Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Fa Li
Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
Qing Zhu
CORRESPONDING AUTHOR
Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
William J. Riley
Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Department of Civil and Environmental Engineering, University of
Illinois Urbana-Champaign, Champaign, IL, USA
Li Xu
Department of Earth System Science, University of California Irvine, Irvine, CA, USA
Kunxiaojia Yuan
Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
Min Chen
Department of Forest and Wildlife Ecology, University of
Wisconsin-Madison, Madison, WI, USA
Huayi Wu
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
Zhipeng Gui
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan, China
Jianya Gong
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan, China
James T. Randerson
Department of Earth System Science, University of California Irvine, Irvine, CA, USA
Related authors
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025, https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
Short summary
The absence of globally consistent and spatially continuous urban surface input has long hindered large-scale high-resolution urban climate modeling. Using remote sensing, cloud computing, and machine learning, we developed U-Surf, a 1 km dataset providing key urban surface properties worldwide. U-Surf enhances urban representation across scales and supports kilometer-scale urban-resolving Earth system modeling unprecedentedly, with broader applications in urban studies and beyond.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Elsa Abs, Christoph Keuschnig, Pierre Amato, Chris Bowler, Eric Capo, Alexander Chase, Luciana Chavez Rodriguez, Abraham Dabengwa, Thomas Dussarrat, Thomas Guzman, Linnea Honeker, Jenni Hultman, Kirsten Küsel, Zhen Li, Anna Mankowski, William Riley, Scott Saleska, and Lisa Wingate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1716, https://doi.org/10.5194/egusphere-2025-1716, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Meta-omics technologies offer new tools to understand how microbial and plant functional diversity shape biogeochemical cycles across ecosystems. This perspective explores how integrating omics data with ecological and modeling approaches can improve our understanding of greenhouse gas fluxes and nutrient dynamics, from soils to clouds, and from the past to the future. We highlight challenges and opportunities for scaling omics insights from local processes to Earth system models.
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025, https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Short summary
A new mathematical formulation of the dynamic energy budget model is presented for the growth of biological organisms. This new formulation combines mass conservation law and chemical kinetics theory and is computationally faster than the standard formulation of dynamic energy budget models. In simulating the growth of Thalassiosira weissflogii in a nitrogen-limiting chemostat, the new model is as good as the standard dynamic energy budget model using almost the same parameter values.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng
Earth Syst. Sci. Data, 16, 5737–5752, https://doi.org/10.5194/essd-16-5737-2024, https://doi.org/10.5194/essd-16-5737-2024, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation are difficult to observe using current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Xinlian Liang, Yinrui Wang, Jun Pan, Mi Wang, Jiansi Yang, and Jianya Gong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 637–641, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-637-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-637-2024, 2024
Mi Zhang, Bingnan Yang, Jianya Gong, and Xiangyun Hu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 445–452, https://doi.org/10.5194/isprs-annals-X-3-2024-445-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-445-2024, 2024
Peng Yue, Kaixuan Wang, Hanwen Xu, Jianya Gong, and Longgang Xiang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 441–446, https://doi.org/10.5194/isprs-annals-X-4-2024-441-2024, https://doi.org/10.5194/isprs-annals-X-4-2024-441-2024, 2024
Xianyuan Zhang, Longgang Xiang, Peng Yue, Jianya Gong, and Huayi Wu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 453–459, https://doi.org/10.5194/isprs-annals-X-4-2024-453-2024, https://doi.org/10.5194/isprs-annals-X-4-2024-453-2024, 2024
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Jiageng Zhong, Ming Li, Armin Gruen, Jianya Gong, Deren Li, Mingjie Li, and Jiangying Qin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 247–254, https://doi.org/10.5194/isprs-annals-X-2-2024-247-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-247-2024, 2024
Tianjia Liu, James T. Randerson, Yang Chen, Douglas C. Morton, Elizabeth B. Wiggins, Padhraic Smyth, Efi Foufoula-Georgiou, Roy Nadler, and Omer Nevo
Earth Syst. Sci. Data, 16, 1395–1424, https://doi.org/10.5194/essd-16-1395-2024, https://doi.org/10.5194/essd-16-1395-2024, 2024
Short summary
Short summary
To improve our understanding of extreme wildfire behavior, we use geostationary satellite data to develop the GOFER algorithm and track the hourly fire progression of large wildfires. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery and reveals considerable variability in fire spread rates on diurnal timescales. We create a product of hourly fire perimeters, active-fire lines, and fire spread rates for 28 fires in California.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Joanne V. Hall, Fernanda Argueta, Maria Zubkova, Yang Chen, James T. Randerson, and Louis Giglio
Earth Syst. Sci. Data, 16, 867–885, https://doi.org/10.5194/essd-16-867-2024, https://doi.org/10.5194/essd-16-867-2024, 2024
Short summary
Short summary
Crop-residue burning is a widespread practice often occurring close to population centers. Its recurrent nature requires accurate mapping of the area burned – a key input into air quality models. Unlike larger fires, crop fires require a specific burned area (BA) methodology, which to date has been ignored in global BA datasets. Our global cropland-focused BA product found a significant increase in global cropland BA (81 Mha annual average) compared to the widely used MCD64A1 (32 Mha).
Yang Chen, Joanne Hall, Dave van Wees, Niels Andela, Stijn Hantson, Louis Giglio, Guido R. van der Werf, Douglas C. Morton, and James T. Randerson
Earth Syst. Sci. Data, 15, 5227–5259, https://doi.org/10.5194/essd-15-5227-2023, https://doi.org/10.5194/essd-15-5227-2023, 2023
Short summary
Short summary
Using multiple sets of remotely sensed data, we created a dataset of monthly global burned area from 1997 to 2020. The estimated annual global burned area is 774 million hectares, significantly higher than previous estimates. Burned area declined by 1.21% per year due to extensive fire loss in savanna, grassland, and cropland ecosystems. This study enhances our understanding of the impact of fire on the carbon cycle and climate system, and may improve the predictions of future fire changes.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Y. Xu, X. Hu, J. Gong, X. Huang, and J. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 223–228, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-223-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-223-2022, 2022
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Zhonghua Zheng, Matthew West, Lei Zhao, Po-Lun Ma, Xiaohong Liu, and Nicole Riemer
Atmos. Chem. Phys., 21, 17727–17741, https://doi.org/10.5194/acp-21-17727-2021, https://doi.org/10.5194/acp-21-17727-2021, 2021
Short summary
Short summary
Aerosol mixing state is an important emergent property that affects aerosol radiative forcing and aerosol–cloud interactions, but it has not been easy to constrain this property globally. We present a framework for evaluating the error in aerosol mixing state induced by aerosol representation assumptions, which is one of the important contributors to structural uncertainty in aerosol models. Our study provides insights into potential improvements to model process representation for aerosols.
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021, https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steven Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys., 21, 8557–8574, https://doi.org/10.5194/acp-21-8557-2021, https://doi.org/10.5194/acp-21-8557-2021, 2021
Short summary
Short summary
We analyzed high-resolution trace gas measurements collected from a tower in Alaska during a very active fire season to improve our understanding of trace gas emissions from boreal forest fires. Our results suggest previous studies may have underestimated emissions from smoldering combustion in boreal forest fires.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Dalei Hao, Ghassem R. Asrar, Yelu Zeng, Qing Zhu, Jianguang Wen, Qing Xiao, and Min Chen
Earth Syst. Sci. Data, 12, 2209–2221, https://doi.org/10.5194/essd-12-2209-2020, https://doi.org/10.5194/essd-12-2209-2020, 2020
Short summary
Short summary
We adopted machine-learning models to generate the first global land products of SW–PAR based on DSCOVR/EPIC data. Our products are consistent with ground-based observations, capture the spatiotemporal patterns well and accurately track substantial diurnal, monthly and seasonal variations in SW–PAR. Our products provide a valuable alternative for solar photovoltaic applications and can be used to improve our understanding of the diurnal cycles of terrestrial water, carbon and energy fluxes.
Cited articles
Abatzoglou, J. T. and Kolden, C. A.: Relationships between climate and
macroscale area burned in the western United States, Int. J.
Wildland Fire, 22, 1003–1020, 2013.
Altmann, A., Toloşi, L., Sander, O., and Lengauer, T.: Permutation
importance: a corrected feature importance measure, Bioinformatics, 26,
1340–1347, 2010.
Amatulli, G., Rodrigues, M. J., Trombetti, M., and Lovreglio, R.: Assessing
long-term fire risk at local scale by means of decision tree technique,
J. Geophys. Res.-Biogeo., 111, G04S05, https://doi.org/10.1029/2005JG000133, 2006.
Andela, N. and Van Der Werf, G. R.: Recent trends in African fires driven by
cropland expansion and El Niño to La Niña transition, Nat. Clim.
Change, 4, 791–795, 2014.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G.,
Kasibhatla, P. S., DeFries, R., Collatz, G., Hantson, S., and Kloster, S.: A
human-driven decline in global burned area, Science, 356, 1356–1362, 2017.
Aragao, L. E. O., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y.,
Anderson, L., and Saatchi, S.: Interactions between rainfall, deforestation
and fires during recent years in the Brazilian Amazonia, Philosophical
Transactions of the Royal Society B: Biological Sciences, 363, 1779–1785,
2008.
Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes, R. J.: What
limits fire? An examination of drivers of burnt area in Southern Africa,
Glob. Change Biol., 15, 613–630, 2009.
Benavides-Solorio, J. and MacDonald, L. H.: Post-fire runoff and
erosion from simulated rainfall on small plots, Colorado Front Range, 15,
2931–2952, https://doi.org/10.1002/hyp.383, 2001.
Bolton, D.: The computation of equivalent potential temperature, Mon.
Weather Rev., 108, 1046–1053, 1980.
Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., and
Harrison, S. P.: Fire in the Earth system, Science, 324, 481–484, 2009.
Breiman, L.: Random forests, Machine Learning, 45, 5–32, 2001.
Chen, Y., Randerson, J. T., Morton, D. C., DeFries, R. S., Collatz, G. J.,
Kasibhatla, P. S., Giglio, L., Jin, Y., and Marlier, M. E.: Forecasting fire
season severity in South America using sea surface temperature anomalies,
Science, 334, 787–791, 2011.
Chen, Y., Morton, D. C., Andela, N., Giglio, L., and Randerson, J. T.: How
much global burned area can be forecast on seasonal time scales using sea
surface temperatures?, Environ. Res. Lett., 11, 045001, https://doi.org/10.1088/1748-9326/11/4/045001, 2016.
Chen, Y., Morton, D. C., Andela, N., Van Der Werf, G. R., Giglio, L., and
Randerson, J. T.: A pan-tropical cascade of fire driven by El
Niño/Southern Oscillation, Nat. Clim. Change, 7, 906–911, 2017.
Chen, Y., Randerson, J. T., Coffield, S. R., Foufoula-Georgiou, E., Smyth,
P., Graff, C. A., Morton, D. C., Andela, N., van der Werf, G. R., and
Giglio, L.: Forecasting global fire emissions on subseasonal to seasonal
(S2S) time scales, J. Adv. Model. Earth Sy., 12,
e2019MS001955, https://doi.org/10.1029/2019MS001955, 2020.
Coffield, S. R., Graff, C. A., Chen, Y., Smyth, P., Foufoula-Georgiou, E.,
and Randerson, J. T.: Machine learning to predict final fire size at the
time of ignition, Int. J. Wildland Fire, 28, 861–873, https://doi.org/10.1071/WF19023, 2019.
Dai, A.: Increasing drought under global warming in observations and models,
Nat. Clim. Change, 3, 52–58, 2013.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D., DuVivier, A.,
Edwards, J., Emmons, L., Fasullo, J., Garcia, R., and Gettelman, A.: The
community earth system model version 2 (CESM2), J. Adv.
Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
Dangol, S., Talchabhadel, R., and Pandey, V. P.: Performance evaluation and
bias correction of gridded precipitation products over Arun River Basin in
Nepal for hydrological applications, Theor. Appl. Climatol.,
148, 1353–1372, 2022.
Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., and Worley, B. A.: LandScan: a global population database for estimating populations at risk, Photogramm. Eng. Rem. S., 66, 849–857, 2000 (data available at: https://landscan.ornl.gov/, last access: 25 July 2022).
Enfield, D. B., Mestas‐Nuñez, A. M., Mayer, D. A., and Cid‐Serrano, L.: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures?, J. Geophys. Res.-Oceans, 104, 7841–7848, 1999.
Enfield, D. B., Mestas-Nunez, A. M., and Trimble, P. J.: The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S., Geophys. Res. Lett., 28, 2077–2080, 2001.
Etminan, M., Myhre, G., Highwood, E., and Shine, K.: Radiative
forcing of carbon dioxide, methane, and nitrous oxide: A significant
revision of the methane radiative forcing, Geophys. Res. Lett., 43, 12614–12623, 2016.
Gale, M. G., Cary, G. J., Van Dijk, A. I., and Yebra, M.: Forest fire fuel
through the lens of remote sensing: Review of approaches, challenges and
future directions in the remote sensing of biotic determinants of fire
behaviour, Remote Sens. Environ., 255, 112282, https://doi.org/10.1016/j.rse.2020.112282, 2021.
Giglio, L., Randerson, J. T., and Van Der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeo.,
118, 317–328, 2013.
Gray, M. E., Zachmann, L. J., and Dickson, B. G.: A weekly, continually updated dataset of the probability of large wildfires across western US forests and woodlands, Earth Syst. Sci. Data, 10, 1715–1727, https://doi.org/10.5194/essd-10-1715-2018, 2018.
Gui, Z., Sun, Y., Yang, L., Peng, D., Li, F., Wu, H., Guo, C., Guo, W., and
Gong, J.: LSI-LSTM: An attention-aware LSTM for real-time driving
destination prediction by considering location semantics and location
importance of trajectory points, Neurocomputing, 440, 72–88, 2021.
Guo, T., Lin, T., and Antulov-Fantulin, N.: Exploring interpretable LSTM
neural networks over multi-variable data, International Conference on
Machine Learning, arXiv [preprint], https://doi.org/10.48550/arXiv.1905.12034, 28 May 2019.
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis, A., and Yue, C.: The status and challenge of global fire modelling, Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, 2016.
Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural
Comput., 9, 1735–1780, 1997.
Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J.
W., Warren, D. A., Parsons, R., and Affleck, D.: Decreasing fire season
precipitation increased recent western US forest wildfire activity,
P. Natl. Acad. Sci. USA, 115, E8349–E8357, 2018.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020 (data available at: https://luh.umd.edu/data.shtml, last access: 25 July 2022).
Jabbar, H. and Khan, R. Z.: Methods to avoid over-fitting and under-fitting
in supervised machine learning (comparative study), Computer Science,
Communication and Instrumentation Devices, 70, https://doi.org/10.3850/978-981-09-5247-1_017, 2015.
Jain, P., Coogan, S. C., Subramanian, S. G., Crowley, M., Taylor, S., and
Flannigan, M. D.: A review of machine learning applications in wildfire
science and management, Environ. Rev., 28, 478–505, 2020.
Joshi, J. and Sukumar, R.: Improving prediction and assessment of global
fires using multilayer neural networks, Scientific Reports, 11, 3295, https://doi.org/10.1038/s41598-021-81233-4, 2021.
Kale, M. P., Mishra, A., Pardeshi, S., Ghosh, S., Pai, D., and Roy, P. S.:
Forecasting wildfires in major forest types of India, Frontiers in Forests
and Global Change, 5, 882685, https://doi.org/10.3389/ffgc.2022.882685, 2022.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1644,
https://doi.org/10.1175/BAMS-83-11-1631, 2002 (data available at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html, last access: 25 July 2022).
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu,
T.-Y.: Lightgbm: A highly efficient gradient boosting decision tree,
Adv. Neur. In., 30, 3146–3154, 2017.
Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., and
Dong, N.: How contemporary bioclimatic and human controls change global fire
regimes, Nat. Clim. Change, 9, 690–696, 2019.
Knorr, W., Dentener, F., Lamarque, J.-F., Jiang, L., and Arneth, A.: Wildfire air pollution hazard during the 21st century, Atmos. Chem. Phys., 17, 9223–9236, https://doi.org/10.5194/acp-17-9223-2017, 2017.
Lauer, A., Eyring, V., Bellprat, O., Bock, L., Gier, B. K., Hunter, A., Lorenz, R., Pérez-Zanón, N., Righi, M., Schlund, M., Senftleben, D., Weigel, K., and Zechlau, S.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP, Geosci. Model Dev., 13, 4205–4228, https://doi.org/10.5194/gmd-13-4205-2020, 2020.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, 2015.
Leung, H. and Haykin, S.: The complex backpropagation algorithm, IEEE
T. Signal Proces., 39, 2101–2104, 1991.
Li, F., Gui, Z., Wu, H., Gong, J., Wang, Y., Tian, S., and Zhang, J.: Big
enterprise registration data imputation: Supporting spatiotemporal analysis
of industries in China, Computers, Environment and Urban Systems, 70, 9–23,
2018.
Li, F., Gui, Z., Zhang, Z., Peng, D., Tian, S., Yuan, K., Sun, Y., Wu, H.,
Gong, J., and Lei, Y.: A hierarchical temporal attention-based LSTM
encoder-decoder model for individual mobility prediction, Neurocomputing,
403, 153–166, 2020.
Li, F., Zhu, Q., Riley, W. J., Yuan, K., Wu, H., and Gui, Z.: Wetter
California projected by CMIP6 models with observational constraints under a
high GHG emission scenario, Earth's Future, 10, e2022EF002694, https://doi.org/10.1029/2022EF002694, 2022a.
Li, F., Zhu, Q., Riley, W. J., Zhao, L., Xu, L., Yuan, K., Chen, M., Wu, H., Gui, Z., Gong, J., and Randerson, J. T.: AttentionFire (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7416437, 2022b.
Liang, H., Zhang, M., and Wang, H.: A neural network model for wildfire
scale prediction using meteorological factors, IEEE Access, 7,
176746–176755, 2019.
Liang, Y., Ke, S., Zhang, J., Yi, X., and Zheng, Y.: GeoMAN: Multi-level
attention networks for geo-sensory time series prediction, Proceedings of the International Joint Conference on Artificial Intelligence, 3428–3434, https://doi.org/10.24963/ijcai.2018/476, 2018.
Lin, Y., Koprinska, I., and Rana, M.: Temporal convolutional attention
neural networks for time series forecasting, in: 2021 International Joint
Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021, 1–8, https://doi.org/10.1109/IJCNN52387.2021.9534351, 2021.
Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.:
Climate and wildfire area burned in western US ecoprovinces, 1916–2003,
Ecol. Appl., 19, 1003–1021, 2009.
Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., and Luce, C. H.: A
review of the relationships between drought and forest fire in the United
States, Glob. Change Biol., 22, 2353–2369, 2016.
Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model
predictions, arXiv [preprint], https://doi.org/10.48550/arXiv.1705.07874, 2017.
Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., and Nobre,
C. A.: Climate change, deforestation, and the fate of the Amazon, Science,
319, 169–172, 2008.
Maraun, D.: Bias correcting climate change simulations-a critical review,
Current Climate Change Reports, 2, 211–220, 2016.
Mei, Y. and Li, F.: Predictability comparison of three kinds of robbery
crime events using LSTM, in: Proceedings of the 2019 2nd international
conference on data storage and data engineering, 22–26, https://doi.org/10.1145/3354153.3354162, 2019.
Meijer, J. R., Huijbregts, M. A., Schotten, K. C., and Schipper, A. M.: Global patterns of current and future road infrastructure, Environ. Res. Lett., 13, 064006, https://doi.org/10.1088/1748-9326/aabd42, 2018 (data available at: https://www.globio.info/download-grip-dataset , last access: 25 July 2022).
Mohammadi Farsani, R. and Pazouki, E.: A transformer self-attention model
for time series forecasting, Journal of Electrical and Computer Engineering
Innovations (JECEI), 9, 1–10, https://doi.org/10.22061/jecei.2020.7426.391, 2020.
Molnar, C., Casalicchio, G., and Bischl, B.: Interpretable machine
learning – a brief history, state-of-the-art and challenges, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
417–431, https://doi.org/10.1007/978-3-030-65965-3_28, 2020.
Mueller, S. E., Thode, A. E., Margolis, E. Q., Yocom, L. L., Young, J. D.,
and Iniguez, J. M.: Climate relationships with increasing wildfire in the
southwestern US from 1984 to 2015, For. Ecol. Manag., 460,
117861, https://doi.org/10.1016/j.foreco.2019.117861, 2020.
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B.:
Definitions, methods, and applications in interpretable machine learning,
P. Natl. Acad. Sci. USA, 116, 22071–22080, 2019.
Natekar, S., Patil, S., Nair, A., and Roychowdhury, S.: Forest fire
prediction using LSTM, in: 2nd International Conference for Emerging
Technology (INCET), Belagavi, India, 21–23 May 2021, 1–5, https://doi.org/10.1109/INCET51464.2021.9456113, 2021.
NOAA: Climate Indices: Monthly Atmospheric and Ocean Time Series, NOAA [data set], https://psl.noaa.gov/data/climateindices/list/, last access: 25 July 2022.
Nowack, P., Runge, J., Eyring, V., and Haigh, J. D.: Causal networks for
climate model evaluation and constrained projections, Nat. Commun.,
11, 1415, https://doi.org/10.1038/s41467-020-15195-y, 2020.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Pechony, O. and Shindell, D. T.: Driving forces of global wildfires over the
past millennium and the forthcoming century, P. Natl.
Acad. Sci. USA, 107, 19167–19170, 2010.
Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., and Cottrell, G.: A
dual-stage attention-based recurrent neural network for time series
prediction, arXiv [preprint], https://doi.org/10.48550/arXiv.1704.02971, 7 April 2017.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.
Ramanathan, V., Crutzen, P., Kiehl, J., and Rosenfeld, D.: Aerosols,
climate, and the hydrological cycle, Science, 294, 2119–2124, 2001.
Ramos da Silva, R., Werth, D., and Avissar, R.: Regional impacts of future
land-cover changes on the Amazon basin wet-season climate, J.
Climate, 21, 1153–1170, 2008.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess,
P. G., Pfister, G., Mack, M., Treseder, K., and Welp, L. J. s.: The impact
of boreal forest fire on climate warming, 314, 1130–1132, 2006.
Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global Fire Emissions Database, Version 4, (GFEDv4), ORNL DAAC, Oak Ridge, Tennessee, USA [data set], https://doi.org/10.3334/ORNLDAAC/1293, 2018.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., and
Carvalhais, N.: Deep learning and process understanding for data-driven
Earth system science, Nature, 566, 195–204, 2019.
Robinson, T. P., Wint, G. W., Conchedda, G., Van Boeckel, T. P., Ercoli, V., Palamara, E., Cinardi, G., D'Aietti, L., Hay, S. I., and Gilbert, M.: Mapping the global distribution of livestock, PloS One, 9.5, e96084, https://doi.org/10.1371/journal.pone.0096084, 2014 (data available at: https://www.fao.org/dad-is/en/, last access: 25 July 2022).
Rothman-Ostrow, P., Gilbert, W., and Rushton, J.: Tropical Livestock Units:
Re-evaluating a Methodology, Frontiers in Veterinary Science, 7, 973, https://doi.org/10.3389/fvets.2020.556788, 2020.
Safavian, S. R. and Landgrebe, D.: A survey of decision tree classifier
methodology, IEEE T. Syst. Man Cyb., 21,
660–674, 1991.
Sedano, F. and Randerson, J. T.: Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems, Biogeosciences, 11, 3739–3755, https://doi.org/10.5194/bg-11-3739-2014, 2014.
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.
Shrestha, M., Acharya, S. C., and Shrestha, P. K.: Bias correction of
climate models for hydrological modelling–are simple methods still useful?,
Meteorol. Appl., 24, 531–539, 2017.
Shvetsov, E. G., Kukavskaya, E. A., Buryak, L. V., and Barrett, K. J. E. R.
L.: Assessment of post-fire vegetation recovery in Southern Siberia using
remote sensing observations, Environ. Res. Lett., 14, 055001, https://doi.org/10.1088/1748-9326/ab083d, 2019.
Slack, D., Hilgard, A., Singh, S., and Lakkaraju, H.: Reliable post hoc
explanations: Modeling uncertainty in explainability, Adv. Neur.
In., 34, 9391–9404, 2021.
Taufik, M., Torfs, P. J., Uijlenhoet, R., Jones, P. D., Murdiyarso, D., and
Van Lanen, H. A.: Amplification of wildfire area burnt by hydrological
drought in the humid tropics, Nat. Clim. Change, 7, 428–431, 2017.
Teckentrup, L., Harrison, S. P., Hantson, S., Heil, A., Melton, J. R., Forrest, M., Li, F., Yue, C., Arneth, A., Hickler, T., Sitch, S., and Lasslop, G.: Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models, Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, 2019.
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J.,
Lehner, F., and Knutti, R.: Past warming trend constrains future warming in
CMIP6 models, Science Advances, 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549, 2020.
Turco, M., Jerez, S., Doblas-Reyes, F. J., AghaKouchak, A., Llasat, M. C.,
and Provenzale, A.: Skilful forecasting of global fire activity using
seasonal climate predictions, Nat. Commun., 9, 2718, https://doi.org/10.1038/s41467-018-05250-0, 2018.
Van Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., and Dolman,
A.: Climate controls on the variability of fires in the tropics and
subtropics, Global Biogeochem. Cy., 22, https://doi.org/10.1029/2007GB003122, 2008.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., Kaiser, L., and Polosukhin, I.: Attention is all you need, arXiv
[preprint], https://doi.org/10.48550/arXiv.1706.03762, 12 June 2017.
Veraverbeke, S., Rogers, B. M., Goulden, M. L., Jandt, R. R., Miller, C. E.,
Wiggins, E. B., and Randerson, J. T.: Lightning as a major driver of recent
large fire years in North American boreal forests, Nat. Clim. Change, 7,
529–534, 2017.
Wang, S. and Yuan, K.: Spatiotemporal analysis and prediction of crime
events in atlanta using deep learning, in: IEEE 4th International
Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019, 346–350, https://doi.org/10.1109/ICIVC47709.2019.8981090, 2019.
Wang, S. S. C., Qian, Y., Leung, L. R., and Zhang, Y.: Identifying key
drivers of wildfires in the contiguous US using machine learning and game
theory interpretation, Earth's Future, 9, e2020EF001910, https://doi.org/10.1029/2020EF001910, 2021.
Wang, Y. C., Hsu, H. H., Chen, C. A., Tseng, W. L., Hsu, P. C., Lin, C. W.,
Chen, Y. L., Jiang, L. C., Lee, Y. C., and Liang, H. C.: Performance of the
Taiwan earth system model in simulating climate variability compared with
observations and CMIP6 model simulations, J. Adv. Model.
Earth Sy., 13, e2020MS002353, https://doi.org/10.1029/2020MS002353, 2021.
Wu, G., Cai, X., Keenan, T. F., Li, S., Luo, X., Fisher, J. B., Cao, R., Li,
F., Purdy, A. J., and Zhao, W.: Evaluating three evapotranspiration
estimates from model of different complexity over China using the ILAMB
benchmarking system, J. Hydrol., 590, 125553, https://doi.org/10.1016/j.jhydrol.2020.125553, 2020.
Xu, X., Jia, G., Zhang, X., Riley, W. J., and Xue, Y.: Climate regime shift
and forest loss amplify fire in Amazonian forests, Glob. Change Biol.,
26, 5874–5885, 2020.
Yu, Y., Mao, J., Thornton, P. E., Notaro, M., Wullschleger, S. D., Shi, X.,
Hoffman, F. M., and Wang, Y.: Quantifying the drivers and predictability of
seasonal changes in African fire, Nat. Commun., 11, 2893, https://doi.org/10.1038/s41467-020-16692-w, 2020.
Yuan, K., Zhu, Q., Zheng, S., Zhao, L., Chen, M., Riley, W. J., Cai, X., Ma,
H., Li, F., and Wu, H.: Deforestation reshapes land-surface energy-flux
partitioning, Environ. Res. Lett., 16, 024014, https://doi.org/10.1088/1748-9326/abd8f9, 2021.
Yuan, K., Zhu, Q., Riley, W. J., Li, F., and Wu, H.: Understanding and
reducing the uncertainties of land surface energy flux partitioning within
CMIP6 land models, Agr. Forest Meteorol., 319, 108920, https://doi.org/10.1016/j.agrformet.2022.108920, 2022a.
Yuan, K., Zhu, Q., Li, F., Riley, W. J., Torn, M., Chu, H., McNicol, G.,
Chen, M., Knox, S., and Delwiche, K.: Causality guided machine learning
model on wetland CH4 emissions across global wetlands, Agr. Forest Meteorol., 324, 109115, https://doi.org/10.1016/j.agrformet.2022.109115, 2022b.
Zhou, W., Yang, D., Xie, S. P., and Ma, J.: Amplified
Madden–Julian oscillation impacts in the Pacific–North America region,
Nat. Clim. Change, 10, 654–660, 2020.
Zhu, Q., Riley, W. J., Tang, J., Collier, N., Hoffman, F. M., Yang, X., and
Bisht, G.: Representing nitrogen, phosphorus, and carbon interactions in the
E3SM Land Model: Development and global benchmarking, J. Adv.
Model. Earth Sy., 11, 2238–2258, https://doi.org/10.1029/2018MS001571, 2019.
Zhu, Q., Li, F., Riley, W. J., Xu, L., Zhao, L., Yuan, K., Wu, H., Gong, J., and Randerson, J.: Building a machine learning surrogate model for wildfire activities within a global Earth system model, Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, 2022.
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix,
M., Stevens, L., Wang, Y.-P., and Srbinovsky, J.: The Australian Earth
System Model: ACCESS-ESM1. 5, Journal of Southern Hemisphere Earth Systems
Science, 70, 193–214, 2020.
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
We developed an interpretable machine learning model to predict sub-seasonal and near-future...