
complete and/or poorly understood representation of climate
system processes (Sillmann et al., 2013). GCM simulations,
relative to historical observations, can have large errors in
their means and variance and even larger biases in extreme
values (Cannon et al., 2015). These biases are challenging
to impacts studies examining the future evolution of local
climate impacts. This challenge is magnified when trying
to understand how a particular climate signal will affect a
given outcome; for example, how changes in extreme tem-
peratures will affect mortality rates in a location. To explore
these questions, it is necessary to have high-resolution cli-
mate projections for multiple emissions pathways with a sta-
tistical distribution consistent with historical observations.
To fill this need for climate impact assessments, statis-
tical bias adjustment (BA) and downscaling methods have
been applied to reduce biases and add high-resolution spa-
tial information to GCM simulations (Pierce et al., 2015).
BA methods adjust the difference in statistical properties be-
tween model simulations and observations or reanalysis data.
Methods vary widely in complexity, from simpler parametric
methods that operate only on the mean or the mean and vari-
ance to trend-preserving methods (Casanueva et al., 2020;
Tturbide et al., 2022; Maraun and Widmann, 2018; Rity et al.,
2014). Other BA methods have been developed and applied
extensively as well, such as the cumulative distribution func-
tion transform (CDF-t) (e.g., Michelangeli et al., 2009) and
equidistant quantile mapping (e.g., Li et al., 2010; Déqué,
2007), and compared with other methods over Europe in the
VALUE experiment (Gutiérrez et al., 2019). A key result
from the VALUE study was that the time window used in
calibration was one of the most influential factors. Generally,
quantile mapping (QM) methods have been widely used in
climate impacts studies and particularly at the global scale
due to their lower computational expense relative to other
methods (Pierce et al., 2015). A parametric quantile map-
ping approach that only corrects for the mean and variance,
the Bias Correction Spatial Disaggregation (BCSD) method,
was used, for example, in the popular NASA Earth eXchange
(NEX) Global Daily Downscaled Projections (GDDP) global
daily CMIP5 dataset (Thrasher et al., 2012). However, QM
methods that operate only on the mean, such as BCSD, may
affect trends in high (and low) quantiles differently than
trends in the mean, often degrading results at the distribution
tails (Maurer and Pierce, 2014; Lehner et al., 2021; Holthui-
jzen et al., 2022; Sanabria et al., 2022; Lanzante et al., 2020).
To mitigate this, QM approaches that are trend-preserving
in the quantiles have been developed (e.g., Casanueva et al.,
2020, and references therein). A key example of these meth-
ods — and the bias adjustment method we apply in this study
— is the Quantile Delta Mapping (QDM) method (Cannon
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et al., 2015). Moreover, Lehner et al. (2023) found that QDM
was one of the best-performing BA methods for represent-
ing changes in threshold metrics. Other studies have also
supported the need for trend-preserving methods (e.g., Qian
and Chang, 2021) to better represent the temperature ex-
tremes that have the most severe impacts. Although gen-
erally trend-preserving methods have been found to better
preserve the climate change signal for climate change im-
pacts indices, they also rely heavily on the observations or
reanalysis dataset used for reference (Casanueva et al., 2020),
and there is not a consensus in the literature that trend-
preserving methods necessarily perform better for climate
extremes such as threshold-based indices (Iturbide et al.,
2022). An additional question also worthy of mention and
subject to extensive debate is whether or not the climate sig-
nal from the GCMs should even be preserved, as the future
signal is of course not known (Pierce et al., 2015). However,
notwithstanding this uncertainty, one of our key goals in de-
signing this study was to preserve trends for moderate to ex-
treme climate indices, and Casanueva et al. (2020) found that
QDM in particular performed better in preserving trends for
these indices.

Statistical downscaling faces similar challenges to BA
methods (Cannon et al., 2020). Because of these challenges,
many studies in the impacts literature stop short of downscal-
ing (Maraun, 2016). Notwithstanding, several CMIP6 bias-
adjusted and downscaled datasets produced in the past few
years have attempted to address these issues, but they have
either been limited in geographic scope (e.g., Supharatid
et al., 2022), global but at a coarse spatial resolution (e.g.,
Xu et al., 2021), or global but preserving only mean trends
(e.g., Thrasher et al., 2021). Jupiter Intelligence (https://
jupiterintel.com/, last access: 25 July 2023), a private sector
company focused on climate risk, has made a bias-adjusted
CMIP6 dataset available for commercial applications; how-
ever, its methods have not been published, and the dataset
is not publicly available (Hacker, 2021). The Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) CMIP6
downscaled dataset (the latest version of ISIMIP3BASD)
uses a multivariate quantile trend-preserving bias adjustment
method (Cannon, 2018) that is developed at the coarse res-
olution and then statistically downscaled to the final global
0.5° spatial resolution and daily temporal resolution (Lange,
2019, 2021). Downscaled data are available for a larger set
of variables but for a smaller set of GCMs than in this
study. In the past year, NASA released an updated version of
the NASA NEX dataset using CMIP6 projections (Thrasher
et al., 2022). However, the new dataset still relies on the
BCSD method and uses the Global Meteorological Forc-
ing Dataset (GMFD) (Sheffield et al., 2006) as a reference
dataset; this is a reanalysis dataset that is no longer main-
tained and is no longer widely used in bias adjustment and
downscaling (Hassler and Lauer, 2021). CarbonPlan, a not-
for-profit organization focused on climate and carbon cap-
ture research, has also released a global downscaled CMIP6
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dataset using four distinct statistical downscaling methods
with publicly available code (https://docs.carbonplan.org/
cmip6-downscaling, last access: 25 July 2023) at a monthly
resolution and for a subset of six GCMs. These datasets are
key contributions to impacts research, but a gap remains for
a global product that preserves GCM quantile changes and
is available at a high temporal and spatial resolution for a
broad set of CMIP6 GCMs and emissions scenarios. This
study aims to fill that gap.

Consequently, in this study we used the QDM method
(Cannon et al., 2015) for bias adjustment, and for downscal-
ing, we designed the Quantile-Preserving Localized-Analog
Downscaling (QPLAD) method, a statistical downscaling
algorithm that applies a local analog-mapping approach
to preserve quantile trends at the fine resolution. We
explain the method and implementation further below.
We have made the QDM and QPLAD methods and code
transparent and reproducible via tagged code releases
for the full pipeline, which are available via GitHub
(https://github.com/ClimateImpactLab/downscaleCMIP6,
last access: 23 October 2023) and archived via Zenodo
(https://doi.org/10.5281/zenodo.6403794, Malevich et al.,
2022a). The dataset described herein, titled the Global
Downscaled Projections for Climate Impacts Research
(GDPCIR), is, to our knowledge, the most comprehen-
sive and high-resolution dataset that exists for CMIP6
that preserves quantile trends. We hope that the publicly
available and transparent code and pipeline infrastructure
will be helpful for researchers who wish to bias adjust and
downscale additional variables, GCMs, or experiments.
Alternatively, if additional meteorological variables, such
as longwave and shortwave radiation, surface pressure,
and relative and specific humidity are needed for a given
impacts modeling application, or subdaily temperature and
precipitation projections, a meteorological disaggregation
method can be used (Bennett et al., 2020).

The remainder of the paper is structured as follows. In
Sect. 2, we describe the climate simulations and reference
dataset. In Sect. 3, we describe the QDM-QPLAD bias ad-
justment and downscaling methods. Section 4 describes our
downscaling pipeline and efforts to make its implementa-
tion on commercial cloud-computing platforms transparent
and reproducible. In Sect. 5, we explore trends and quan-
tile changes in the dataset at the global, city, and “adminl”
(country) levels.

2 Climate data
2.1 Simulation data

We used the CMIP6 historical and Scenario Model In-
tercomparison Project (ScenarioMIP) experiments (Eyring
et al.,, 2016; O’Neill et al., 2016) as simulation data, as
obtained from the Google Cloud CMIP6 collection (https:
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/lpangeo-data.github.io/pangeo-cmip6-cloud/, last access: 1
May 2022). This contains a subset of CMIP6 output mi-
grated from the Earth System Grid Federation (ESGF) as part
of a collaboration between the Pangeo Consortium (https:
/lpangeo.io/, last access: 25 July 2023), Lamont—Doherty
Earth Observatory (LDEO), and Google Cloud. The mi-
gration to Google Cloud included converting data from
the NetCDF format (https://www.unidata.ucar.edu/software/
netcdf/, last access: 28 December 2022) to the cloud-
optimized Zarr store format (https://zarr.readthedocs.io/en/
stable/api/storage.html, last access: 28 December 2022) and
standardizing across dimensions, coordinates, and grids to
ensure that GCM output would be analysis-ready and cloud-
hosted for streamlined use in scientific analysis (Abernathey
et al., 2021). CMIP6 GCMs available through the ESGF but
not in the CMIP6 Google Cloud collection were excluded
because they were not analysis-ready and cloud-optimized
and, as such, could not run through our cloud-based down-
scaling pipeline. We also excluded GCMs included in the
CMIP6 Google Cloud collection for which daily output was
not available or other issues were found. Similarly, if a Sce-
narioMIP experiment is missing for a given GCM then that
indicates that it was either not available in the CMIP6 Google
Cloud collection or issues with the available data were found.
Table B1 lists all GCMs with ScenarioMIP and CMIP exper-
iment output participating in CMIP6 and details why certain
GCMs were excluded. The GCMs included in the GDPCIR
dataset provide broad coverage across the spread of CMIP6
models, including GCMs with high equilibrium climate sen-
sitivity (ECS), such as CanESMS5, HadGEM3-GC31-LL, and
UKESM1-0-LL, and those with low ECS, such as INM-
CM4-8 and INM-CM5-0 (Meehl et al., 2020).

In addition to the last 65 years of the historical CMIP ex-
periment, we included four 21st century ScenarioMIP ex-
periments so as to span a range of possible future climate
trajectories. These trajectories are defined by a combination
of Shared Socioeconomic Pathways (SSPs) and Represen-
tative Concentration Pathways (RCPs), namely SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Riahi et al., 2017), and
make up the “Tier 17, or top priority, experiments in CMIP6.
For each GCM, we select a single ensemble member. When
it was available in the Google Cloud (GC) CMIP6 collec-
tion, we used the rlilplfl ensemble member (also called
the variant ID), where “r” refers to the realization (or en-
semble member), “i” refers to the initialization method, “p”
refers to the physics scheme used in the simulation, and “f”
refers to forcing data configuration. Table 1 lists the ensem-
ble members for each GCM that we included, and Table B1
contains more detailed information as well. We did not in-
clude simulations that had output populated with undefined
values for some years or did not have complete spatiotem-
poral coverage. For example, the HAMMOZ-Consortium
GCM is not included because its temperature output avail-
able through the Google Cloud CMIP6 collection did not ex-
tend past 2055. We also did not include the Community Earth
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System Model from the National Center for Atmospheric
Research (NCAR) because there was no daily surface vari-
able output available through NCAR for the historical exper-
iment. A full list of reasons why some GCMs were excluded
for quality control can be found in Table B1. We perform
bias adjustment and downscaling on a subset of the histor-
ical CMIP experiment (1950-2014) and ScenarioMIP sim-
ulations (2015-2100), with a historical training period from
1995 to 2014, consistent with the Intergovernmental Panel on
Climate Change (IPCC) Sixth Assessment Report (AR6) ref-
erence period. The full dataset includes 25 GCMs (Table 1),
with downscaled output for all four SSPs available for the
majority of those GCMs.

We standardize calendars across all GCMs included in the
dataset by converting them to a 365d (e.g., “no leap”) cal-
endar. Leap days are removed for GCMs with 366d cal-
endars. For the two GCMs on 360d calendars (the Hadley
Centre models), we follow the method in the downscaled
CMIP5 Localized Constructed Analogs (LOCA) dataset
(Pierce et al., 2014) described on the LOCA website (Pierce,
2021). There are 5d per year that are chosen randomly to
add to the calendar, each in a given fifth of the year. The date
of 29 February is always missing. For each of the days that
are added, a day value is produced by averaging the adjacent
days. For example, if 16 February is the day added in the first
fifth of the year for a given year, then it will be the average
of 15 and 17 February. Choosing a random day in a fifth of
the year versus the same 5d every year mitigates the over-
all undesired effects on the statistics of particular days of the
year or annual cycle statistics when converting from a 360 to
365 d calendar.

2.2 Reference data

We use the European Centre for Medium-Range Weather
Forecasting (ECMWF) Reanalysis v5 (ERAS5) as the his-
torical reference dataset for bias adjustment and downscal-
ing (Hersbach et al., 2018, 2020). While there are short-
comings for any reanalysis dataset, our goal was to select
a reference dataset that performed well in comparison to ob-
servations and other reanalysis datasets, particularly for ex-
treme temperatures and precipitation in highly populated ar-
eas. Sheridan et al. (2020) compared observed extreme tem-
perature days in the United States and Canada to three re-
analysis products and found that ERAS matched the station
data most closely, even in comparison to its higher-resolution
counterpart, ERAS5-Land. Other studies (e.g., Mistry et al.,
2022; McNicholl et al., 2022) compared ERAS tempera-
tures globally to station observations and found that it per-
formed well, with some reduced performance in tropical ar-
eas. Similar biases for precipitation in the tropics have also
been noted; Hassler and Lauer (2021) and Tarek et al. (2020)
found that ERAS overestimated precipitation rates over the
Atlantic Ocean and Indian Ocean. Nevertheless, the bias in
ERAS was lower than in other reanalyses products.
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In addition to the performance of ERAS in relation to other
reanalysis datasets, it is also operationally maintained in
near-real time by ECMWE, cloud-optimized, and available as
a Zarr store from Google Cloud and Amazon Web Services
(AWS). ERAS reanalysis data are produced and archived on
a reduced Gaussian grid with a resolution of N320, meaning
that there are 320 quasi-regularly spaced latitude points, from
pole to Equator, at a 31 km (0.28°) resolution. We obtained
global, hourly temperature and precipitation estimates from
1979 through 2018 on a regular (latitude-longitude) Gaus-
sian grid at the same resolution to minimize the impact of in-
terpolation from the Copernicus Data Service regridder, par-
ticularly on precipitation. We derived daily maximum and
minimum temperatures by taking the daily maximum and
minimum of the hourly values and total daily precipitation by
taking the sum of hourly values. ERAS hourly precipitation
values represent cumulative precipitation during the preced-
ing hour; thus, cumulative daily precipitation for a given day
is the sum of hourly values minus the first hour and includ-
ing the first hour of the following day. We then subsetted the
ERAS daily surface variables to 1995-2014 to be consistent
with the historical reference period used in Masson-Delmotte
et al. (2021). Finally, we removed leap days. We used the re-
sulting 20-year ERAS dataset as the historical reference data
for bias adjustment and downscaling.

3 Methods
3.1 Statistical bias adjustment with the QDM method

In this study, our goal was to emphasize downscaling and
bias adjustment methods that better preserve the high tails of
distributions but within the constraints of the level of method
complexity that could be undertaken given the scale of this
project. Though some multivariate statistical methods might
have better preserved joint correlations between variables,
such as multivariate bias adjustment (Cannon, 2018), the
computational intensity of even running a univariate method
at this scale precluded the choice of a multivariate method.
Some studies have also found that multivariate methods may
lead to degraded results for one or more variables (e.g., tem-
perature) that are being jointly bias-adjusted and/or down-
scaled and also may perform poorly under projected climate
change due to bias nonstationarity (Van de Velde et al., 2022;
Francois et al., 2020). Choosing a method that would not de-
grade temperature projections was necessary, given the role
of temperature as a key driver of future climate impacts.
With these constraints in mind, and after evaluating a num-
ber of statistical methods and their effects on the distribu-
tion tails, we chose the QDM method. The QDM method
preserves model-projected trends in quantiles by applying
simulated changes in the quantiles on top of the histori-
cal reference distribution (Cannon et al., 2015). Absolute
changes or relative changes are preserved for additive or
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Table 1. Full list of Coupled Model Intercomparison Project (CMIP6) GCMs included in the GDPCIR dataset, along with their corresponding

institutions and the available SSPs for each GCM.

GCM Institution Ensemble member SSPs
SSP1-2.6  SSP2-4.5 SSP3-7.0 SSP5-8.5

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organisa- rlilplfl v v v X
tion, Aspendale, Victoria, Australia

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisa- rlilplfl X v v X
tion, Aspendale, Victoria, Australia

BCC-CSM2-MR Beijing Climate Center, Beijing, China rlilplfl v v v v

CanESMS5 Canadian Centre for Climate Modelling and Analysis, Victoria, rlilplfl v v v v
BC, Canada

CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Cli- rlilplfl v v v v
matici, Lecce, Italy

CMCC-ESM2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Cli- rlilplfl v v v v
matici, Lecce, Italy

EC-Earth3 EC-Earth consortium rlilplfl v v v v

EC-Earth3-AerChem  EC-Earth consortium rlilplfl X X v X

EC-Earth3-CC EC-Earth consortium rlilplfl X v X v

EC-Earth3-Veg EC-Earth consortium rlilplfl v v v v

EC-Earth3-Veg-LR EC-Earth consortium rlilplfl v v v v

FGOALS-g3 Chinese Academy of Sciences, Beijing, China rlilplfl v v v v

GFDL-CM4 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ,  rlilplfl X v X v
USA

GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ,  rlilp1fl v v v v
USA

HadGEM3-GC31-LL  Met Office Hadley Centre, Exeter, Devon, UK rlilplf3 v v X v

INM-CM4-8 Russian Academy of Sciences, Moscow, Russia rlilplfl v v v v

INM-CMS5-0 Russian Academy of Sciences, Moscow, Russia rlilplfl v v v v

MPI-ESM1-2-HR Deutscher Wetterdienst, Offenbach am Main, Germany rlilplfl v X X v

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Hamburg, Germany rlilplfl v v v v

MIROC-ES2L Japan Agency for Marine-Earth Science and Technology, rlilplfl v v v v
Kanagawa, Japan

MIROC6 Japan Agency for Marine-Earth Science and Technology, rlilplfl v v v v
Kanagawa, Japan

NESM3 Nanjing University of Information Science and Technology, rlilplfl v v X v
Nanjing, China

NorESM2-LM NorESM Climate modeling Consortium, Oslo, Norway rlilplfl v v v v

NorESM2-MM NorESM Climate modeling Consortium, Oslo, Norway rlilplfl v v v v

UKESM1-0-LL Met Office Hadley Centre, Exeter, Devon, UK rlilplf2 v v v v

multiplicative variables, respectively. As a result, treatment
of the tails is improved over other forms of quantile map-
ping such as empirical quantile mapping (EQM), detrended
quantile mapping (DQM), and various parametric and non-
parametric variants of each (Qian and Chang, 2021). A lim-
itation of the method, however, is that it is highly sensi-
tive to the choice of reference dataset, especially for pre-
cipitation, and extreme temperature and precipitation indices
(Casanueva et al., 2020). As a result, the biases in the refer-
ence data presented in Sect. 2.2 are transferred to the bias-
adjusted and downscaled dataset, which is a limitation of the
final dataset. Results presented here should be taken in that
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context. Nonetheless, its performance at the tails and rela-
tively inexpensive compute footprint in comparison to mul-
tivariate quantile mapping or machine-learning-based meth-
ods makes it a favorable method choice for a project of this
scope and aim.

The QDM method adjusts the bias in projected values
for a historical or future time period by first shifting the
distribution to be consistent with the reference dataset and
then imposing the relative model-projected trend, resulting
in a bias-adjusted projection that has a distribution consis-
tent with that of the reference dataset and also has a relative
trend consistent with the source model for a given quantile.

Geosci. Model Dev., 17, 191-227, 2024
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In detail, following the notation in Cannon et al. (2015), let
Fu.pl-], Fmnl-], and F, 5[-] denote, respectively, the CDF
from model m in future period p, the CDF from model
m in the historical period &, and the CDF from the refer-
ence data o in the historical period &. Let x;, , be a mod-
eled future value at time ¢ (for example, maximum temper-
ature on 13 March 2025), and let x,’,’; » be the associated ad-
justed value for the same future date. In addition, let 7, ,
denote the non-exceedance probability associated with x;, p;
Le., Ty, p = Fn,p[xm, pl- F1 represents the inverse CDF.
The adjusted value is defined as follows for an additive vari-
able:

x;’:,p(t) :xm,p(t) + (Foté[fln,p(t)] - Fr;}h[fm,p(t)]) (D

Rearranging the right-hand side shows that Eq. (1) is equiv-
alent to introducing the model-projected change at a given
quantile (7, p) on top of the reference data value at that quan-
tile.

-1
F(,,h [Tm,p(t)]
—_—
reference value at model quantile

+ @, p (1) = Fyy [T, p(D]) )

model trend in quantile

x,’;,p(t) =

For a multiplicative variable such as precipitation, the right-
hand side in Egs. (1) and (2) becomes multiplicative rather
than additive; i.e., Eq. (1) becomes xj,;’p(t) =X, p(t) *
F(:,{[tm,p(t)]/FW_l,h[rm,p(t)]. This results in model projec-
tions that preserve each model’s change in distribution shape
(including high and low quantiles), while simultaneously
making the training period distribution consistent with the
reference dataset.

3.2 Statistical trend-preserving downscaling with the
QPLAD method

A key goal of downscaling for climate impacts is increas-
ing the spatial resolution in a way that both preserves climate
trends and introduces realistic local climatology and variabil-
ity. In observations, the climate signal at a coarser scale will
always — by definition — represent a smoothed version of lo-
cal climate trends. Similarly, high-resolution climate projec-
tions need to have a distribution that is consistent with the lo-
cally observed climate. Downscaling may break consistency
with the original GCM dynamics, but this is necessary to pro-
duce the spatial heterogeneity required for modeling climate
impacts (Maraun and Widmann, 2018). Downscaling meth-
ods typically work by introducing the climatological fine ref-
erence spatial pattern to the coarse-resolution simulated data
as a difference or ratio between fine and coarse. This can have
the effect of modifying trends and spatial patterns in the tails
of the simulated distribution. To address this, we developed
the QPLAD method. The QPLAD method uses the difference
in empirical quantiles of the reference data — each quantile is
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a given day or “analog” of the reference training period — at
coarse and fine resolution to downscale the coarse-resolution
GCM simulations. The outcome is a downscaled dataset that
preserves the changes in coarse GCM quantiles in time while
also reflecting the spatial heterogeneity from the fine ref-
erence data. As a result, localized, extreme changes in the
downscaled data are consistent with the GCM projections.

Formally, QPLAD involves computing and applying “ad-
justment factors” for each quantile in the reference data over
the training period. First, an empirical CDF, F, ; .[-], of
the reference data o is calculated over the training period
h at the relatively “coarse” resolution ¢ at which the bias
adjustment was applied to GCMs (1° in this study). The
method described here in the GDPCIR pipeline assumes that
QDM bias adjustment was performed at a coarser resolution
than the target resolution for downscaling, but theoretically,
one could apply QPLAD to unadjusted GCM simulations as
well. Further detail on our implementation can be found in
Sect. 4.3. The number of empirical quantiles g is equal to
the number of time steps in the training period n (e.g., a
training period of 20 years with a 31 d rolling window has
n =gq =20 x 31 = 620, since each empirical quantile corre-
sponds to a day in the training period). Next, the reference
data at “fine” resolution is sorted into the same order as the
coarse-resolution empirical CDF, B, j,, ¢[-], where the set B
represents the fine reference time steps (days) sorted in the
same way as the coarse CDF F, ; .[-], and f refers to the
fine resolution. Adjustment factors are then calculated as the
difference or ratio (for an additive or multiplicative variable,
respectively) between the fine- and coarse-resolution values
for each historical analog day in the sorted data (i.e., for each
empirical quantile). For an additive variable, adjustment fac-
tors, af, are as follows:

af(qe) = B, ) 1(dc) = F,p (qe), 3)

for all coarse empirical quantiles g., where B~![-] repre-
sents the fine reference values (rather than quantiles) in a
sorted order. Similar to the QDM method detailed above,
the adjustment factors are applied to coarse-resolution sim-
ulations by first determining the quantile of a given time
step’s value, Fy p c(Xm, p,c) = Tm,p, Where 1, p is the non-
exceedance probability associated with the value xy, p .. For
an additive variable, the downscaled value for a given time
step ¢ in the projection simulation is defined as follows:

im,p,f(t) :xm,p,c(t)'i_afq(' 4)

This results in high-resolution, downscaled projections,
where the subgrid cell heterogeneity from the original coarse
resolution contains the more extreme days from the higher-
resolution reference data. By definition, all of the target fine-
resolution grid cells encompassed by the coarse-resolution
grid cell will have downscaled values that average to the
value for the coarse grid cell. No spatial smoothing is ap-
plied in order to maintain the original GCM quantile changes.
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In this way, “quantile preserving” refers to maintaining the
quantile information from the coarse-resolution day, and “lo-
calized” refers to the fine-resolution historical analogs lo-
cated within a coarse-resolution grid cell. The method pro-
duces downscaled projections that add high-resolution infor-
mation from the reference data training period and ensure
that the fine-resolution spatial make-up of more extreme days
from the coarse simulations are coherent and analogous to
those found in the reference data. Thus, extreme days are also
preserved in the downscaled projections in a relative sense (in
a similar manner to QDM). Note that the QDM and QPLAD
methods, which explicitly preserve changes in the quantiles,
do not necessarily preserve model-projected changes in the
mean due to using empirical cumulative distribution func-
tions (CDFs), which is a non-parametric approach. Taking
a parametric approach and using an analytical CDF would
preserve changes in the mean but would also impose a dis-
tribution to the CDFs. As Lehner et al. (2021) discuss, the
question of whether to take a parametric or non-parametric
approach in bias adjustment is an active area of research, but
the non-parametric approach in the QDM and QPLAD meth-
ods is more common and generally preferred.

3.3 Wet-day frequency adjustment

In bias adjusting and downscaling daily precipitation data,
the skewness of precipitation distributions must be accounted
for (Maraun, 2013). GCMs are known to have a “drizzle day”
problem, where the frequency of wet days with low precipita-
tion in GCMs has a high positive bias relative to observations
(Dai, 2006). To address this issue, we apply a “pre-” wet-
day frequency (WDF) adjustment to both daily reference and
GCM data after regridding both datasets to the 1° grid and
before bias adjusting. We apply a second “post-” WDF ad-
justment after QPLAD downscaling, where all downscaled
daily precipitation values below 1.0mmd~! are replaced by
Ommd".

The approach here is modified from Cannon et al. (2015).
For daily reanalysis and GCM precipitation before bias ad-
justment, all values at the 1° grid that are less than a specified
threshold are replaced by nonzero uniform random values
less than the threshold. Initially, we used the same thresh-
old and nonzero uniform random values as Cannon et al.
(2015). However, we found that in grid cells where the sea-
sonality and magnitude of daily precipitation values differed
by a large amount between model and reanalysis, using the
Cannon et al. (2015) threshold (0.05 mm d= 1) could result
in those grid cells having bias-adjusted precipitation values
that were not physically realistic for the season and geo-
graphic location. Thus, we raised the threshold to 1.0 mmd~!
(similar to Hempel et al., 2013) and the lower bound of the
uniform random distribution from 0 to 0.5mmd~!. After
downscaling as mentioned, we replace all values below the
1.0mmd~! threshold with Ommd~".
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4 Bias adjustment and downscaling pipeline
implementation

In this section, we describe the pipeline for ingesting CMIP6
global, daily surface variable output from the CMIP6 Google
Cloud collection and applying statistical bias adjustment and
downscaling methods to produce a global, daily gridded
dataset at a 0.25° horizontal resolution for 4 emissions path-
ways, 25 GCMs, and 3 surface variables. The steps to pro-
duce the dataset are as follows: we first standardize the ref-
erence dataset and GCM output. We then apply a modified
version of the QDM bias adjustment method at the 1° grid
resolution. Next, we apply the QPLAD method to the bias-
adjusted output to downscale the data to a 0.25° grid reso-
lution. For precipitation, we apply a wet-day frequency ad-
justment before bias adjusting and after downscaling. We ap-
ply additional post-processing for all surface variables after
downscaling. These steps are diagrammed in Fig. 1 and de-
tailed in the remainder of Sect. 4.

4.1 Standardizing simulation and reference data

Although the modeling centers participating in the CMIP6
experiments follow the Climate and Forecast (CF) conven-
tions (https://cfconventions.org/, last access: 28 December
2022), significant differences remain in how GCM output is
archived. The native resolution of GCMs also varies con-
siderably. For example, four EC-Earth consortium models
have a relatively high resolution (spectral grids approxi-
mately 0.7° x 0.7°), and the Canadian Centre for Climate
Modelling and Analysis (CCCma) CanESMS5 GCM has a rel-
atively low resolution (2.5° x 2.5°). Consequently, we begin
by standardizing the naming, dimensions, and coordinates
for all GCMs and removing leap days. Daily GCM outputs
are regridded from the models’ native resolution to a regular
1° x 1° global lat-long grid, using the xESMF Python re-
gridding package (https://xesmf.readthedocs.io/, last access:
1 May 2022). We use the bilinear regridding method for
maximum and minimum surface temperature and first-order
conservative area remapping for precipitation to conserve
total precipitation between the native GCM grid and the
1° x 1° regular lat-long grid. Bilinear regridding was chosen
for temperature variables, since they are continuous quan-
tities, whereas first-order conservative-area regridding was
chosen for precipitation for its ability to conserve quanti-
ties, thereby not introducing or destroying water. However,
it should be noted that, generally, any regridding method ap-
plied to precipitation alters its statistical properties and can
have some undesirable impact on high quantiles (Rajulapati
et al., 2021); this is a caveat that is unavoidable when stan-
dardization across GCMs is required.

The same standardization is applied to daily ERAS reanal-
ysis at the regular Gaussian, F320, grid. We prepare three ver-
sions of ERAS that are used in the QDM—QPLAD method.
For QDM bias adjustment, ERAS is regridded from the F320
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Figure 1. Diagram of CMIP6 bias adjustment and downscaling pipeline.

grid to the 1° x 1° regular lat-long grid, using the regrid-
ding methods described above (bilinear for temperature vari-
ables and conservative-area remapping for precipitation). For
downscaling with QPLAD, the same methods are applied to
regrid ERAS from the F320 grid to the 0.25° x 0.25° reg-
ular lat-long grid (ERASfpe), which is the final grid of the
GDPCIR dataset. Then, for use in computing the QPLAD
adjustment factors, the 1° x 1° version of ERAS5 used in bias
adjustment is resampled (e.g., nearest-neighbor regridded) to
the 0.25° x 0.25° regular lat-long grid (ERAS¢oarse)-

4.2 Implementation of QDM bias adjustment

GCM projections for each variable, GCM, experiment, pixel,
year, and day at a 1° x 1° resolution are bias-adjusted us-
ing the xclim Python package QDM implementation (Logan
et al., 2021). To do this, QDM models for each pixel and
day of the year are trained on a rolling 31 d centered window
(£15d) of daily ERAS5 and GCM historical data from 1995
to 2014. For ERAS reference data, we include the last 15d
from 1994 and the first 15d from 2015, such that each day
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group contains 620 values (20 years x 31 d). For CMIP6 his-
torical data, since the simulation ends in 2014, we do not in-
clude the additional 15 d from 2015 or 1994 for consistency.
Each trained QDM model (per pixel and day of year) has 100
equally spaced quantiles in our implementation. We used an
additive adjustment for maximum and minimum temperature
and a multiplicative adjustment for precipitation. Each vari-
able was bias-adjusted separately.

We apply the adjustment factors from the trained QDM
models to historical GCM simulations and future GCM pro-
jections for each SSP based on the variable, GCM, pixel,
year, and day. For each year in the GCM data, daily data are
grouped using a 21-year rolling window and a rolling 31d
window (as in the training step, with + 15 d). When adjusting
the historical CMIP experiments, the first 11 years (2015-
2025) of the SSP3-7.0 simulation are concatenated so that
the full historical period input dataset encompasses the years
1950-2025 to accommodate the rolling window in the year
2014. We use SSP3-7.0 to best simulate the current trajec-
tory of emissions since 2015. If SSP3-7.0 output is unavail-
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able for a given GCM, we use SSP2—-4.5. For the few GCMs
in which neither SSP3-7.0 nor SSP2—-4.5 output is available,
we use SSP1-2.6. When adjusting each SSP, the historical
simulation’s last 11 years (2004-2014) are concatenated so
that the full projection period input dataset encompasses the
years 2004-2100 to accommodate the rolling window. At the
beginning and end of the historical plus projection time pe-
riods, fewer days can be included in the adjustment step, re-
sulting in historical years 1950-1960 having fewer days in
their rolling windows and projection years 2090-2100, with
the exception of GCMs for which output was available past
2100 in the CMIP6 Google Cloud collection at runtime. For
the beginning (ends) of each year’s 21-year adjustment win-
dow, an additional 15d from the previous (following) year
is included, such that each day group contains 651 values
(21 years x 31d). We use 100 equally spaced quantiles as
in the training step; adjustment factors for quantiles within
the range [0.005, 0.995] are linearly interpolated from the
nearest computed adjustment factor, and constant extrapola-
tion is used to extend the range to 0 and 1 for accommodat-
ing the extreme tails. This method is based on the “QMv1”
method evaluated by Themef31 et al. (2012) and means that
new extreme values can occur in the future period or in the
historical period outside of the calibration period. Because
this method can result (although rarely) in physically unre-
alistic extremes, we apply an additional post-processing step
described in Sect. 4.3.1.

One pitfall of applying QDM separately to maximum and
minimum temperatures is that minimum temperatures may
be larger than maximum temperatures on the same day in
some parts of the world with very low diurnal temperature
ranges, such as at high latitudes (Thrasher et al., 2012). As a
post-processing step, we swapped minimum and maximum
temperatures for the small number of pixels and days when
the minimum temperature exceeded the maximum temper-
ature after the bias adjustment and downscaling. This post-
processing is described further in Sect. 4.3.1. We initially
tried to avoid this issue by adjusting the maximum tempera-
ture using an additive adjustment, separately adjusting the di-
urnal temperature range (DTR) using a multiplicative adjust-
ment, and then deriving the minimum temperature by sub-
tracting DTR from the maximum temperature, following Ag-
bazo and Grenier (2020). However, we found that this led to
unrealistically large DTR values in some parts of the globe,
particularly at higher latitudes. Additionally, some raw GCM
data had a small number of minimum temperatures greater
than the corresponding maximum temperatures, most often
in polar regions. Bias adjustment of DTR then further in-
flated this undesirable behavior. Therefore, we bias-adjusted
and downscaled maximum and minimum temperatures sepa-
rately rather than bias adjusting the DTR.
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4.3 Implementation of QPLAD

After applying QDM bias adjustment, we downscale the pro-
jections for each variable, GCM, experiment, pixel, year, and
day to a 0.25° x 0.25° resolution, using a similar approach
to the QDM bias adjustment. To facilitate this, we imple-
mented the QPLAD method in a forked version of the xclim
Python package (Logan et al., 2021) to leverage the existing
parallelization that we used for QDM. Before downscaling,
the bias-adjusted projections are resampled from the 1° x 1°
grid to the 0.25° x 0.25° target resolution. The method is
consistent across variables, as each of the 16 0.25° grid
cells contained within each 1° grid cell must have the same
value. Reanalysis data preparation for QPLAD is described
in Sect. 3.1.

As in bias adjustment, we use a rolling 31d window
(£154d) for each day of the year over the training period
for each pixel. The last 15d from 1994 and the first 15d
from 2015 are included, such that each day group contains
620 values (20 years x 31d). We then downscale historical
and future GCM simulation data using the QPLAD adjust-
ment factors (described in Sect. 3.2) for each variable, GCM,
and experiment on a per-pixel-per-day basis. Since 100 em-
pirical quantiles are used in QDM bias adjustment and 620
in QPLAD (each corresponding to an analog day), there is
no 1:1 match between the QDM and QPLAD quantiles.
Consequently, for a given day, the quantile assigned during
bias adjustment is used to select the nearest QPLAD quan-
tile from the 620 possible adjustment factors for that day of
year and pixel. Figure 2 demonstrates the temporal and spa-
tial dimensions of the QPLAD method for maximum tem-
peratures around Miami, Florida, USA. Due to its coastal lo-
cation, the QPLAD adjustment factors for these pixels will
show a strong land—sea spatial variation, making it an ideal
location to demonstrate the method. Figure 2a shows the 16
spatial analogs (e.g., adjustment factors) for 15 August from
the fine reference data (within one 1° grid cell) correspond-
ing to 7, = 0.33 and the location of Miami, Florida. It is
important to note that the “spatial analogs” are only spatial
within a single 1° grid cell. By design, the downscaled val-
ues for these 16 grid cells will average to the bias-adjusted
value at the 1° resolution x,, with that quantile for that day
of year. Figure 2b zooms in on the 0.25° grid cell containing
Miami, Florida, and shows all possible adjustment factors for
all quantiles and all days. For most days of the year, the ad-
justment factor is moderating the bias-adjusted value, which
is expected given the coastal location of Miami. Figure 2c is
a slice of Fig. 2b showing all possible adjustment factors for
15 August, e.g., all 620 analogs. Finally, Fig. 2d shows the
bias-adjusted and downscaled time series of maximum tem-
peratures for 2080 with the 15 August values highlighted.
The spatial adjustment factor for that quantile (7, = 0.33) is
—1.5° and was applied additively to the bias-adjusted max-
imum temperature value for that day; thus, that value is the
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difference between the bias-adjusted and downscaled tem-
peratures for 15 August 2080 shown in Fig. 2d.

4.3.1 Additional post-processing

After QPLAD downscaling, we apply an additional post-
processing step that is variable-dependent. When DTR is
very low in the source GCM, we found that minimum tem-
perature could exceed maximum temperature after bias ad-
justment and downscaling. For the small number of time
steps and grid cells that have this behavior, we swap the
maximum and minimum temperatures. We found that these
conditions were concentrated in the polar oceans and oc-
curred infrequently in high-population areas and that this
swap did not have a significant effect on seasonal or annual
cycle statistics. Figure Al shows the number of daily time
steps with maximum and minimum temperatures swapped
over a 21-year period outside of the calibration period (1960—
1980) for all GCMs. The concentration of this in the Arctic
and Antarctic and the heterogeneity of spatial patterns across
GCMs is apparent. Figure A2 shows the same metric, except
for SSP3-7.0 during 2080-2100.

Precipitation requires a more complex additional bias ad-
justment for a limited number of grid cells and time steps
globally. Adjustment factors from QDM bias adjustment at
higher quantiles (e.g., above the 95th quantile) could become
physically unrealistic when seasonal cycle behavior and pre-
cipitation magnitudes differed significantly between reanaly-
sis reference data and the GCMs. If the GCM was biased low
relative to reanalysis, then this bias increased the adjustment
factors further. Figures A3 and A4 illustrate this behavior for
two cities (Delhi, India, and Cairo, Egypt) for a single GCM,
MIROCS6, and for a single scenario, SSP2—4.5. Both figures
show the full precipitation time series for the reference, raw
GCM, bias-adjusted and downscaled GCM, and the bias-
adjusted, downscaled, and post-processed GCM. The mag-
nitude, as well as the infrequent occurrence, is particularly
apparent in Fig. A3. We found that adjustment factors would
dramatically increase if the GCM had a strong increase in
precipitation signal or if total daily precipitation values were
close to zero. However, an increasing signal did not need to
be present to incur such a dramatic increase; we also found
this behavior in the historical period outside of the training
period if a given historical period either (a) had a trend that
was different from the training period trend or (b) contained
out-of-sample values that were not present in the training pe-
riod. The confluence of these biases was insidious for GCMs
that were downward-biased relative to reference data and had
seasonal precipitation cycles different than those in reference
data in the same areas. This was noticeable in the Intertrop-
ical Convergence Zone (ITCZ). To correct for these issues
in a robust way, we applied a per-pixel post-downscaling ad-
justment at the target resolution that was based on the max-
imum values of precipitation in the reference data and the
fractional (SSP-dependent) increase in maximum precipita-
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tion between the historical and projected GCM simulations.
Specifically, the maximum precipitation constraint for each
pixel is defined as follows:

Prax(model, SSP, 1) = maX(Preference,rl)

max(Pmodel,SSP,1,)
X max(l, mocel, oo )
maX(Pmodel,historical,tl )

where ¢ refers to a given day, ¢ is defined as the training pe-
riod (1995-2014), model refers to a given GCM, SSP repre-
sents one of the SSP trajectories, #, corresponds to the max-
imum precipitation in a 21-year rolling window centered on
the year that ¢ is in, and Ppax(model, SSP, ¢) refers to the
maximum allowed precipitation at time ¢ for a given GCM
and SSP. Scaling by the ratio of maximum precipitation in
a future 21-year rolling window to historical precipitation
allows for the scaling factor to increase during the projec-
tion period if the GCM has an increase in the rolling 21-
year maximum daily precipitation for that pixel. However,
if the corresponding maximum daily precipitation decreases
in the future (e.g., a scaling factor of less than 1), then the
maximum precipitation value in the reference period for that
pixel forms the constraint. After this daily constraint term
is estimated for each pixel, year, experiment, and GCM, the
final result is set equal to the minimum of the original bias-
adjusted and downscaled value and this constraint. Figure AS
shows the number of daily time steps that were clipped in a
21-year historical period (1960-1980) for precipitation. The
number ranges from approximately 10-20 time steps across
GCMs. Figure A6 shows the same metric for SSP3-7.0 at the
end of the century (2080-2100). The clipping pattern in and
near the ITCZ is much more pronounced in this figure, with
significant variation across GCMs in the number of clipped
time steps.

4.4 GDPCIR dataset standardization and technical
guidelines for users

We save bias-adjusted and downscaled output for each GCM
and scenario as a separate Zarr store, chunked in time and
space to facilitate analysis-ready use. In preparing the final
output, we followed CF convention standards (Hassell et al.,
2017) where possible but did not explicitly enforce them in
our variable attributes. However, the metadata for each Zarr
store and variable contains extensive information on source
GCM, source URL, and other attributes that may be of in-
terest to the user. Metadata for each Zarr store inherit all
metadata from its source GCM, such as experiment ID, na-
tive grid information, ensemble member ID, source ID, and
institution ID, and then we add additional metadata pertain-
ing to the pipeline; this is denoted by the prefix “dc6”. Addi-
tional metadata fields specific to the pipeline include method
information, creation date, licensing information, downscal-
ing pipeline grid details, and pipeline versioning for repro-
ducibility.
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Figure 2. Diagram of QPLAD downscaling method applied to maximum temperature. The date of 15 August is used as an example day
grouping, with T = 0.33 corresponding to the actual quantile for 15 August 2080 in the bias-adjusted output for SSP2—4.5. Panel (a) shows
spatial adjustment factors for t = 0.33 for 15 August; panel (b) shows the adjustment factors for each day of the year for Miami, Florida;
panel (c) shows all possible adjustment factors (corresponding to all quantiles) for 15 August; and panel (d) shows the bias-adjusted and
downscaled maximum temperature data for 2080 and the difference between the bias-adjusted and downscaled values for 15 August before
and after the analog-based adjustment factor for T = 0.33 has been applied. The example bias-adjusted and downscaled data comes from the
HadGEM3-GC31-LL GCM, produced by the United Kingdom Meteorological Office Hadley Centre.

In total, the GDPCIR dataset is 23 TB. The full dataset
is publicly available via Microsoft’s Planetary Computer
along with Jupyter notebooks that provide examples for
interacting with the dataset and using the Planetary Com-
puter’s Application Programming Interface (API) (https:/
planetarycomputer.microsoft.com/dataset/group/cil- gdpcit/,
last access: 23 October 2023). Hosting the GDPCIR dataset
via the Planetary Computer allows it to be used in conjunc-
tion with a number of other publicly available geospatial
datasets.

4.5 Transparency and reproducibility with commercial
cloud computing

Our bias-adjustment and downscaling pipeline is novel be-
cause it was developed and run entirely with commercial
cloud-computing infrastructure. Prototypes of the pipeline
were built and run on Microsoft Azure, while later pro-
duction runs used the Google Cloud Platform. As such, we
wanted the pipeline to be reasonably replicable, open, and
not bound to the proprietary hardware or software of a single
cloud-computing vendor.

We ran the steps of the pipeline in containerized software
applications. These containers are a common way to hold
software applications with their dependencies so that the ap-
plication can run reliably on different machines. We orches-
trate the containers with Argo Workflows (https://argoproj.
github.io/argo-workflows/, last access: 28 December 2022)
on Kubernetes (https://kubernetes.io/, last access: 28 De-
cember 2022), an open-source platform for managing con-
tainerized applications on a robust computer cluster that can
quickly scale up or down depending on the computing re-
sources needed. Kubernetes is ubiquitous across cloud ven-
dors, helping us to avoid vendor lock-in. The source code
for the containers and manifests orchestrating the workflow
steps are both available online under an open-source license
in public GitHub repositories.

https://doi.org/10.5194/gmd-17-191-2024

Infrastructure is an additional challenge, as it can be prac-
tically impossible to make cloud infrastructure truly repli-
cable because commercial cloud vendors iterate their prod-
ucts and platforms very quickly. Despite this, we wanted
to be transparent about the cloud infrastructure used for the
most intense stages of this pipeline. We provisioned and con-
figured the cloud infrastructure and the Kubernetes clusters
from the project’s public GitHub repository. This means that
the pipeline infrastructure and configuration were stored as
code and automatically provisioned directly from the repos-
itory. We provisioned Google Cloud and Azure resources,
including storage and a Kubernetes cluster, using Terraform
(https://www.terraform.io/, last access: 28 December 2022).
Terraform is a common open-source tool for provisioning
computer infrastructure. Once provisioned, the software on
the Kubernetes clusters was managed with Argo CD (https://
argo-cd.readthedocs.io, last access: 28 December 2022), an-
other open-source tool to deploy Kubernetes resources from
the repository in near-real time. Additional information on
computing resources is described in Appendix C.

5 Results

In this section, we evaluate the GDPCIR dataset and assess
the robustness and performance of the QDM and QPLAD
methods. The QDM and QPLAD methods, as applied, pre-
serve changes in GCM quantiles on any given future day,
where that day’s quantile is determined by the £15d and
+10-year time window from the raw GCM. However, be-
cause the bias adjustment and downscaling are applied on a
rolling, daily basis, it means that the adjustment factors are
varying every day and year. Thus, when evaluating the fi-
nal resulting bias-adjusted and downscaled GCM time series,
there will likely be some aggregate modification to the quan-
tile changes. In this section, we evaluate the extent to which
quantile changes are preserved and how well the historical
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distribution’s biases are corrected by examining city-level,
state-level, and country-level metrics.

5.1 Preserving quantile trends globally

Here we examine the preservation of changes in higher quan-
tiles at a seasonal frequency. For each GCM, season, and
pixel, we compute the change in the 95th percentile of daily
maximum temperature in the raw GCM, the bias-adjusted
GCM, and the bias-adjusted and downscaled GCM over the
period 2080-2100 relative to 1995-2014 for SSP3-7.0. Fig-
ure 3 shows the comparison of quantile change across these
stages of processing and averaged over all GCMs in the
GDPCIR dataset and indicates the level at which the source
GCM quantile changes are maintained or modified. Note
that in addition to the rolling adjustment factors mentioned
above, here the window over which the 95th percentile is
computed (e.g., for each season) is also different than the
QDM-QPLAD method application, implying some further,
although minor, differences. We opted to look at this metric
because it better demonstrates how the methods have mod-
ified the original data in more aggregate terms, which are
commonly used in impacts modeling and may therefore be
more useful to potential users.

Although the post-processing described in Sect. 4.3.1 is
only applied to downscaled output within the downscaling
pipeline, it is applied separately to the bias-adjusted, pre-
downscaled results shown here (e.g., Fig. 3; second column),
such that bias-adjusted and downscaled results are handled
consistently for the purposes of this comparison. As noted
above, it is expected that there will be slight modifications in
the raw GCM-projected changes. Moreover, here we show
the analytical 95th percentile of days within each season
and averaged over GCMs, rather than using an empirical
CDF corresponding to the actual bias-adjusted day closest
to the 95th percentile. The raw, cleaned GCM data are at
the original resolution of the GCM output and bias-adjusted
GCM data are at a 1° resolution, whereas the downscaled
data are at a 0.25° resolution, so the bias-adjusted data are
coarser and, by construction, less extreme than the down-
scaled data. Some broad features emerge in Fig. 3. The first
column shows that, generally, in the raw, cleaned GCMs, the
95th percentile of every season is increasing everywhere, and
more so on land and over the Arctic (except for in March—
May or MAM, when sea ice extent is at a maximum and
surface temperatures remain at the near-freezing point over
ice). The bias adjustment tends to increase the 95th percentile
changes by a modest amount on average. Although the mag-
nitude and extent vary by season, the vast majority of bias-
adjusted percentile changes are within approximately 1°C
of the raw, cleaned GCM changes (Fig. 3; second column).
The downscaling step adds fine-resolution information that
slightly modifies the change in 95th percentile in the bias-
adjusted data; however, in general, changes between the bias-
adjusted data before and after downscaling is applied are on
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the order of 1/10 of a degree Celsius. The largest differences
appear over regions with large and variable (over the GCM
ensemble) temperature gradients, such as near the edges of
sea ice coverage. A comparable figure for the 99th percentile
is included in Appendix A (Fig. A7) and shows a similar
story, with slightly increased magnitudes (e.g., bias adjust-
ment increases the 99th percentile by a bit more than the 95th
percentile).

Precipitation has a similar but more nuanced and complex
story. A long-standing challenge with bias adjustment of pre-
cipitation at a global scale is dealing with the disagreement in
the seasonal migration and magnitude of precipitation in the
ITCZ between reanalysis and GCMs. The ITCZ is a tropical
“belt”, where deep convection and heavy precipitation occur
due to convergence of the trade winds, and it migrates be-
tween 9 and 2° N due to annual warming of sea surface tem-
peratures (van Hengstum et al., 2016). GCMs exhibit bias in
simulating tropical precipitation, and this bias differs widely
between CMIP6 models (Hagos et al., 2021; Tian and Dong,
2020). Similar to Fig. 3, Fig. 4 shows the 95th percentile of
daily precipitation for each season averaged across the GDP-
CIR ensemble for SSP3-7.0. Days with total precipitation
less than 1 mmd~! are not included, so as to only include
wet days in the analysis. We also include the same figure
showing the 99th percentile of daily precipitation for each
season in Appendix A (Fig. A8). In comparing the seasonal
precipitation in the reference data versus the ensemble mean
before bias adjustment and downscaling (Fig. 4b, g, 1, and
q), there is broad disagreement on the ITCZ present year-
round but particularly strong in Northern Hemisphere sum-
mer and fall. Differences are notable in both the shape and
the strength of the ITCZ. The climate change signal (Fig. 4c,
h, m, and r) shows 95th percentile changes that are generally
increasing over most land areas in the raw GCM ensemble
mean and over the ITCZ, with broad decreases in precip-
itation over subtropical oceans that vary by season. These
ITCZ biases result in slight modifications in preserving the
GCM-projected relative changes in the quantiles. Although
the biggest modifications of the change in the 95th quan-
tile primarily occur over the oceans (due primarily to the
ITCZ bias), there are also some modifications in drier areas,
such as sub-Saharan Africa and parts of the Middle East. In
these areas, bias adjustment results in a mild amplification
of the already-increasing signal from the GCMs, which is
again driven by differences in seasonality and magnitude be-
tween reanalysis and the GCMs. For example, the grid cells
in sub-Saharan Africa in the reference data shown in white
(e.g., zero precipitation) have low but non-zero precipitation
in the GCMs, which is an illustration of the “drizzle day”
GCM problem (Dai, 2006). We apply the WDF correction
discussed in Sect. 3.3 to mitigate the effects of this disagree-
ment, but it does not completely solve the issue in the results.
In comparing changes in the bias-adjusted data to changes
in the bias-adjusted and downscaled data (Fig. 4e, j, o, and
t), the changes are most noticeable in sub-Saharan Africa as
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Figure 3. Changes in the 95th percentile of seasonal daily maximum temperature in 2080-2100 relative to 1995-2014 in the raw GCMs (a,
d, g, j); the difference in the 95th percentile change between the bias-adjusted and the raw GCMs (b, e, h, k); and the difference in the 95th
percentile change between the downscaled and the bias-adjusted GCMs (¢, f, i, 1) for seasons December—February or DJF (a—c), March—-May
or MAM (d—f), June—August or JJA (g-i), and September—November or SON (j-1). Results shown are the mean across the GCM ensemble

for the scenario SSP3-7.0.

well, where the “post-” WDF correction is applied to bias-
adjusted and downscaled data in our pipeline but not to the
bias-adjusted, pre-downscaled data. Thus, the right column,
in essence, illustrates the effects of the WDF. To further un-
derstand the effects of the WDF and the modification of sea-
sonal changes in more arid regions, we show the same analy-
sis as in Figs. 4 and A8 for daily precipitation < 10mmd~",
which is shown for the 95th percentile (Fig. A9) and the 99th
percentile (Fig. A10).
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5.2 Historical and future method performance for
selected cities and regions

We further quantify the bias adjustment and trend preserva-
tion modification for highly populated cities and selected ag-
gregated regions containing the cities. Following the analysis
in Biirger et al. (2012) and Cannon et al. (2015), we assess the
performance of the QDM and QPLAD methods by compar-
ing the distributions of various CCI/CLIVAR/JCOMM Ex-
pert Team on Climate Change Detection and Indices (ETC-
CDI) metrics (Karl et al., 1999), as well as other aggregated
values widely used in impacts research, that are listed in Ta-
ble 2. We compute these over the historical period in the bias-
adjusted and downscaled data and compare against their dis-
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Figure 4. The 95th percentile of seasonal daily total precipitation for the reference (a, f, k, p) and raw, cleaned GCM (b, g, 1, q) over the
training period of 1995-2014. The change in the 95th percentile of the seasonal daily total precipitation in 2080-2100 relative to 1995-2014,
given as aratio, in the raw, cleaned GCMs (¢, h, m, r), the ratio of the 95th percentile change between the bias-adjusted and the raw, cleaned
GCMs (d, i, n, s), and the ratio of the 95th percentile change between the downscaled and the bias-adjusted GCMs (e, j, 0, t) for seasons
DIJF (a—e), MAM (f-j), JJA (k—0), and SON (p-t). Results shown are the average for wet days across the GCM ensemble for the scenario

SSP3-7.0.

tributions in the reanalysis reference dataset. For the initial
city analysis, we use a set of 17 highly populated cities, in-
cluding Paris (France), Shanghai (China), Lagos (Nigeria),
Delhi (India), Dhaka (Bangladesh), Mexico City (Mexico),
Cairo (Egypt), Moscow (Russia), Sdo Paulo (Brazil), Mi-
ami (FL, USA), New York City (NY, USA), Manila (Philip-
pines), Istanbul (Tiirkiye), Mumbai (India), Buenos Aires
(Argentina), Tokyo (Japan), and London (UK). The first eight
cities are inland cities, and the latter nine are coastal cities.
Later in this section, we examine the same indices for ag-
gregated regions in which each of the cities is located. The
selected ETCCDI indices and the additional metrics include
maximum and minimum temperature-based values, as well
as values that are derived from total precipitation, ensur-
ing that all variables included in the GDPCIR dataset are
tested. We examine the performance of these metrics across
all GCMs included in the GDPCIR dataset, given the hetero-
geneity of temperature and precipitation signals.

5.2.1 Historical extremes indices

To check the historical distributions of the bias-adjusted and
downscaled GCMs, we compute the selected indices listed in
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Table 2 on an annual basis over the historical period for the
raw GCM, bias-adjusted and downscaled GCM, and reanal-
ysis for the 17 selected metropolises. The ETCCDI metrics,
such as summer days, tropical nights, annual wet days, and
consecutive dry days, represent extremes affected by thresh-
old behavior. Other more extreme temperature metrics not
classified as ETCCDI indices, such as days over 35 °C and
days over 32.2°C, are even more affected by threshold be-
havior. While those more extreme temperature metrics and
the seasonal and annual temperature and precipitation met-
rics are not classified as ETCCDI indices, they are widely
used as input data to sector-specific impacts modeling and
thus are included here to guide users of the dataset.
Distributions of the indices are computed using the raw
GCM output and on the bias-adjusted and downscaled GCM
and each are compared against the reanalysis distribution of
the same index using a two-sample Kolmogorov—Smirnov
(K=S) test at a 0.05 significance level. The null hypothesis is
that the two samples (e.g., raw GCM and reanalysis or bias-
adjusted and downscaled GCM and reanalysis) are drawn
from the same distribution. A GCM is considered to pass
the K-S test, either for the raw GCM or the bias-adjusted

https://doi.org/10.5194/gmd-17-191-2024
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Table 2. Selected moderate and extreme metrics for analyzing bias adjustment and downscaling algorithm performance over cities and

admin1 (state or province) regions.

Name

Description

Summer days

Annual count of days when daily maximum temperature >25 °C

Tropical nights Annual count of days when daily minimum temperature >20 °C
Frost days Annual number of days under 0°C

Days over 90 Annual number of days over 90 °F (32.2°C)

Days over 95 Annual number of days over 95 °F (35 °C)

Seasonal maximum temperature

Mean seasonal maximum temperature for each year

Seasonal minimum temperature

Mean seasonal minimum temperature for each year

Wet days

Annual count of wet days (daily total precipitation >1 mm)

Wet days with a specified threshold
(daily total precipitation > 10 mm)

Annual count of moderate precipitation days

Consecutive dry days
(daily total precipitation <1 mm)

Annual maximum number of consecutive dry days

Annual precip

Annual precipitation

Seasonal precip

Total precipitation summed over seasons each year

and downscaled GCM, if the null hypothesis is not rejected;
in other words, if the p value > 0.05. This is a slight mod-
ification of the usage of K-S tests in Cannon et al. (2015)
and Biirger et al. (2012), where the authors use the D statis-
tic rather than the p value as a diagnostic. The p value is
used here for significance due to the effects of disagreement
in seasonality between reanalysis and the GCM on the D
statistic versus the p value. We compute the K-S tests over
a climatological historical period from 1979-2014 for tem-
perature variables, and for precipitation, we use a slightly
shorter historical period, 1984—1994, because quality control
showed that reanalysis precipitation data for 1983 contained
errors.

In Fig. 5, the results of the K-S tests for the 12 selected in-
dices for a subset of inland cities around the globe are shown
for the bias-adjusted and downscaled GCMs and raw GCMs.
The same analysis for coastal cities around the globe can be
found in Fig. A11. For nearly all of the inland cities, bias ad-
justment and downscaling show a significant improvement in
the number of K-S tests passing over the source GCM distri-
butions. The notable two exceptions to this are Mexico City
and Moscow. For Mexico City, this can be explained by its
high elevation relative to the other cities; it is at an eleva-
tion of 2240 m a.s.1. (above sea level) and located in a valley.
Moscow’s relative lack of improvement from bias adjustment
and downscaling can be explained by its colder climate rela-
tive to other inland cities and, therefore, lack of occurrences
for the maximum temperature metrics, as well as a strong
urban heat island effect (Lokoshchenko, 2014). By contrast,
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the coastal cities (Fig. A11) show a markedly different side
of the narrative, illustrating the limitations of bias adjust-
ment and downscaling for coastal areas in some parts of the
world. Miami, Manila, and Mumbai, in particular, show little
improvement between the raw GCM and bias-adjusted and
downscaled GCM, which points to the inherent challenges
of GCM representations of coastlines, as well as limitations
with coastal areas in reanalysis data.

5.2.2 Bias adjustment and relative trend preservation

To further examine the performance of the bias adjustment
and downscaling algorithms, we compute median absolute
errors in bias adjustment and downscaling and trend preser-
vation across the same highly populated cities for all GCMs
included in the GDPCIR dataset for the selected projection
period, SSP3-7.0, and for all variables. The term “error”
should be interpreted for Eq. (6) as being the difference in
climatologies between reference data and the bias-adjusted
and downscaled data and for Eq. (7) as being the effects of
bias adjustment and downscaling on trend preservation of
the original GCM signal. We compute the error over daily
21-year climatologies after smoothing the daily data with a
31d rolling window mean. Median absolute error in bias-
adjusted and downscaled data is computed over the historical
period (1995-2014) and compared to the trend preservation
between the raw GCMs and bias-adjusted and downscaled
GCMs for 2080-2100. Based on the method used by Lange
(2019), we define absolute error in bias adjustment as fol-
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Figure 5. Bar plots showing the number of Kolmogorov—Smirnov tests passed for the 12 selected indices for the bias-adjusted and downscaled
GCM and raw GCM (overlain) for each of the GCMs included in the GDPCIR dataset for eight inland cities around the globe. The dashed

line shows the maximum possible number of K-S tests.
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where yﬁigt‘ represents bias-adjusted and downscaled histori-

cal daily climatological GCM data from 1995-2014, and xﬁit;i
represents historical daily climatological reference data over
the same time period. Median bias adjustment and downscal-
ing errors are computed as the median of the error for all days
of the year. We then define median absolute error in trend
preservation as follows:

sim sim sim sim
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where yfsl‘ftn represents bias-adjusted and downscaled daily

climatological projection data from 2080-2100 for SSP3-
7.0, yﬁi‘srt‘ represents daily climatological bias-adjusted and
downscaled historical simulations, x§\" represents daily cli-
matological future projection data from the raw GCM over
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the same future period, and xﬁi‘s‘: represents daily climatolog-
ical historical data from the raw GCM for the same historical
period. As with the bias adjustment and downscaling errors,
the trend preservation error is also computed as the median
of the error for all days of the year.

However, we depart from the Lange (2019) method by
computing the median absolute error for highly populated
cities around the globe (e.g., at the pixel level) rather than
at multiple spatial resolutions. Some artifacts of regridding
affect the analysis; bias-adjusted and downscaled data, raw
GCM data, and reanalysis data are necessarily at different
resolutions, namely at 0.25°, the native GCM grid, usually
around 1° (with some exceptions), and the F320 (regular
Gaussian) ERAS grid, respectively. Figure 6 shows box plots
for the median absolute error across all GDPCIR GCMs
for maximum and minimum temperature and precipitation.
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Trend preservation error represents the error for 2080-2100
for a single scenario, SSP3-7.0. Bias adjustment error rep-
resents the error after QDM bias adjustment and QPLAD
downscaling have been performed. Overall, the range of error
for both bias adjustment and downscaling and trend preser-
vation is lower for precipitation than for maximum and min-
imum temperature. A small subset of coastal cities show
a much higher range in the trend preservation error across
GCMs, particularly for Miami and New York and Sao Paulo
to a lesser extent. Mexico City also shows a higher range,
similar to the previous section, due to its high elevation and
the complex topography surrounding the city. A larger trend
preservation error for these cities is unsurprising; it is well-
known that GCMs struggle with capturing the land—sea in-
terface. However, the modification of the change signal rep-
resented by the trend preservation error should not be inter-
preted as undesirable behavior; Iturbide et al. (2022) found
that bias adjustment amplified the climate change signal (up
to a factor of 2 in some regions), which resulted in an im-
provement in modeling future heat-related threshold indices.
In Lange (2019), the author conducted similar error analysis
for surface variables over different CMIP5 GCMs (MIROCS,
IPSL-CM5A-LR, and GFDL-ESM2M) at a coarser resolu-
tion (2°) and found similar magnitudes of error in trend
preservation, with slightly smaller errors in bias adjustment.

5.2.3 Relative trend preservation of ETCCDI
indicators aggregated over selected regions

One of the key considerations in developing a method and
dataset for use in the study of the human impacts of climate
change is the performance of the given method when the data
are reconfigured, transformed, or re-weighted by the users of
the data. Impacts research frequently uses weighted, aggre-
gated extreme value measures, such as crop-output-weighted
frost-day counts for a given agricultural zone or population-
weighted counts of hot nights for a given census region. To
understand the performance of our data under such circum-
stances, we use the same set of diagnostic cities examined
above to understand the preservation of moderate and ex-
treme trends for several of the moderate and extreme ETC-
CDI indicators at varying levels of aggregation. Following
the regional aggregation method described in Rode et al.
(2021), these comparisons use a 30 arcsec population raster
dataset (CIESIN, 2018) to determine the weight of each grid
cell in the climate dataset within each region’s total, based
on whether the population grid cell is contained within each
region. Data are aggregated to either adminO or adminl re-
gions after computing the ETCCDI metrics on gridded data.
An adminl region is a generic term that refers to a country’s
largest subnational administrative unit; for example, a state in
the USA or a prefecture in Japan. An adminO region refers to
national boundaries, e.g., the USA or Japan. Polygons defin-
ing these region boundaries are taken from the Natural Earth
dataset (Natural Earth, 2022) and are further subset to in-
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clude the adminO or adminl region, which includes each of
the diagnostic cities listed above.

For the analysis in this section, we use the same temporal
aggregation as in the method implementation (see Sect. 3),
such that any modification of the trend is not due to the
effects described earlier but instead due to aggregation or
weighting effects. Because the method exactly preserves
quantile trends within a 31d window during bias adjust-
ment and preserves trends in minimum temperature, maxi-
mum temperature, and log (precipitation) for a given quan-
tile on an average basis across 0.25° grid cells within each
coarse 1° cell, discrepancies between trends in seasonal and
annual mean minimum temperature and maximum temper-
ature are due solely to differences between area and popu-
lation weights and due to the effects of interpolation from
the native GCM grid to the regular 1° grid used for bias
adjustment. This behavior can be seen in the very high de-
gree of agreement between source GCM and bias-adjusted
and downscaled trends at both the admin0O and admin! level
for maximum temperature in Fig. 7. Here, we calculate trend
using the difference between the 1995-2014 period average
and the 2079-2099 period average; the year 2100 is not in-
cluded because it is unavailable in all GCMs. Panels a—e in
Fig. 7 show the climate change signal in annual and seasonal
maximum temperature for admin( regions (e.g., countries)
and for adminl regions (e.g., states or provinces) in Fig. 7f—
j- The adminO and adminl regions shown correspond to the
regions in which each city is located, and results are shown
for all GCMs and all scenarios (SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5). Both admin0 and adminl regions have
an r2 value of at least 0.9 for annual temperature and all sea-
sons, showing extremely minimal trend modification.

However, because precipitation adjustments are multi-
plicative, 21-year seasonal and annual totals are not pre-
served exactly when aggregated. Fidelity to the source GCM
trend in the downscaled data is closer when comparing trends
in log (21-year annual average precipitation) or log (21-year
seasonal average precipitation), which can be seen in com-
paring the first and second rows in Fig. 8. Figure 8 shows
annual and seasonal precipitation for the countries containing
the 17 selected global cities for all GCMs and scenarios, with
the climate change signal of precipitation shown in Fig. 8a—e
and log (period average annual and seasonal precipitation)
in Fig. 8f—j. As expected, the higher emissions scenarios,
SSP3-7.0 and SSP5-8.5, appear far more often as outliers,
which is expected, given their relatively larger change sig-
nals in precipitation.

To understand trend preservation among extreme metrics,
we computed the count of days above or below various
thresholds, as shown in Fig. 9. The method does not explic-
itly preserve the GCM signal in such metrics, as anomalies in
temperatures, even at extreme quantiles, will cross a thresh-
old with different frequencies after a linear or multiplica-
tive adjustment. This behavior is in line with other studies
(e.g., Casanueva et al., 2020; Dosio, 2016) and consistent

Geosci. Model Dev., 17, 191-227, 2024
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Figure 7. Climate change signal of annual and seasonal maximum daily Timax from 1995-2014 to 2079-2099, for countries (top row; panels
a-—e) and states or provinces (bottom row; panels f—j) containing the 17 diagnostic cities. All GCMs and scenarios are shown, with SSP1-2.6
(blue), SSP2—4.5 (orange), SSP3-7.0 (green), and SSP5-8.5 (red).
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Figure 8. Climate change signal of annual and seasonal precipitation from 1994-2014 to 2079-2099 (top row; panels a—e) and the change
in log (period average annual and seasonal precipitation; bottom row; panels f—j) for the countries containing the 17 diagnostic cities. All
GCMs and scenarios are shown with SSP1-2.6 (blue), SSP2—4.5 (orange), SSP3-7.0 (green), and SSP5-8.5 (red).
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(orange), SSP3-7.0 (green), and SSP5-8.5 (red). Note that 90 °F is 32.2 °C and 95 °F is 35 °C.

with the fact that, while trends in extreme values measured
as quantiles will be preserved within any 31 d window from
the GCM to the final result, trends in any absolute measure,
such as counts of days above or below a threshold, will be
affected by the bias adjustment and may be significantly dif-
ferent in the result depending on the metric.

6 Conclusions

We hope that the GDPCIR dataset will be a useful contri-
bution for climate impacts research in its scope, resolution,
and in the methods applied that were specifically tailored to
understanding the tail risks associated with future emissions
pathways. The QDM-QPLAD bias adjustment and down-

https://doi.org/10.5194/gmd-17-191-2024

scaling algorithms preserve quantile trends, allowing users
to understand better and model the effects of different emis-
sions pathways on sector-specific and aggregate climate im-
pacts. The 0.25° resolution of the GDPCIR dataset allows
for its use in econometric models that require high-resolution
surface climate data for estimating response functions. Errors
in bias adjustment and trend preservation are low, with some
exceptions for precipitation due to issues already discussed.
Appendix D goes into further detail on this, with Figure D1
showing land-weighted changes in temperature and precipi-
tation signals in CMIP6 raw GCMs and the bias-adjusted and
downscaled GDPCIR GCMs. We expect that the dataset will
have broad use in climate impacts modeling, from estimat-
ing econometric dose-response functions to hydrology and
ecology to modeling ecosystem services and natural capital.

Geosci. Model Dev., 17, 191-227, 2024
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Appendix A: Additional figures
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Figure Al. Number of daily time steps where maximum and minimum temperature were swapped in the bias-adjusted and downscaled
GCMs over a 21-year climatological historical period (1960-1980) for all GCMs included in the GDPCIR dataset. For these time steps, the
minimum temperature exceeded maximum temperature.
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Figure A2. Number of daily time steps where maximum and minimum temperature were swapped in the bias-adjusted and downscaled
GCMs over a 21-year climatological future period (2080-2100) for all GCMs included in the GDPCIR dataset (for SSP3-7.0). For these
time steps, the minimum temperature exceeded maximum temperature.
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Figure A3. Time series of total daily precipitation for Delhi, India, showing reference data and raw, regridded, and cleaned GCM data for the
historical period and SSP2—4.5 (a) and bias-adjusted and downscaled data for the historical period and SSP2—4.5 before after post-processing

(b).
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Figure A4. Time series of total daily precipitation for Cairo, Egypt, showing reference data and raw, regridded, and cleaned GCM data
for the historical period and SSP2-4.5 (a) and bias-adjusted and downscaled data for the historical period and SSP2—4.5 before and after

post-processing (b).
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Figure AS. Number of daily time steps where post-processing (e.g., clipping) was applied to precipitation values in the bias-adjusted and
downscaled GCMs over a 21-year climatological historical period (1960-1980) for all GCMs included in the GDPCIR dataset.
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Figure A6. Number of daily time steps where post-processing (e.g., clipping) was applied to precipitation values in the bias-adjusted and
downscaled GCMs over a 21-year climatological future period (2080-2100) for all GCMs included in the GDPCIR dataset (for SSP3-7.0).
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Figure A7. Changes in the 99th percentile of seasonal daily maximum temperature in 2080-2100 relative to 1995-2014 in the raw GCMs
(a, d, g, j); the difference in the 99th percentile change between the bias-adjusted and the raw GCMs (b, e, h, k); and the difference in the
99th percentile change between the downscaled and the bias-adjusted GCMs (c, f, i, 1) for seasons DJF (a—c), MAM (d-f), JJA (g-i), and
SON (j-1). Results shown are the mean across the GCM ensemble for the scenario SSP3-7.0.

Geosci. Model Dev., 17, 191-227, 2024 https://doi.org/10.5194/gmd-17-191-2024



D. R. Gergel et al.: GDPCIR 217

(a) DJF: Reference 50 (b) DJF: Raw GCM 50 (c) DJF: Change in raw GCM 1.75  (d) DJF: Difference in change 1.75  (e) DJF: Difference in change
(2080-2100 / 1995-2014) (bias-adjusted / raw GCM) (downscaled / bias-adjusted) 1.2

40 T 407 — = 1.50 — == 150 § i
T T : R 2 g
£ £ 1.25 125 @ 116

30 € 30 £ » o g
< < 1.00 Homrormome: 1.00 103
2 S ¥ A

20 5 20 5 o %5
B B 0.75 0.75 5 09 o
o a = =

105 g 0.50 050 & &
I~ & 0.8

0 0 0.25 0.25

-
Hy

1.00 3 1.00 :

0.75 0.75

o
©

Ratio of differences
-
o

Ratio of differences

0.50 0.50

Precipitation (mm d1)
Precipitation (mm d-1)

(f) MAM: Reference 50 (g) MAM: Raw GCM 50

40 7 40

\ B PR e 30 ? ! 30
@‘ ; » 20 3 9 7 ‘ 20
10 10

0.8

0 0 0.25 0.25

50 (1) JJA: Raw GCM 50 (m) JJA: Change in raw GCM 1.75
(2080-2100 / 1995-2014)

1.75 (o) JJA: Difference in change
(downscaled / bias-adjusted)

1.75 (i) MAM: Difference in change 175 (j) MAM: Difference in change
(bias-adjusted / raw GCM) (downscaled / bias-adjusted) 1.2

1.50 e 1.50

125 ? Y 125 P 'S :

20 © 40 © P 1.50 1.50 g P
£ 13 2 118
£ £ 125 125§ 1lg

30 S 30 = g @
H H 1.00 3 1.00 § 105

20 208 ; s 5
. £ 0.75 075 o 099

08 08 0.50 050 & &
& & i : 08

0 0 0.25 025

(p) SON: Reference 50 (q) SON: Raw GCM 50 () SON: Change in raw GCM 175 175
_ _ (2080-2100 / 1995-2014) . o 12
il 7 1.5 1.5

07 07 ; g g
£ € 1.25 1.25 @ 11g

30 € 30 £ g ke
< <l 1.00 3 1.00 § 108

202 20 2 o 5
g g 0.75 075 093

09 1079 0.50 0.50 & &
I o 0.8

0 0 0.25 0.25

Figure A8. The 99th percentile of seasonal daily total precipitation for the reference (a, f, k, p) and raw, cleaned GCM (b, g, 1, q) over the
training period of 1995-2014. The change in the 99th percentile of seasonal daily total precipitation in 2080-2100 relative to 1995-2014, as
a ratio, in the raw, cleaned GCMs (c, h, m, r); the ratio of the 99th percentile change between the bias-adjusted and the raw, cleaned GCMs
(d, i, n, s); and the ratio of the 99th percentile change between the downscaled and the bias-adjusted GCMs (e, j, 0, t) for seasons DJF (a—e),
MAM (f=j), JJA (k-0), and SON (p-t). Results shown are the average for wet days across the GCM ensemble for the scenario SSP3-7.0.
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Figure A9. The 95th percentile of seasonal daily total precipitation for the reference (a, f, k, p) and raw, cleaned GCM (b, g, 1, q) over the
training period of 1995-2014. The change in the 95th percentile of seasonal daily total precipitation in 2080-2100 relative to 1995-2014, as
a ratio, in the raw, cleaned GCMs (¢, h, m, r); the ratio of the 95th percentile change between the bias-adjusted and the raw, cleaned GCMs
(d, i, n, s); and the ratio of the 95th percentile change between the downscaled and the bias-adjusted GCMs (e, j, 0, t) for seasons DJF (a—e),
MAM (f=j), JJA (k—0), and SON (p-t). Results shown are the average for drier days (e.g., days with precipitation values < 10 mm d_l)
across the GCM ensemble for the scenario SSP3-7.0.
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Figure A10. The 99th percentile of seasonal daily total precipitation for the reference (a, f, k, p) and raw, cleaned GCM (b, g, 1, q) over the
training period of 1995-2014. The change in the 99th percentile of seasonal daily total precipitation in 2080-2100 relative to 1995-2014, as
a ratio, in the raw, cleaned GCMs (¢, h, m, r); the ratio of the 99th percentile change between the bias-adjusted and the raw, cleaned GCMs
(d, i, n, s); and the ratio of the 99th percentile change between the downscaled and the bias-adjusted GCMs (e, j, 0, t) for seasons DJF (a—e),
MAM (f=j), JJA (k—0), and SON (p-t). Results shown are the average for drier days (e.g., days with precipitation values < 10 mm d_l)
across the GCM ensemble for the scenario SSP3-7.0.
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downscaled GCM and raw GCM (overlain) for each of the GCMs included in the GDPCIR dataset for nine coastal cities around the globe.

Figure All. Bar plots showing the number of Kolmogorov—Smirnov tests passed for the 12 selected indices for the bias-adjusted and
The dashed line shows the maximum possible number of K-S tests.
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Appendix B: Additional tables

B1 CMIP6 GCM inventory

Table B1. Full list of models participating in the CMIP6 ScenarioMIP experiments along with their corresponding institutions and which
of these models were included in the GDPCIR dataset. If not included, the reason is provided in the rightmost column. When available, we
used the rlilp1fl ensemble member for consistency. “GC” refers to Google Cloud, and “ESGF” refers to the Earth System Grid Federation.
By QA/QC pipeline, we mean the quality assurance/quality control pipeline that we designed as part of the fully reproducible, automated
downscaling pipeline.

Models Institution Ensemble  Included in Reason for exclusion

member GDPCIR dataset  from GDPCIR dataset
ACCESS-CM2 CSIRO-ARCCSS rlilplfl Yes
ACCESS-ESM1-5 CSIRO rlilplfl Yes
AWI-CM-1-1-MR AWI rlilplfl No Not available in GC CMIP6 collection
AWI-CM-1-1-LR AWI rlilplfl No Not available in GC CMIP6 collection
BCC-CSM2-MR BCC rlilplfl Yes
BCC-ESM1 BCC rlilp1fl No Not available in GC CMIP6 collection
CAMS-CSM1-0 CAMS r2ilplfl No Not available in GC CMIP6 collection
CAS-ESM2-0 CAS rlilplfl No Not available in ESGF
CESM2 NCAR rdilplfl No Historical daily output not available in ESGF
CESM2-FV2 NCAR rlilplfl No Not available in GC CMIP6 collection
CESM2-WACCM NCAR rlilplfl No Not available in GC CMIP6 collection
CESM2-WACCM-FV2 NCAR rlilplfl No Not available in GC CMIP6 collection
CIESM THU rlilplfl No Not available in ESGF
CMCC-ESM2 CMCC rlilplfl Yes
CMCC-CM2-SR5 CMCC rlilplfl Yes
CNRM-CM6-1 CNRM-CERFACS rlilplf2 No Licensing issues for commercial use
CNRM-CM6-1-HR CNRM-CERFACS rlilp1f2 No Licensing issues for commercial use
CNRM-ESM2-1 CNRM-CERFACS rlilp1f2 No Licensing issues for commercial use
CanESM5 CCCma rlilplfl Yes
EC-Earth3-Veg EC-Earth consortium rlilp1fl Yes
EC-Earth3 EC-Earth consortium rlilplfl Yes
EC-Earth3-AerChem EC-Earth consortium rlilplfl Yes
EC-Earth3-Veg-LR EC-Earth consortium rlilplfl Yes
EC-Earth3-CC EC-Earth consortium rlilplfl Yes
FGOALS-f3-L CAS rlilplfl No Not available in GC CMIP6 collection
FGOALS-g3 CAS rlilplfl Yes
FIO-ESM-2-0 FIO-QLNM rlilplfl No Not available in ESGF
GFDL-CM4 NOAA-GFDL rlilplfl Yes
GFDL-ESM4 NOAA-GFDL rlilplfl Yes
GISS-E2-1-G NASA-GISS rlilplfl No Not available in GC CMIP6 collection
HadGEM3-GC31-LL MOHC rlilplf3 Yes
HadGEM3-GC31-MM  MOHC rlilplf3 No Only SSP1-2.6/SSP5-8.5 available in GC CMIP6 collection
UKESM1-0-LL MOHC rlilp1f2 Yes
IITM-ESM CCCR-IITM rlilplfl No Not available in GC CMIP6 collection
INM-CM4-8 INM rlilplfl Yes
INM-CMS5-0 INM rlilplfl Yes
IPSL-CM6A-LR IPSL rlilplfl No Licensing issues for commercial use
KACE-1-0-G NIMS-KMA rlilplfl No QA/QC pipeline found data issues
KIOST-ESM KIOST rlilplfl No QA/QC pipeline found data issues
MCM-UA-1-0 UA rlilplfl No Not available in ESGF
MIROC6 MIROC rlilplfl Yes
MIROC-ES2L MIROC rlilplfl Yes
MPI-ESM1-2-HR MPI-M rlilplfl Yes
MPI-ESM-1-2-HAM HAMMOZ-Consortium  rlilplfl No No data past 2055
MPI-ESM1-2-LR MPI-M rlilplfl Yes
MRI-ESM2-0 MRI rlilplfl No QA/QC pipeline found data issues
NESM3 NUIST rlilplfl Yes
NorCPM1 NCC rlilplfl No Not available in ESGF
NorESM2-LM NCC rlilplfl Yes
NorESM2-MM NCC rlilplfl Yes
SAMO-UNICON SNU rlilplfl No Not available in GC CMIP6 collection
TaiESM1 AS-RCEC rlilp1fl No Not available in GC CMIP6 collection
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Appendix C: Pipeline-computing resources

The downscaling pipeline was run on Kubernetes clusters,
with a flexible pool of preemptible (“spot”) general-purpose
machines. Each machine had between 8 and 32 central
processing units (CPUs), using Intel Skylake, Broadwell,
Haswell, Sandy Bridge, and Ivy Bridge CPU platforms. All
machines were “high-memory”, with 8 GB per CPU.

A downscaling pipeline was run on a single GCM projec-
tion experiment for a single variable. For example, minimum
daily air temperature in SSP2—4.5 from EC-Earth3-Veg-LR
required approximately 500 CPU hours and 3500 GiB hours.
This completes with a wall time of 2-3 h. This work can eas-
ily run in parallel to other downscaling jobs if preemptible
machines are available to the cluster. The complete set of
downscaling jobs could complete within 3 d.

Appendix D: Global temperature and precipitation
changes

In this section, we explore trends in global temperature and
precipitation across GCMs. We report these trends for both
the source data and the bias-adjusted and downscaled data
in order to shed light on how these global trends are af-
fected by QDM and QPLAD. To obtain global values, the
data are averaged using land-weighting. Results are shown in
Fig. D1. We find that when comparing the source data with
the bias-adjusted and downscaled data, global trends in tem-
perature are preserved, and all the differences across mod-
els and scenarios are within 0.1 °C. In contrast, changes
in global precipitation have some amount of inflation across
all models and scenarios. Going further, in the SSP2-4.5
and SSP3-7.0 (respectively) source data, the change in the
average annual mean maximum temperature across models
ranges from 1.71°C (2.56°C) to 4.55°C (6.53°C), and in
the bias-adjusted downscaled data, this range is almost iden-
tical from 1.71°C (2.84 °C) to 4.55°C (6.54 °C). In contrast,
the change in average annual total precipitation ranges from
—0.11 % (—2.47 %) t0 8.99 % (9.61 %) in the source data and
is shifted upwards in the bias-adjusted and downscaled data,
which is from 2.57 % (—0.79 %) to 12.6 % (15.22 %). For
precipitation, the largest change is in the scenario SSP3-7.0,
the CanESM5 model, with a source trend of around 7.5 %
and a trend in our results of 15 %. This model also has one of
the highest precipitation trends in the source data, but there
is no systematic relationship between the magnitude of the
source trend and the magnitude of trend modification. For
example, NorESM2-MM SSP2-4.5 has a trend close to zero
in the source data, and in the results the trend is around 4 %,
whereas BCC-CSM2-MR has a trend of around 2.5 % in both
scenarios, and the alteration is very low at less than 0.2 per-
centage points in both scenarios.
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Figure D1. Changes in temperature and precipitation signals in CMIP6 source models and CMIP6 bias-adjusted and downscaled models.
For each model, scenario, and pixel, the annual average (x axis) and the annual total (y axis) is computed for each year of both the historical
(1995-2015) and future (2080-2100) periods. Then, the data are averaged over space with a land-weighting scheme (e.g., ocean pixels are
assigned zero weight). Finally, the data are averaged over years for both the historical and future period separately, and the difference between
the future and historical global values (x axis) or the percent change between the future and the historical global values (y axis) is plotted.
Data point symbols with transparent borders represent the source model data, while those with black color borders represent the bias-adjusted
and downscaled data. The list of models is restricted to those that have bias-adjusted and downscaled data for both SSP2—4.5 and SSP3-7.0.

Code and data availability. The R/CIL GDPCIR dataset code
base containing notebooks, pipeline architecture, and infrastruc-
ture is publicly available at https://github.com/ClimateImpactLab/
downscaleCMIP6 (last access: 23 October 2023) and archived at
https://doi.org/10.5281/zenodo.6403794 (Malevich et al., 2022a).
The software container and all code used for individual down-
scaling pipeline tasks are publicly available at https://github.
com/ClimateImpactLab/dodola (last access: 23 October 2023)
and archived at https://doi.org/10.5281/zenodo.6383442 (Malevich
et al., 2022b). Our production pipeline was run with release v0.19.0.
The GDPCIR dataset is publicly available and hosted on the Mi-
crosoft Planetary Computer database (https://planetarycomputer.
microsoft.com/dataset/group/cil-gdpcir/, Gergel et al., 2022).
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