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Abstract. Part 1 (Wan et al., 2024) of this study discusses
the motivation and empirical evaluation of a revision to
the aerosol-related numerical process coupling in the at-
mosphere component of the Energy Exascale Earth System
Model version 1 (EAMv1) to address the previously reported
issue of strong sensitivity of the simulated dust aerosol life-
time and dry removal rate to the model’s vertical resolution.
This paper complements that empirical justification of the
revised scheme with a mathematical justification leveraging
a semi-discrete analysis framework for assessing the split-
ting error of process coupling methods. The framework dis-
tinguishes the error due to numerical splitting from the error
due to the time integration method(s) used for each individual
process. Such a distinction results in a framework that pro-
vides an intuitive understanding of the causes of the splitting
error. The application of this framework to the dust life cycle
in EAMv1 confirms (i) that the original EAMv1 scheme ar-
tificially strengthens the effect of dry removal processes and
(ii) that the revised splitting reduces that artificial strength-
ening.

While the error analysis framework is presented in the
context of the dust life cycle in EAMv1, the framework can
be broadly leveraged to evaluate process coupling schemes,
both in other physical problems and for any number of pro-
cesses. This framework will be particularly powerful when
the various process implementations support a variety of time
integration approaches. Whereas traditional local truncation
error approaches require separate consideration of each com-

bination of time integration methods, this framework enables
evaluation of coupling schemes independent of particular
time integration approaches for each process while still al-
lowing for the incorporation of these specific time integra-
tion errors if so desired. The framework also explains how
the splitting error terms result from (i) the integration of in-
dividual processes in isolation from other processes and (ii)
the choices of input state and time step size for the isolated
integration of processes. Such a perspective has the potential
for the rapid development of alternative coupling approaches
that utilize knowledge both about the desired accuracy and
about the computational costs of individual processes.

1 Introduction

Accurate representation of process interactions is an im-
portant and ubiquitous challenge in multiphysics modeling
(Keyes et al., 2013). For the sake of tractability, splitting
methods are widely used that allow for the separate devel-
opment of both the continuum and discrete representation
of individual processes, which are then assembled to form
a multi-process numerical model. In weather, climate, and
Earth system modeling, it has been recognized that how to
combine the different process representations to form a co-
herent and accurate numerical model is a challenge deserving
more attention; see the review paper by Gross et al. (2018)
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and the references therein as well as more recent studies by
authors such as Barrett et al. (2019), Donahue and Caldwell
(2020), Wan et al. (2021), Santos et al. (2021), Ubbiali et al.
(2021), and Zhou and Harris (2022). The dust aerosol life
cycle problem discussed in the companion paper (Wan et al.,
2024) is a recent example from the atmosphere component of
the Energy Exascale Earth System Model version 1 (EAMv1;
Rasch et al., 2019) that shows that different numerical meth-
ods used for process coupling in the overall time integration
can lead to substantially different results at a fixed spatial
resolution as well as to significantly different sensitivities to
spatial resolution change.

That companion paper (Wan et al., 2024) clarified the main
source and sink processes in the dust life cycle in EAMv1,
quantified their relative magnitudes, reflected on the process
coupling scheme used in the default model, proposed a re-
vised coupling scheme, and evaluated the impact of the re-
vised coupling on the simulated aerosol climatology. The dis-
cussions therein are based primarily on the intuition of atmo-
spheric modelers, and the reasoning was verified by confirm-
ing agreement between the expected and obtained numeri-
cal results from EAMv1. To gain more confidence that the
EAMv1 solution obtained with the revised coupling scheme
is indeed a better numerical solution (i.e., closer to the true or
trusted solution than that of the original EAMv1 scheme), a
mathematical explanation for the changes with the revised
coupling is needed. Typically, computational analyses are
done to develop such explanations, including time step self-
convergence studies, such as those in Wan et al. (2013), or
time step sensitivity studies, such as those in Wan et al.
(2021) and Santos et al. (2021). Both of these approaches
are unfortunately impractical in this case, as (in the current
EAM code) the coupling time step for dust emissions, dry
removal, and turbulent mixing is tied to the coupling time
steps of various other atmospheric processes, such as aerosol
microphysics and gas-phase chemistry, deep convection and
aerosol wet removal, and the coupling between the resolved
dynamics and the parameterizations. Thus, without signifi-
cant code structure changes, it is not feasible to isolate the
impact of coupling approaches for the three aerosol processes
that we would like to focus on.

This paper provides a theoretical explanation of the nu-
merical results presented in Part 1 (Wan et al., 2024) and in-
troduces a framework based on truncation error analysis that
can more broadly help address the research gap in numerical
process modeling in weather, climate, and Earth system mod-
eling. In a fully discretized model with process splitting, the
overall local truncation error from time integration includes
contributions from (i) the time integration of each individ-
ual process and (ii) the splitting of each process from the
remaining processes. In the atmosphere modeling literature,
there are a number of theoretical studies that leverage trunca-
tion error analysis to compare the accuracy of different split-
ting methods (e.g., Caya et al., 1998; Staniforth et al., 2002;
Dubal et al., 2004, 2005, 2006; Ubbiali et al., 2021). Consid-

ering the added complexity of the weather, climate, and Earth
system models, especially the long-term and large-team ef-
forts that are typically needed for the continuous develop-
ment of such models, it is useful to understand and reduce
the different types of error separately. Because the numerical
results in Part 1 (Wan et al., 2024) showed substantial sen-
sitivity to the process coupling approach, this work develops
a framework that leverages exact time integration of the pro-
cesses to focus on understanding and reducing the splitting
error. Because the time discretization is also an error source
worth assessing and addressing, the framework is designed to
be flexible enough to incorporate the individual process time
integration errors (see discussion at the end of Sect. 2.4).

In the work of Williamson (2013) that discusses issues
related to atmospheric convection and process splitting, ex-
act time integration is also used for individual processes in
a two-process equation and a three-process equation. How-
ever, the purpose there was to point out a problem in the for-
mulation of a specific parameterization; hence, understand-
ably, that work did not use exact time integration as a general
tool for analyzing splitting errors in physics systems beyond
the two highly idealized and customized equations discussed
therein. In this paper, we demonstrate the usage of exact time
integration within an error analysis framework that distin-
guishes splitting error and the error resulting from temporal
discretization of individual processes, providing an approach
that allows for a focus on the splitting error in general prob-
lems involving two or more processes. While such a focus is
commonplace in the field of mathematics (e.g., Hairer et al.,
2006; LeVeque, 1982), the approach has not caught much at-
tention in the weather and climate modeling communities,
despite the important benefits that its adoption can provide
to the development of sophisticated atmospheric numerical
models.

For example, in EAM and its predecessors, changes in
time integration methods have been implemented both in the
dynamical core representing the resolved fluid dynamics and
in various parameterizations representing sub-grid-scale pro-
cesses. The results from a local truncation error analysis that
did not distinguish between splitting and time integration
sources would become invalid as soon as any time integration
method was changed; hence, separate considerations would
be needed for every combination of time integration methods
used by the dynamical core and the many physics parameter-
izations. In contrast, the results from an error analysis ap-
proach that can consider splitting error independent of time
integration sources are expected to have a better chance of
remaining valid across multiple versions of the same atmo-
sphere model and might even generalize to other atmosphere
models.

Another benefit of the splitting error analysis framework
demonstrated in this work is that the terms in error expres-
sions produced are easily attributed to the coupling choices
made for the individual right-hand-side (RHS) terms of the
continuum equations. In atmosphere modeling terminology,
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the framework goes beyond deriving the splitting errors that
contribute to the overall error in prognostic variables; it also
demonstrates how the coupling choices lead to errors in the
process rates (i.e., rates of change in prognostic variables,
also referred to as tendencies) associated with the various
physical processes. For this work, coupling choices for the
dust source and sink processes are directly mapped to the
splitting error terms that contribute to overall error in the
EAM-simulated mixing ratios. Reducing splitting errors in
the process rates can help avoid compensating errors from
different physical processes and, thus, help ensure the model
provides good predictions of the prognostic variables for the
right reasons. Additionally, understanding the impact of nu-
merical coupling scheme choices at the process level allows
for the development of new coupling strategies that focus on
improving the accuracy of numerical process rates (and the
associated prognostic variables) while considering the com-
putational cost of the various processes.

Whereas the companion paper (Wan et al., 2024) focuses
on motivating the dust life cycle problem and an empirical
comparison of the two coupling methods in consideration,
this paper focuses on how a semi-discrete error analysis sup-
ports the empirical finding that one coupling method leads
to a better numerical solution than the other. This two-part
approach facilitates a detailed description of the framework
with significant pedagogical value to weather and climate
model developers. For example, our own collaboration be-
tween applied mathematicians and atmospheric scientists on
the investigation of dust life cycle in EAMv1 has shown that
a step-by-step explanation of the derivation of splitting errors
resulting from two coupling methods, which are widely used
in weather and climate models, was helpful for the EAM
developers in this collaboration to recognize the relevance,
as well as the generality, of the semi-discrete methodology.
In addition, one of the points that we make in Sect. 3 is
that, after splitting errors are derived for coupling schemes
used in two-process problems, it is possible to use those er-
ror expressions as building blocks to perform back-of-the-
envelope derivations for problems involving more processes,
making the derivations much less tedious and the frame-
work much easier to use by researchers of specific appli-
cations. The discussion in Sect. 3.2 can be viewed as an
example of such a back-of-the-envelope derivation, demon-
strating that the mathematically rigorous framework can be
made accessible to physical scientists working on practical
problems. Given the reinvigorated interest in numerical pro-
cess coupling reflected in the review by Gross et al. (2018)
and the community efforts described in publications such as
Heinzeller et al. (2023), the pedagogical description of the
error analysis framework presented here can be a useful con-
tribution to those model development efforts.

To focus on the error analysis framework, the remainder of
this paper forgoes the background on the motivating dust life
cycle problem and coupling methods in consideration, for
which the reader is referred to Part 1 of this work (Wan et al.,

2024), and instead opens by introducing the analysis frame-
work in Sect. 2 using a generic two-process problem and
deriving the splitting errors associated with the widely used
parallel and sequential splitting methods. Section 3 then ap-
plies the error analysis framework to a three-process problem
inspired by the dust aerosol life cycle in EAMv1. Leading-
order splitting errors are derived for both the original pro-
cess coupling in EAMv1 and the revision proposed in Part
1, and the characteristics of the splitting errors are discussed.
This paper concludes by summarizing results in Sect. 4. Ap-
pendix A and B provide mathematical details of the analysis
framework.

2 A semi-discrete analysis framework for assessing
splitting error of process coupling methods

The error analysis framework demonstrated in this work is
described as semi-discrete in that it takes the perspective that,
while the overall time integration of the model is discrete,
the integration of individual processes is done exactly (i.e.,
there is no temporal discretization for each process). This
perspective is the critical component that allows the frame-
work to isolate the splitting truncation error from that of the
process temporal discretization errors. The semi-discrete ap-
proach allows for the derivation of splitting truncation errors
from how the coupling scheme incorporates individual pro-
cess. By casting the numerical splitting of processes as esti-
mating process rates in a split fashion, the framework iden-
tifies two general coupling method choices that cause split-
ting truncation errors. In Sect. 2.2, those coupling choices
are identified in two widely used coupling methods for two-
process problems. In Sect. 2.3, the splitting truncation error
terms that result from those choices are derived and com-
bined to form the leading-order splitting truncation error for
each coupling method. In Sect. 2.4, the terms in the leading-
order splitting truncation error are attributed back to the cou-
pling method choices in a manner that (i) identifies when the
splitting truncation errors from coupling methods compound
or cancel each other and (ii) provides a workflow to easily
generalize the results to problems with more than two pro-
cesses.

2.1 Notation and definitions

Consider a prognostic equation, with multiple operators, that
can either be an ordinary differential equation (ODE) or a
partial differential equation (PDE). Noting that the “method
of lines” will reduce a PDE to an ODE, the prognostic equa-
tion to be studied herein is introduced in the ODE form:

dq(t)
dt
=

I∑
i=1

Xi
(
q(t)

)
, I > 1, t > 0, q(0)= qIC , (1)

where the different processes, Xi , are discretized and im-
plemented by different components of the model software
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(i.e., the processes are split). At time tn, denote q(tn) and qn

as the exact and numerical (approximate) solutions, respec-
tively. The error at time tn is defined as

En ≡ qn− q(tn).

Let F1t (q input) represent the numerical algorithm that ad-
vances the solution from state q input to state qoutput, where1t
is the time step size used. In other words, denote F1t as the
mapping such that the numerical solution at tn+1 = tn+1t

is

qn+1
= F1t (qn).

The solution error at time tn+1 can be expressed as

En+1
=F1t (qn)− q(tn+1)

=F1t (qn)−F1t
(
q(tn)

)
+F1t

(
q(tn)

)
− q(tn+1)

=
dF1t

dq
(γn)En︸ ︷︷ ︸

propagated error

+F1t
(
q(tn)

)
− q(tn+1)︸ ︷︷ ︸

local truncation error (lte)

, (2)

where γn is a value of q between q(tn) and qn by the mean
value theorem. The error En+1 consists of the evolution of the
existing error at time tn (the propagated error) and the gener-
ation of new error from time tn to tn+1 (the local truncation
error).

If each aforementioned component of the model software
implements a single process in Eq. (1) without using infor-
mation about other processes, then the role of such a com-
ponent of the software can be interpreted as integrating the
following one-process ODE:

dqXi (t)
dt

=Xi
(
qXi (t)

)
, t > tn, qXi (tn)= q

input
Xi

. (3)

Depending on which coupling scheme is used, q input
Xi

can be
the numerical solution of the multi-process problem at tn
(i.e., qn) or some value of the physical quantity, q, passed
to the component of the software, Xi , by another compo-
nent of the software, Xj . In the following, the notation
qXi [t − tn;q

input
Xi
] is used to denote the exact solution of the

one-process ODE (Eq. 3), namely,

qXi [t − tn;q
input
Xi
] ≡ qXi (t)

= q
input
Xi
+

t∫
tn

Xi
(
qXi (η)

)
dη . (4)

The explicit mentioning of q input
Xi

in the square brackets on
the left side of Eq. (4) emphasizes the dependence of qXi
and Xi on q input

Xi
, the significance of which will become clear

below. Using a similar notation for the exact solution of the

multi-process problem Eq. (1), one can write

q[t − tn;q(tn)] ≡ q(t)

= q(tn)+

t∫
tn

I∑
i=1

Xi
(
q(η)

)
dη . (5)

To facilitate comprehension of the derivations below, it is
again emphasized that the time integrals in Eqs. (4) and (5)
are assumed to be exactly evaluated. It is also useful to note
that, by definition,

qXi [0;q
input
Xi
] = q

input
Xi

, q[0;q(tn)] = q(tn) . (6)

2.2 Sources of splitting error

From Eq. (5), one can see the average process rate for Xi
that contributes to the change in q from tn to tn+1t in the
original multi-process ODE is

1
1t

tn+1t∫
tn

Xi

(
q(η)

)
dη

=
1
1t

tn+1t∫
tn

Xi

(
q[η− tn;q(tn)]

)
dη

=
1
1t

1t∫
0

Xi
(
q[η̃;q(tn)

)
dη̃,

while the Xi process considered in isolation using Eq. (4)
results in an approximation to the average process rate of

1
1t

tn+1t∫
tn

Xi

(
qXi (η)

)
dη

=
1
1t

tn+1t∫
tn

Xi

(
qXi [η− tn;q

input
Xi
]

)
dη

=
1
1t

1t∫
0

Xi

(
qXi [η̃;q

input
Xi
]

)
dη̃ .

The discrepancy between these two average process rates has
two sources:

1. The function qXi differs from the function q, as the time
evolution of qXi is controlled by a single process (see
Eq. 3), whereas the evolution of q is controlled by mul-
tiple processes (see Eq. 1).

2. The input state q input
Xi

used for integrating the equation
of process Xi can differ from q(tn).
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In other words, the error in the estimated process rate Xi
(or increment Xi1t) can arise from (1) treating the process
in isolation without considering the influence of other pro-
cesses on the physical quantity, q, and (2) starting the single-
process integration with an input that deviates from the so-
lution of the multi-process ODE. These two types of error
are referred to as isolation-induced error and input-induced
error, respectively, in the remainder of the paper. To further
elaborate on these two sources of splitting error, consider the
following generic two-process ODE:

dq(t)
dt
= A

(
q(t)

)
+B

(
q(t)

)
, t > 0, q(0)= qIC . (7)

It has the following exact solution at tn+1, written in terms of
the exact solution at tn:

q(tn+1)= q(tn)+

1t∫
0

A
(
q[η;q(tn)]

)
+

1t∫
0

B
(
q[η;q(tn)]

]
dη.

Below, the errors of two widely used coupling schemes are
analyzed: parallel and sequential splitting. Both of these
schemes are depicted in Fig. 1 using a flowchart description,
a pseudo-code description, and an ODE description.

2.2.1 Sources of error in parallel splitting

A parallel splitting scheme first lets each model component
estimate the process rate of a single process and then sums
up the corresponding increments to advance an input value
of q to an output value of q. The scheme can be represented
by a mapping qoutput

= FPS
1t (q

input), where

FPS
1t (q

input)≡ q input
+1t

(
A∗+B∗

)
,

A∗ ≡
(
qA[1t;q

input
] − q input

)
/1t ,

B∗ ≡
(
qB [1t;q

input
] − q input

)
/1t .

This gives

FPS
1t (q

input)= q input
+

1t∫
0

A
(
qA[η;q

input
]

)
dη

+

1t∫
0

B
(
qB [η;q

input
]

)
dη. (8)

Recall that the local truncation error for a numerical method
is, per the definition given in Eq. (2), the difference between
the exact solution at tn+1 and the solution at tn+1 obtained
from the numerical method applied to the exact solution at
tn. Thus, the local truncation error for parallel splitting is the
difference between the exact two-process solution given by

Eq. (5) and the result of Eq. (8) with q input
= q(tn):

FPS
1t

(
q(tn)

)
− q(tn+1)

=

1t∫
0

A
(
qA[η;q(tn)]

)
dη−

1t∫
0

A
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
ltePS
A

+

1t∫
0

B
(
qB [η;q(tn)]

)
dη−

1t∫
0

B
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
ltePS
B

. (9)

Note that, as the time integration for A and B both start from
q(tn), there are only local truncation errors caused by treating
A and B in isolation (i.e., no input-induced error). Also note
that, as parallel splitting treats A and B the same way, the
local truncation error expression shows symmetry between
the two processes.

2.2.2 Sources of error in sequential splitting

The sequential splitting scheme discussed here handles dif-
ferent processes in a successive manner, letting each model
compartment operate on an input value of q and return an up-
dated value of q. Here, operator A is evaluated first, and the
result is then used as input to operator B. The method can be
represented by a mapping qoutput

= FSS
1t (q

input), where

FSS
1t (q

input)≡ qB

[
1t;qA[1t;q

input
]

]
(10)

= qA[1t;q
input
] +

1t∫
0

B

(
qB

[
η;qA[1t;q

input
]

])
dη

= q input
+

1t∫
0

A
(
qA[η;q

input
]

)
dη

+

1t∫
0

B

(
qB

[
η;qA[1t;q

input
]

])
dη. (11)

The local truncation error for sequential splitting is the differ-
ence between the exact two-process solution given by Eq. (5)
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Figure 1. The parallel splitting (a1, b1, c1) and sequential splitting (a2, b2, c2) methods for solving the two-process ODE defined in Eq. (7).
Panels (a1) and (a2), (b1) and (b2), and (c1) and (c2) depict the methods in three different ways.

and the result of Eq. (11) with q input
= q(tn):

FSS
1t

(
q(tn)

)
− q(tn+1)

=

1t∫
0

A
(
qA[η;q(tn)]

)
dη−

1t∫
0

A
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteSS
A

+

1t∫
0

B
(
qB

[
η;qA[1t;q(tn)]

])
dη−

1t∫
0

B
(
q[η,q(tn)]

)
dη

︸ ︷︷ ︸
lteSS
B

. (12)

Here, the lteSS
A term is the same as ltePS

A in parallel split-
ting (see Eq. 9) that includes only an isolation-induced error
(qA 6= q), while the lteSS

B term includes not only an isolation-

induced error (qB 6= q) but also an error resulting from the B
process being integrated from an input that has already been
updated by the A process, namely, qA[1t;q(tn)].

2.3 The leading-order error terms

The analysis in the previous subsections provides a qualita-
tive understanding of the sources of errors associated with
different coupling methods. In order to obtain a more quan-
titative assessment of the error magnitudes and identify pos-
sible cancelation of different error terms, Taylor series ex-
pansion is used to derive the leading-order error terms of the
local truncation error. The gist of the method is to expand the
integrals in Sect. 2.2 about 1t = 0, noting the following:

– qXi (t) and q(t) are different functions whose time
derivatives are given by Eqs. (1) and (3), respectively.

Geosci. Model Dev., 17, 1409–1428, 2024 https://doi.org/10.5194/gmd-17-1409-2024
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– The input state q input
Xi

used for integrating the ODE of
process Xi might deviate from the exact solution at tn
in a way that depends on 1t , and hence also need an
expansion. For example, in the case of sequential split-
ting, q input

B = qA[1t;q(tn)].

Appendix A explains in detail how the various integrals in
Sect. 2.2 can be expanded to derive the leading-order error
terms for the parallel and sequential splitting methods. Be-
low, the key pieces of information obtained through these
derivations are highlighted.

2.3.1 Leading-order errors in parallel splitting

The derivation detailed in Appendix A2 indicates that,
when parallel splitting is used, the local truncation error at-
tributable to the integration of processA (i.e., the part marked
with ltePS

A in Eq. 9) is

ltePS
A =

(1t)2

2

(
−

dA
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (13)

From the derivation in Appendix A2, it can be seen that the
leading-order error (the (1t)2 term) results from the fact that
the equation of dqA/dt lacks the B term that appears in the
equation of dq/dt . In other words, the leading-order error
is caused by integrating the A process in isolation without
considering the influence of B. Similarly, the local truncation
error attributable to the integration of process B (i.e., the part
marked with ltePS

B in Eq. 9) is

ltePS
B =

(1t)2

2

(
−

dB
dq
A

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (14)

The leading-order error term is caused by applying theB pro-
cess in isolation without considering the influence of A. The
overall local truncation error for parallel splitting reads as
follows:

FPS
1t

(
q(tn)

)
− q(tn+1)= ltePS

A + ltePS
B

=
(1t)2

2

(
−

dA
dq
B −

dB
dq
A

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (15)

As mentioned earlier, the expression has symmetry between
the processes A and B, as the parallel splitting method treats
the two processes in the same way.

2.3.2 Leading-order errors in sequential splitting

The derivation detailed in Appendix A3 shows that, when
sequential splitting is used, the local truncation errors at-
tributable to the integration of the respective A and B pro-

cesses are as follows:

lteSS
A =

(1t)2

2

(
−

dA
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
, (16)

lteSS
B =

(1t)2

2

(
+

dB
dq
A

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (17)

Here, lteSS
A has the same expression as in parallel splitting

(see Eq. 16 vs. Eq. 13); lteSS
B has the same form as in paral-

lel splitting but a different sign, which results from the fact
that the B process is integrated with an input state already
updated by the A process, and the input-induced error over-
compensates for the error caused by ignoring the influence
of A when integrating the B process (see Appendix A3). The
overall local truncation error for sequential splitting is as fol-
lows:

FSS
1t

(
q(tn)

)
− q(tn+1)= lteSS

A + lteSS
B

=
(1t)2

2

(
−

dA
dq
B +

dB
dq
A

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (18)

2.4 Framework summary and generalization

Leveraging the framework to derive and compare the split-
ting truncation errors of parallel and sequential splitting
provides the following understanding that generalizes be-
yond the two-process problem. Note that a term containing
(dB/dq)A indicates an error caused by inaccurate accounts
of the influence of process A on process B. This can be seen
from the following Taylor expansion:

1t

(
dB
dq
A

)∣∣∣∣
q=q(tn)

=B
(
q(tn)+1tA

(
q(tn)

))
−B

(
q(tn)

)
+O

(
(1t)2

)
.

A negative sign in front of (dB/dq)A suggests a lack or un-
derestimation of the influence of A on B, whereas a positive
sign suggests an overestimation of that influence. Isolation-
induced error in the form of integrating B in isolation will
lead to an underestimation of the influence ofA onB. If there
are additional processes, integrating B in isolation will lead
to an underestimation of the influence of all other processes
on B. Input-induced error in the form of using an input state
updated by a full time step worth ofAwill lead to an overesti-
mation of the influence ofA on B. If there are additional pro-
cesses, using an input state updated by a full time step worth
of A and other processes will lead to an overestimation of
A and those other processes on B. With this understanding,
the framework is easily generalized to coupling methods that
utilize different combinations of input states across numer-
ous processes. The following section will demonstrate such
a generalization to a three-process problem.

It is also worthwhile to note that the framework presented
here can be revised to evaluate the overall truncation error in
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a temporally discretized system. Namely, one would replace
qXi [t − tn;q

input
Xi
] in Appendix A1 with the time integration

scheme used for processXi . For example, if forward Euler is
used for integration of process Xi , one would use

qXi [t − tn;q
input
Xi
] ≡ q

input
Xi
+ (t − tn)Xi

(
q

input
Xi

)
.

Such a revised framework would lead to results equivalent to
those presented in studies such as Ubbiali et al. (2021). That
said, it is also worthwhile to note that such overall truncation
error results can be more difficult to interpret than the results
of the framework presented here. Take, for example, how the
overall truncation error for parallel splitting with forward Eu-
ler time integration of all processes is identical to the over-
all truncation for an unsplit forward Euler approach, which
may seem to suggest that there is no splitting truncation er-
ror for the parallel splitting method in general. However, the
overall truncation error expressions for parallel splitting and
the unsplit approach will not be identical if backward Euler
time integration is instead used, revealing that there is indeed
splitting truncation error for the parallel splitting method.

3 The semi-discrete analysis framework applied to a
three-process problem inspired by EAMv1

The semi-discrete error analysis framework presented in
Sect. 2 is now used to analyze the dust life cycle problem
in EAMv1. The dust mass budget analyses carried out us-
ing EAMv1’s simulation output and presented in Sect. 3.1
of Part 1 (Wan et al., 2024) have revealed that, at the global
scale, the strongest sources and sinks of dust aerosols are (i)
surface emissions, (ii) dry removal, and (iii) turbulent mix-
ing and aerosol activation–resuspension. As such, we focus
on these sources and sinks, ignore the many other aerosol-
related processes in EAM, and consider a canonical three-
process problem:

dq(t)
dt
= A

(
q(t)

)
+B

(
q(t)

)
+C

(
q(t)

)
, t > 0, q(0)= qIC,

(19)

where q is a dust mass mixing ratio, A represents the emis-
sions, B represents dry removal, and C corresponds to tur-
bulent mixing. As in Sect. 2, denote a discrete time step 1t
and discrete time points tn+1 = tn+1t . Denote the numer-
ical solution at time tn+1 as qn+1 and the exact solution it
approximates as q(tn+1). Figure 2 describes two schemes for
obtaining qn+1 from qn, corresponding to the original and re-
vised process coupling schemes in EAMv1 discussed in Wan
et al. (2024).

Consider three single-process ODEs in the form of Eq. (3)
where Xi = A,B, or C, namely,

dqA(t)
dt
= A

(
q(t)

)
, t > tn, qA(tn)= q

input
A ,

dqB(t)
dt
= B

(
q(t)

)
, t > tn, qB(tn)= q

input
B ,

dqC(t)
dt
= C

(
q(t)

)
, t > tn, qC(tn)= q

input
C .

The exact solutions are denoted using the notation defined in
Eq. (4), namely,

qA[t − tn;q
input
A ] ≡ q

input
A +

t∫
tn

A
(
qA(η)

)
dη

= q
input
A +

t−tn∫
0

A
(
qA[η̃;q

input
A ]

)
dη̃,

qB [t − tn;q
input
B ] ≡ q

input
B +

t∫
tn

B
(
qB(η)

)
dη

= q
input
B +

t−tn∫
0

B
(
qB [η̃;q

input
B ]

)
dη̃,

qC[t − tn;q
input
C ] ≡ q

input
C +

t∫
tn

C
(
qC(η)

)
dη

= q
input
C +

t−tn∫
0

C
(
qC[η̃;q

input
C ]

)
dη̃.

3.1 Process coupling schemes

The original EAMv1 uses sequential splitting for all three
processes (see Fig. 2a1, b1, c1), which can be represented by
the mapping

qn+1
= FOri

1t (q
n)≡ qC

[
1t;qB

[
1t;qA[1t;q

n
]

]]
(20)
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Figure 2. Three different descriptions of two process coupling schemes for the three-process problem defined in Sect. 3. The scheme depicted
in panels (a1), (b1), and (c1) corresponds to the original scheme used in EAMv1 for the coupling of aerosol emissions, dry removal, and
the parameterization of turbulent transport and aerosol activation–resuspension. The scheme depicted in the panels (a2), (b2), and (c2)
corresponds to the revised scheme proposed and evaluated in Part 1 (Wan et al., 2024). We note that these descriptions are simplified versions
of the coupling implemented in EAMv1. Here, we focus only on the three strongest sources and sinks of the global mean dust budget
presented in Sect. 3 of Wan et al. (2024), while the many other processes in EAMv1 (see Fig. 1 in Wan et al., 2024) are omitted.
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or, equivalently,

qn+1
= qC

[
1t; qn+

(
qA[1t;q

n
] − qn

)
+

(
qB
[
1t;qA[1t;q

n
]
]
− qA[1t;q

n
]

)]
. (21)

Defining

A∗ ≡
(
qA[1t;q

n
]−qn

)
/1t , (22)

B∗ ≡
(
qB [1t;q

n
]−qn

)
/1t , (23)

the revised coupling scheme depicted in Fig. 2a2, b2, and c2
can be represented by the mapping

qn+1
= FRev

1t (q
n)≡ qC

[
1t;qn+1t

(
A∗+B∗

)]
or, equivalently,

qn+1
= qC

[
1t;qn+

(
qA[1t;q

n
]−qn

)
+

(
qB [1t;q

n
] − qn

)]
. (24)

3.2 Leading-order error terms

The original and revised coupling schemes described in
Eqs. (20) and (24) can be viewed as different combinations
of the two-process sequential and parallel splitting schemes
discussed in Sect. 2. Based on the discussions in that section,
and keeping in mind that the focus here is the local trunca-
tion error, one can make the following reasoning about the
original coupling scheme in EAMv1:

– For process A, as the solution procedure starts from the
exact solution at tn and integrates the A term in isola-
tion, one expects to get order (1t)2 errors caused by
performing time integration without considering the im-
pacts of B and C on the A process. The coefficients in
front of (dA/dq)B and (dA/dq)C are expected to be
−(1t)2/2. In other words, the splitting truncation error
associated with the A process is expected to be

lteOri
A =

(1t)2

2

[
dA
dq
(−B −C)

]∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (25)

– For process B, as the solution procedure starts from a
mixing ratio updated by A and ignores the A and C
terms on the RHS of the original ODE, one expects
there to be two error terms caused by integrating B in
isolation and an error associated with the input state.
The input-induced error is expected to overcompensate
for the error caused by ignoring the impact of A on the
B process. Hence, the splitting truncation error associ-
ated with the B process is expected to have the form

lteOri
B =

(1t)2

2

[
dB
dq
(+A−C)

]∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (26)

– For process C, the solution procedure starts from a
mixing ratio updated by both A and B, and the C
term is integrated in isolation. Therefore, one expects
to have two input-induced errors overcompensating for
two isolation-induced errors, giving a splitting trunca-
tion error in the form of

lteOri
C =

(1t)2

2

[
dC
dq
(+A+B)

]∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (27)

The overall local truncation error in the original coupling is
expected to be

FOri
1t

(
q(tn)

)
− q(tn+1)= lteOri

A + lteOri
B + lteOri

C

=
(1t)2

2

[
dA
dq
(−B −C)+

dB
dq
(A−C)+

dC
dq
(A+B)

]∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (28)

The revised coupling scheme differs from the original
scheme only in the input state for the integration of theB pro-
cess; see Eq. (24) vs. Eq. (21). Therefore, one expects that the
splitting truncation errors associated with the other two pro-
cesses, A and C, are the same as in the original scheme and
that the splitting truncation error associated with the B pro-
cess has a minus sign instead of a plus sign for the (dB/dq)A
term (i.e., no input-induced error, only the isolation-induced
error). In other words,

lteRev
A =

(1t)2

2

[
dA
dq
(−B −C)

]∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
, (29)

lteRev
B =

(1t)2

2

[
dB
dq
(−A−C)

]∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
, (30)

lteRev
C =

(1t)2

2

[
dC
dq
(+A+B)

]∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
, (31)

and the overall local truncation error is expected to be

FRev
1t

(
q(tn)

)
− q(tn+1)= lteRev

A + lteRev
B + lteRev

C

=
(1t)2

2

[
dA
dq
(−B −C)+

dB
dq
(−A−C)+

dC
dq
(A+B)

]∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (32)

All of the error expressions in Eqs. (25)–(32) are confirmed
by the step-by-step derivations presented in Appendix B.
This agreement demonstrates how the two-process splitting
truncation error results can be leveraged as building blocks
to derive splitting truncation errors for multi-process prob-
lems using logical reasoning instead of Taylor series expan-
sions. In other words, the derivation of splitting truncation
error for multi-process problems does not always have to be
done in the step-by-step manner in Appendix B. The logical
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reasoning approach not only can facilitate rapid development
of alternative coupling schemes but also makes the frame-
work more accessible to model developers on the physics
side who might find the lengthy calculus derivations too te-
dious or daunting.

3.3 Characteristics of the leading-order error terms
inferred from EAMv1 results

Recall that the three RHS terms in the three-process ODE
discussed above are meant to represent the respective surface
emissions (A), dry removal (B), and turbulent mixing (C) of
dust aerosols in EAMv1. The parameterization descriptions
and EAMv1 simulations presented in Sects. 2 and 3 of Part
1 (Wan et al., 2024) can be used to infer several features of
the leading-order error terms listed above in Sect. (3.2). The
dust budget analyses shown in Sect. 3 of Wan et al. (2024)
indicate that the dominant sources and sinks are found in the
lowest model layer in the dust source regions, whereA (emis-
sion) is a source, B (dry removal) is typically a sink, and C
(turbulent mixing) is typically a sink (i.e., A> 0, B < 0, and
C < 0). Given the same air density and deposition velocity,
the downward dry removal flux at the Earth’s surface is pro-
portional to the mean dust mixing ratio of the layer (see Eq. 1
in Wan et al., 2024). This means that one can expect

dB
dq

< 0 (33)

to be true in typical cases. Equation (33) is confirmed by the
scatterplot in Fig. 3, where the dry removal rate B is plotted
against dust mixing ratio q using 90 d of 6-hourly output in
dust source regions simulated with the original EAMv1.

It then follows that the local truncation error associated
with the B process in EAMv1’s original process coupling
(see Eq. 26) can be written as

lteOri
B =−

(1t)2

2

[∣∣∣∣dBdq
∣∣∣∣(|A| + |C|)]∣∣∣∣

q=q(tn)

+O
(
(1t)3

)
, (34)

and the local truncation error of the B process in the revised
coupling scheme (see Eq. 30) can be written as

lteRev
B =

(1t)2

2

[∣∣∣∣dBdq
∣∣∣∣(|A| − |C|)]∣∣∣∣

q=q(tn)

+O
(
(1t)3

)
. (35)

Because
∣∣|A| − |C|∣∣≤ |A| + |C|, with equality only when A

or C is zero, it is expected that the magnitude of the leading-
order local truncation error associated with process B is
smaller in the revised coupling than in the original scheme,
i.e.,∣∣lteRev

B

∣∣. ∣∣∣lteOri
B

∣∣∣ . (36)

This result, combined with the fact that the local truncation
errors associated with the other two processes (A and C)

Figure 3. Dust aerosol dry removal rate (y axis) plotted against dust
aerosol mixing ratio (x axis) in the lowest model layer in dust source
regions simulated by the original EAMv1 using a vertical grid with
72 layers. The data used in the figure included 90 d of 6-hourly in-
stantaneous output.

have the same expressions in the original and revised cou-
pling schemes, provides a justification for adopting the re-
vised scheme in EAMv1.

To see that Eq. (36) holds in practice, it is useful to first
note that the main leading-order difference between lteOri

B

in Eq. (26) and lteRev
B in Eq. (30) is the term (A−C) vs.

(−A−C), respectively, evaluated at q = q(tn). While the
values of A

(
q(tn)

)
and C

(
q(tn)

)
are not feasible to obtain

in practice, as q(tn) is the exact solution, the approximate
A and C values calculated and used in EAMv1 simulations
are relatively straightforward to obtain using the online diag-
nostic tool of Wan et al. (2022), as was done in Part 1 (Wan
et al., 2024). Figure 4 shows the annual mean values of the
computed (A−C) and (−A−C) in dust source regions in
North Africa, using both the original and revised coupling
methods.

When the original coupling method is used, the magni-
tude of (A−C) ranges from being slightly to substantially
larger than the magnitude of (−A−C). When the revised
coupling is used, the magnitude of (A−C) is substantially
larger everywhere compared with that of (−A−C). Both re-
sults support that the leading-order term in lteRev

B is smaller
in magnitude than that of the leading-order term in lteOri

B , i.e.,
Eq. (36).

It is also worth noting that the leading-order term in lteOri
B

is negative (by Eq. 34), and, as B itself is negative, the neg-
ative leading-order term in the truncation error indicates an
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Figure 4. Comparison of key terms in the splitting truncation error associated with dry removal (process B) using 10-year mean interstitial
dust mass mixing ratio process rates (unit: kg kg−1 s−1) caused by emissions (process A) and dry removal (process B) in the lowest model
layer in EAMv1 simulations using the original coupling scheme (a, b) and the revised scheme (c, d).

overestimation of the B process at each time step of the orig-
inal coupling method. The study by Feng et al. (2022) has
pointed out that dust dry removal in EAMv1 is generally
overestimated in dust source regions; thus, the reduction in
|lteB | shown in Eq. (36) is consistent with the significantly
weaker dry removal seen in Part 1 (Wan et al., 2024) when
the revised method is used instead of the original method
in EAMv1. While the local truncation error caused by pro-
cess splitting is not the only source of error in global simu-
lations (other error sources include propagated splitting er-
ror in Eq. 2, temporal and spatial discretization errors in dry
removal and other aerosol processes, model formulation er-
ror, and parameter uncertainty, among others), the theoretical
analysis here and the global simulations in Feng et al. (2022)
and Wan et al. (2024) suggest that lteOri

B is likely an impor-
tant contributor to the overly strong dust dry removal in the
original EAMv1.

4 Summary and conclusions

A semi-discrete error analysis framework was introduced for
assessing splitting error of process coupling methods. By
assuming that the time integration of each individual pro-
cess is exact, the framework identified two general sources
of splitting error. The first is denoted isolation-induced er-
ror and is from the integration, exact or otherwise, of a pro-
cess without the influence of other processes (i.e., in isola-
tion). The second is denoted input-induced error and is from

starting the single-process integration from an input that de-
viates from the full solution of the multi-process equation.
The corresponding splitting truncation error terms from those
two sources were derived for a generic two-process prob-
lem for two common coupling methods: parallel splitting and
sequential splitting. The parallel splitting method results in
isolation-induced error from both processes. The combina-
tion of isolation-induced errors leads to an underestimation
of the influence of the one process on the other. The sequen-
tial splitting method results in isolation-induced error from
the first process that is integrated in a time step and in both
types of error for the second process. The combination of the
two types of errors leads to an underestimation of the influ-
ence of the second process on the first, as in parallel splitting,
but the input-induced error from the second process is shown
to overcompensate for the isolation-induced error from the
first process. Thus, sequential splitting results in an overesti-
mate of the influence of the first process on the second pro-
cess.

A three-process problem and two coupling schemes were
analyzed that corresponded to the coupling of dust emissions,
dry removal, and turbulence mixing in the original EAMv1
and the revised coupling scheme proposed in Part 1 (Wan
et al., 2024). The semi-discrete analysis revealed that the
original and revised coupling schemes have the same forms
of leading-order error for the emissions and turbulent mixing,
while the magnitude of the local truncation error in dry re-
moval is smaller in the revised scheme. Assuming it is useful,
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especially in the long run, to address different error sources in
EAM separately, this result provides a justification to adopt
the revised coupling in EAMv1. The analysis also revealed
that the local truncation error of the dry removal process in
the original EAMv1 corresponds to an overestimation of the
dry removal rate. This result, combined with the EAMv1 re-
sults presented in Feng et al. (2022) and Wan et al. (2024),
suggests that the sequential splitting of emissions, dry re-
moval, and turbulent mixing is likely an important contrib-
utor to the overestimated dry removal in dust source regions
in the original EAMv1.

While the error analysis framework is presented in the con-
text of discussions on the dust life cycle in EAMv1, using
the framework as done in this work is much more general.
For one, such a framework can be used to analyze coupling
methods beyond the two schemes discussed here and in Part
1 (Wan et al., 2024) as well as numerical coupling prob-
lems involving more than three processes. Additionally, be-
cause many applications rely on low-order coupling methods
such as those discussed here, this paper shows how such a
framework can be used to inform coupling approach choices
in areas beyond atmospheric climate, including hydrology,
fusion, reactive flow modeling, and many others. As such,
the authors plan to use the framework to help further reduce
splitting errors in EAM and other applications.

Appendix A: Derivation of the leading-order error
terms in a generic two-process ODE

This section details the step-by-step derivation of the
leading-order local truncation error terms caused by apply-
ing the parallel splitting and sequential splitting methods to
solving the two-process problem defined in Eq. (7). The start-
ing point is the local truncation error terms lteSS

A and lteSS
B in

Eq. (12) and ltePS
A and ltePS

B in Eq. (9).

A1 Taylor expansion of an integral

The Taylor expansion of an integral is a key element in deriv-
ing the leading-order terms. As such, it is formalized herein.
Recall from Eq. (5) that q[η;φ] is the exact solution of the
multi-process problem Eq. (1) evolved from input state φ for
time η. For a function f (δ) defined as

f (δ)=

δ∫
0

F
(
q[η;φ]

)
dη,

the first and second derivatives are

f ′(δ)= F
(
q[δ;φ]

)
and

f ′′(δ)=
dF
dq

(
q[δ;φ]

)dq
dt
[δ;φ],

respectively, and thus

f (0)= 0,

f ′(0)= F
(
q[0;φ]

)
= F(φ),

f ′′(0)=
dF
dq

(
q[0,φ]

)dq
dt
[0;φ] =

dF
dq
(φ)

dq
dt
[0;φ].

Note that Eq. (6) was used to simplify the expression. The
Taylor expansion of f (1t) about 1t = 0 is now given as

f (1t)=f (0)+1t f ′(0)+
(1t)2

2
f ′′(0)+O

(
(1t)3

)
=0+1t F(φ)+

(1t)2

2
dF
dq
(φ)

dq
dt
[0;φ]

+O
(
(1t)3

)
. (A1)

Note that Eq. (A1) can be used to show both that

1t∫
0

A
(
q[η;q(tn)]

)
dη =1tA

(
q(tn)

)
+
(1t)2

2

(
dA
dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
(A2)

and
1t∫

0

B
(
q[η;q(tn)]

)
dη =1tB

(
q(tn)

)
+
(1t)2

2

(
dB
dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (A3)

A2 Parallel splitting

Recall the local truncation error term for parallel splitting in
Eq. (9):

ltePS
A =

1t∫
0

A
(
qA[η;q(tn)]

)
dη−

1t∫
0

A
(
q[η;q(tn)]

)
dη. (A4)

The second integral is expanded using Eq. (A2). For the first
integral, use Eq. (A1), with F = A, q = qA, and φ = q(tn) so
that F

(
q[η;φ]

)
= A

(
qA[η;q(tn)]

)
, to find

1t∫
0

A
(
qA[η;q(tn)]

)
dη =1tA

(
q(tn)

)
+
(1t)2

2
dA
dq

(
q(tn)

)dqA
dt
[0;q(tn)] +O

(
(1t)3

)
,
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which can be simplified using Eq. (3) to get

1t∫
0

A
(
qA[η;q(tn)]

)
dη =1tA

(
q(tn)

)
+
(1t)2

2

(
dA
dq
A

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
.

The expansions of the integrals in Eq. (A4) are now com-
bined to find

ltePS
A =−

(1t)2

2

(
dA
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
,

as shown in Eq. (13). Recall the other local truncation error
term from Eq. (9):

ltePS
B =

1t∫
0

B
(
qB [η;q(tn)]

)
dη−

1t∫
0

B
(
q[η;q(tn)]

)
dη. (A5)

The second integral is expanded using Eq. (A3). For the first
integral, use Eq. (A1), with F = B, q = qB , and φ = q(tn)
so that F

(
q[η;φ]

)
= B

(
qB [η;q(tn)]

)
, to find∫ 1t

0
B
(
qB [η;q(tn)]

)
dη =1t B

(
q(tn)

)
+
(1t)2

2
dB
dq

(
q(tn)

)dqB
dt
[0;q(tn)]

+O
(
(1t)3

)
,

(A6)

which can be simplified using Eq. (3) to get

1t∫
0

B
(
qB [η;q

n
]

)
dη =1t B

(
q(tn)

)
+
(1t)2

2

(
dB
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
.

The expansions of the integrals in Eq. (A5) are now com-
bined to find

ltePS
B =−

(1t)2

2

(
dB
dq
A

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
,

as shown in Eq. (14).

A3 Sequential splitting

Recall the local truncation error term for sequential splitting
in Eq. (12):

lteSS
A =

1t∫
0

A
(
qA[η;q(tn)]

)
dη−

1t∫
0

A
(
q[η;q(tn)]

)
dη.

Note that lteSS
A is equivalent to ltePS

A , which has already been
derived in Sect. A2 and is equivalent to Eq. (16). Recall the
other local truncation error term from Eq. (12):

lteSS
B =

1t∫
0

B
(
qB
[
η;qA[1t;q(tn)]

])
dη

−

1t∫
0

B
(
q[η;q(tn)]

)
dη. (A7)

The second integral is expanded using Eq. (A3).
For the first integral, use Eq. (A1), with F = B,
q = qB , and φ = qA[1t;q(tn)] so that F

(
q[η;φ]

)
=

B
(
qB [η;qA[1t;q(tn)]

)
, to find

1t∫
0

B

(
qB

[
η;qA[1t;q(tn)]

])
dη =1t B

(
qA[1t;q(tn)]

])

+
(1t)2

2
dB
dq

(
qA[1t;q(tn)]

)dqB
dt

[
0,qA[1t;q(tn)]

]
+O

(
(1t)3

)
,

which can be simplified using Eq. (3) to get

1t∫
0

B

(
qB

[
η;qA[1t;q(tn)]

])
dη =1t B

(
qA[1t;q(tn)]

)

+
(1t)2

2

(
dB
dq
B

)∣∣∣∣
q=qA[1t;q(tn)]

+O
(
(1t)3

)
. (A8)

To continue the expansion, use

qA[1t;q(tn)] = qA[0;q(tn)] +1t
dqA
dt
[0;q(tn)] +O

(
(1t)2

)
= q(tn)+1tA

(
q(tn)

)
+O

(
(1t)2

)
(A9)
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to get

1t B
(
qA[1t;q(tn)]

)
=1t B

(
q(tn)

)
+ (1t)2

(
dB

dq
A

)∣∣∣
q=q(tn)

+O
(
(1t)3

)

and

(1t)2

2

(
dB
dq
B

)∣∣∣∣
q=qA[1t;q

n]

=
(1t)2

2

(
dB
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
.

This allows for the simplification of Eq. (A8) to

1t∫
0

B
(
qB
[
η;qA[1t;q(tn)]

])
dη

=1t B
(
q(tn)

)
+ (1t)2

(
dB

dq
A

)∣∣∣
q=q(tn)

+
(1t)2

2

(
dB
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (A10)

The expansions of the integrals in Eq. (A7) are now com-
bined to find

lteSS
B =

(1t)2

2

(
dB
dq
A

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
,

as shown in Eq. (17). It is worth noting that compared with
the expansion of Eq. (A6), the expansion of Eq. (A8) has
an extra term (1t)2

( dB
dq A

)∣∣
q=q(tn)

that results from the se-
quential splitting method using qA[1t;q(tn)] (the value of q
already updated by process A) as the input when integrating
the dqB/dt equation. This leads to the sign difference be-
tween lteSS

B and ltePS
B that can be traced to the fact that the

input used when integrating process B, i.e., qA[1t;q(tn)],
results in a leading-order error in the solution that overcom-
pensates for the leading-order term caused by integrating the
equation of dqB/dt without an A term on the RHS.

Appendix B: Derivation of the leading-order error
terms in a three-process ODE

This section details the derivation of the leading-order local
truncation error terms caused by the original splitting and re-
vised splitting methods to solving the three-process problem
defined in Eq. (19). As it will be useful herein, start by using

Eq. (A1) to show that

1t∫
0

A
(
q[η;q(tn)]

)
dη =1tA

(
q(tn)

)
+
(1t)2

2

(
dA
dq
(A+B +C)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
, (B1)

1t∫
0

B
(
q[η;q(tn)]

)
dη =1tB

(
q(tn)

)
+
(1t)2

2

(
dB
dq
(A+B +C)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
, (B2)

and
1t∫

0

C
(
q[η;q(tn)]

)
dη =1tC

(
q(tn)

)
+
(1t)2

2

(
dC
dq
(A+B +C)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (B3)

B1 Revised splitting

The mapping in the revised splitting described in Eq. (24)
can be written as

FRev
1t

(
q(tn)

)
= qC

[
1t;q(tn)+1t(A

∗
+B∗)

]
= q(tn)+1t(A

∗
+B∗)

+

1t∫
0

C
(
qC[η;q(tn)+1t(A

∗
+B∗)]

)
dη

= q(tn)+

1t∫
0

A
(
qA[η;q(tn)]

)
dη

+

1t∫
0

B
(
qB [η;q(tn)]

)
dη

+

1t∫
0

C
(
qC
[
η;q(tn)+1t(A

∗
+B∗)

])
dη.

Thus, the local truncation error is expressed as

FRev
1t

(
q(tn)

)
− q(tn+1)=

1t∫
0

A
(
qA[η;q(tn)]

)
dη−

1t∫
0

A
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteRev
A

+

1t∫
0

B
(
qB [η;q(tn)]

)
dη−

1t∫
0

B
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteRev
B

+

1t∫
0

C
(
qC
[
η;q(tn)+1t(A

∗
+B∗)

])
dη−

1t∫
0

C
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteRev
C

.
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The leading-order terms in lteRev
A , lteRev

B , and lteRev
C will now

be derived in a manner similar to their two-process counter-
parts in Sect. A. For lteRev

A , the second integral is expanded
using Eq. (B1). For the first integral in lteRev

A , use Eq. (A1),
with F = A, q = qA, and φ = q(tn) so that F

(
q[η;φ]

)
=

A
(
qA[η;φ]

)
, to find

1t∫
0

A
(
qA[η;q(tn)]

)
dη =1tA

(
q(tn)

)
+
(1t)2

2
dA
dq

(
q(tn)

)dqA
dt
[0;q(tn)] +O

(
(1t)3

)
,

which can be simplified using Eq. (6) to get

1t∫
0

A
(
qA[η;q(tn)]

)
dη =1tA

(
q(tn)

)
+
(1t)2

2

(
dA
dq
A

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (B4)

The expansions of the integrals in lteRev
A are now combined

to find

lteRev
A =

(1t)2

2

(
−

dA
dq

(
B +C

))
+O

(
(1t)3

)
,

which is equivalent to the expression in Eq. (29). For lteRef
B ,

the second integral is expanded using Eq. (B2). For the first
integral in lteRev

B , use Eq. (A1), with F = B, q = qB , and φ =
q(tn) so that F

(
q[η;φ]

)
= B

(
qB [η;φ]

)
, to find

1t∫
0

B
(
qB [η;q(tn)]

)
dη =1tB

(
q(tn)

)
+
(1t)2

2
dB
dq

(
q(tn)

)dqB
dt
[0;q(tn)] +O

(
(1t)3

)
,

which can be simplified using Eq. (6) to get

1t∫
0

B
(
qB [η;q(tn)]

)
dη =1tB

(
q(tn)

)
+
(1t)2

2

(
dB
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
. (B5)

The expansions of the integrals in lteRev
B are now combined

to find

lteRev
B =

(1t)2

2

(
−

dB
dq

(
A+C

))
+O

(
(1t)3

)
,

which is equivalent to the expression in Eq. (30). For
lteRev
C , the second integral is expanded using Eq. (B3). For

the first integral in lteRev
C , we use Eq. (A1) with F = C,

q = qC , and φ = q(tn)+1t(A∗+B∗) so that F
(
q[η;φ]

)
=

C
(
qC
[
η;q(tn)+1t(A

∗
+B∗)

])
, to find

1t∫
0

C
(
qC
[
η;q(tn)+1t(A

∗
+B∗)

])
dη =1tC

(
q(tn)+1t(A

∗
+B∗)

)
+
(1t)2

2
dC
dq

(
q(tn)+1t(A

∗
+B∗)

)
×

dqC
dt
[0;q(tn)+1t(A∗+B∗)] +O

(
(1t)3

)
,

which can be simplified using Eq. (6) to get

1t∫
0

C
(
qC
[
η;q(tn)+1t(A

∗
+B∗)

])
dη =

1tC
(
q(tn)+1t(A

∗
+B∗)

)
+
(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=q(tn)+1t(A∗+B∗)

+O
(
(1t)3

)
. (B6)

To continue the expansion, use Eqs. (B4) and (B5) to see that

q(tn)+1t(A
∗
+B∗)= q(tn)+

1t∫
0

A
(
qA[η;q(tn)]

)
dη

+

1t∫
0

B
(
qB [η;q(tn)]

)
dη

= q(tn)+1t

(
A
(
q(tn)

)
+B

(
q(tn)

))
+O

(
(1t)2

)
,

which gives

1tC
(
q(tn)+1t(A

∗
+B∗)

)
=1tC

(
q(tn)

)
+ (1t)2

(
dC
dq

(
A+B

))∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
and

(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=q(tn)+1t(A∗+B∗)

=
(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
.

This allows the simplification of Eq. (B6) to

1t∫
0

C
(
qC
[
η;q(tn)+1t(A

∗
+B∗)

])
dη =1tC

(
q(tn)

)
+ (1t)2

(
dC
dq
(A+B)

)∣∣∣∣
q=q(tn)

+
(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
.
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The expansions of the integrals in lteRev
C are now combined

to find

lteRev
C =

(1t)2

2

(
dC
dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
,

which is equivalent to the expression in Eq. (31).

B2 Original splitting

The mapping in the original splitting described in Eq. (20)
can be written as

FOri
1t

(
q(tn)

)
= qC

[
1t;qB

[
1t;qA[1t;q(tn)]

]]
= qB

[
1t;qA[1t;q(tn)]

]
+

1t∫
0

C

(
qC

[
η;qB

[
1t;qA[1t;q(tn)]

]])
dη

= qA[1t;q(tn)] +

1t∫
0

B
(
qB
[
η;qA[1t;q(tn)]

])
dη

+

1t∫
0

C

(
qC

[
η;qB

[
1t;qA[1t;q(tn)]

]])
dη

= q(tn)+

1t∫
0

A
(
qA[η;q(tn)]

)
dη

+

1t∫
0

B
(
qB
[
η;qA[1t;q(tn)]

])
dη

+

1t∫
0

C

(
qC

[
η;qB

[
1t;qA[1t;q(tn)]

]])
dη.

Thus, the local truncation error is expressed as

FOri
1t

(
q(tn)

)
− q(tn+1) dη =

1t∫
0

A
(
qA[η;q(tn)]

)
−

1t∫
0

A
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteOri
A

+

1t∫
0

B
(
qB
[
η;qA[1t;q(tn)]

])
dη−

1t∫
0

B
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteOri
B

+

1t∫
0

C

(
qC

[
η;qB

[
1t;qA[1t;q(tn)]

]])
dη−

1t∫
0

C
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteOri
C

.

(B7)

Note that lteOri
A is equivalent to lteRev

A , which has already been
derived in Sect. B1 and is equivalent to the expression in

Eq. (25). For lteOri
B , the second integral is expanded using

Eq. (B2). For the first integral in lteOri
B , use Eq. (A1), with

F = B, q = qB , and φ = qA[1t;q(tn)] so that F
(
q[η;φ]

)
=

B
(
qB
[
η;qA[1t;q(tn)], to find

1t∫
0

B
(
qB
[
η;qA[1t;q(tn)]

])
dη =1tB

(
qA[1t;q(tn)]

)
+
(1t)2

2
dB
dq

(
qA[1t;q(tn)]

)dqB
dt

[
0;qA[1t;q(tn)

]
+O

(
(1t)3

)
,

which can be simplified using Eq. (6) to get

1t∫
0

B
(
qB
[
η;qA[1t;q(tn)]

])
dη =1tB

(
qA[1t;q(tn)]

)
+
(1t)2

2

(
dB
dq
B

)∣∣∣∣
q=qA[1t;q(tn)]

+O
(
(1t)3

)
.

We can now use the expansion of qA[1t;q(tn)] in Eq. (A9)
to simplify further:

1t∫
0

B
(
qB
[
η;qA[1t;q(tn)]

])
dη =1tB

(
q(tn)

)
+ (1t)2

(
dB
dq
A

)
+
(1t)2

2

(
dB
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
.

The expansions of the integral in lteOri
B are now combined to

find

lteOri
B =

(1t)2

2

(
dB
dq
(A−C)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
,

which is equivalent to the expression in Eq. (26). For
lteOri
C , the second integral is expanded using Eq. (B3). For

the first integral in lteOri
C , use Eq. (A1), with F = C, q =

qC , and φ = qB
[
1t;qA[1t;q(tn)]

]
so that F

(
q[η;φ]

)
=

C

(
qC

[
η;qB

[
1t;qA[1t;q(tn)]

]])
, to find

1t∫
0

C

(
qC

[
η;qB

[
1t;qA[1t;q(tn)]

]])
dη =1tC

(
qB
[
1t;qA[1t;q(tn)]

])

+
(1t)2

2
dC
dq

(
qB
[
1t;qA[1t;q(tn)]

])dqC
dt

[
0;qB

[
1t;qA[1t;q(tn)]

]]
+O

(
(1t)3

)
,

which can be simplified using Eq. (6) to get

1t∫
0

C

(
qC

[
η;qB

[
1t;qA[1t;q(tn)]

]])
dη =1tC

(
qB
[
1t;qA[1t;q(tn)]

])

+
(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=qB

[
1t;qA[1t;q(tn)]

] +O
(
(1t)3

)
. (B8)

https://doi.org/10.5194/gmd-17-1409-2024 Geosci. Model Dev., 17, 1409–1428, 2024



1426 C. J. Vogl et al.: Error analysis for process coupling

To continue the expansion, use

qB
[
1t;qA[1t;q(tn)]

]
= qB

[
0;qA[1t;q(tn)]

]
+1t

dqB
dt

[
0;qA[1t;q(tn)]

]
+O

(
(1t)2

)
= qA[1t;q(tn)] +1tB

(
qA[1t;q(tn)]

)
+O

(
(1t)2

)
to get

1tC
(
qB
[
1t;qA[1t;q(tn)]

])
=1tC

(
qA[1t;q(tn)]

)
+ (1t2)

(
dC
dq
B

)∣∣∣∣
q=qA[1t;q(tn)]

+O
(
(1t)3

)
and

(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=qB

[
1t;qA[1t;q(tn)]

]
=
(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=qA[1t;q(tn)]

+O
(
(1t)3

)
.

We can use the expansion of qA[1t;q(tn)] in Eq. (A9) to
further simplify the above terms to the following:

1tC
(
qB
[
1t;qA[1t;q(tn)]

])
=1tC

(
q(tn)

)
+ (1t)2

(
dC
dq
A

)∣∣∣∣
q=q(tn)

+ (1t2)

(
dC
dq
B

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
=1tC

(
q(tn)

)
+ (1t)2

(
dC
dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
and

(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=qB

[
1t;qA[1t;q(tn)]

] = (1t)22

(
dC
dq
C

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
.

This allows the simplification of Eq. (B8) to

1t∫
0

C

(
qC

[
η;qB

[
1t;qA[1t;q(tn)]

]])
dη

=1tC
(
q(tn)

)
+
(1t)2

2

(
dC
dq
C

)∣∣∣∣
q=q(tn)

+ (1t)2
(

dC
dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
.

The expansions of the integrals in lteOri
C are now combined to

find

lteOri
C = (1t)

2
(

dC
dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(1t)3

)
,

which is equivalent to the expression in Eq. (27).
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