Articles | Volume 17, issue 3
https://doi.org/10.5194/gmd-17-1409-2024
https://doi.org/10.5194/gmd-17-1409-2024
Development and technical paper
 | 
16 Feb 2024
Development and technical paper |  | 16 Feb 2024

Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 2: A semi-discrete error analysis framework for assessing coupling schemes

Christopher J. Vogl, Hui Wan, Carol S. Woodward, and Quan M. Bui

Related authors

Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 1: Dust budget analyses and the impacts of a revised coupling scheme
Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang
Geosci. Model Dev., 17, 1387–1407, https://doi.org/10.5194/gmd-17-1387-2024,https://doi.org/10.5194/gmd-17-1387-2024, 2024
Short summary

Related subject area

Numerical methods
A joint reconstruction and model selection approach for large-scale linear inverse modeling (msHyBR v2)
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 17, 8853–8872, https://doi.org/10.5194/gmd-17-8853-2024,https://doi.org/10.5194/gmd-17-8853-2024, 2024
Short summary
Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter
Joonlee Lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee
Geosci. Model Dev., 17, 8799–8816, https://doi.org/10.5194/gmd-17-8799-2024,https://doi.org/10.5194/gmd-17-8799-2024, 2024
Short summary
The Paleochrono-1.1 probabilistic model to derive a common age model for several paleoclimatic sites using absolute and relative dating constraints
Frédéric Parrenin, Marie Bouchet, Christo Buizert, Emilie Capron, Ellen Corrick, Russell Drysdale, Kenji Kawamura, Amaëlle Landais, Robert Mulvaney, Ikumi Oyabu, and Sune Olander Rasmussen
Geosci. Model Dev., 17, 8735–8750, https://doi.org/10.5194/gmd-17-8735-2024,https://doi.org/10.5194/gmd-17-8735-2024, 2024
Short summary
Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)
Jeffrey H. Curtis, Nicole Riemer, and Matthew West
Geosci. Model Dev., 17, 8399–8420, https://doi.org/10.5194/gmd-17-8399-2024,https://doi.org/10.5194/gmd-17-8399-2024, 2024
Short summary
Enhancing Single-Precision with Quasi Double-Precision: Achieving Double-Precision Accuracy in the Model for Prediction Across Scales-Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2986,https://doi.org/10.5194/egusphere-2024-2986, 2024
Short summary

Cited articles

Barrett, A. I., Wellmann, C., Seifert, A., Hoose, C., Vogel, B., and Kunz, M.: One Step at a Time: How Model Time Step Significantly Affects Convection-Permitting Simulations, J. Adv. Model. Earth Syst., 11, 641–658, https://doi.org/10.1029/2018MS001418, 2019. a
Caya, A., Laprise, R., and Zwack, P.: Consequences of Using the Splitting Method for Implementing Physical Forcings in a Semi-Implicit Semi-Lagrangian Model, Mon. Weather Rev., 126, 1707–1713, https://doi.org/10.1175/1520-0493(1998)126<1707:COUTSM>2.0.CO;2, 1998. a
Donahue, A. S. and Caldwell, P. M.: Performance and Accuracy Implications of Parallel Split Physics-Dynamics Coupling in the Energy Exascale Earth System Atmosphere Model, J. Adv. Model. Earth Sy., 12, e2020MS002080, https://doi.org/10.1029/2020MS002080, 2020. a
Dubal, M., Wood, N., and Staniforth, A.: Analysis of Parallel versus Sequential Splittings for Time-Stepping Physical Parameterizations, Mon. Weather Rev., 132, 121–132, https://doi.org/10.1175/1520-0493(2004)131<0121:AOPVSS>2.0.CO;2, 2004. a
Dubal, M., Wood, N., and Staniforth, A.: Mixed Parallel-Sequential-Split Schemes for Time-Stepping Multiple Physical Parameterizations, Mon. Weather Rev., 133, 989–1002, https://doi.org/10.1175/MWR2893.1, 2005. a
Short summary
Generally speaking, accurate climate simulation requires an accurate evolution of the underlying mathematical equations on large computers. The equations are typically formulated and evolved in process groups. Process coupling refers to how the evolution of each group is combined with that of other groups to evolve the full set of equations for the whole atmosphere. This work presents a mathematical framework to evaluate methods without the need to first implement the methods.