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Abstract. African and South American (ASA) wildfires
account for more than 70 % of global burned areas and
have strong connection to local climate for sub-seasonal
to seasonal wildfire dynamics. However, representation of
the wildfire–climate relationship remains challenging due to
spatiotemporally heterogenous responses of wildfires to cli-
mate variability and human influences. Here, we developed
an interpretable machine learning (ML) fire model (Atten-
tionFire_v1.0) to resolve the complex controls of climate
and human activities on burned areas and to better predict
burned areas over ASA regions. Our ML fire model substan-
tially improved predictability of burned areas for both spatial
and temporal dynamics compared with five commonly used
machine learning models. More importantly, the model re-
vealed strong time-lagged control from climate wetness on
the burned areas. The model also predicted that, under a high-
emission future climate scenario, the recently observed de-
clines in burned area will reverse in South America in the
near future due to climate changes. Our study provides a re-
liable and interpretable fire model and highlights the impor-
tance of lagged wildfire–climate relationships in historical
and future predictions.

1 Introduction

Wildfires modify land surface characteristics, such as veg-
etation composition, soil carbon, surface runoff, and albedo,
with significant consequences for regional carbon, water, and
energy cycles (Benavides-Solorio and MacDonald, 2001;
Shvetsov et al., 2019; Randerson et al., 2006). Over African
and South American (ASA) regions, where more than 70 %
of global burned area occurs, wildfires emit ∼ 1.4 PgC yr−1

(∼ 65 % of global wildfire emissions; van Der Werf et al.,
2017) and dust and aerosols that can alter regional cli-
mate through radiative processes (Etminan et al., 2016; Ra-
manathan et al., 2001; van Der Werf et al., 2017). While
greenhouse gas emissions contribute to climate change, other
toxic species and airborne particulate matter from wildfires
lead to substantial health hazards, including elevated prema-
ture mortality (Knorr et al., 2017; Lelieveld et al., 2015). In
particular, wildfire particulate matter emissions across tropi-
cal regions have exceeded current anthropogenic sources and
are predicted to dominate future regional emissions (Knorr et
al., 2017).

Although total tropical wildfire-burned area has declined
over the past few decades due to climate change and human
activities (Andela and Van Der Werf, 2014; Andela et al.,
2017), e.g., from increases in population density, cropland
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fraction, and livestock density, wildfire still plays a signifi-
cant role in mediating surface climate (Xu et al., 2020), bio-
geochemical cycles, and human health (Andela et al., 2017).
Further, 21st century projections of increases in temperature,
regional drought (Dai, 2013; Taufik et al., 2017), and precip-
itation variations may outweigh these direct human impacts
and result in unprecedentedly fire-prone environments over a
large fraction of Africa (Van Der Werf et al., 2008; Andela
and Van Der Werf, 2014; Archibald et al., 2009) and South
America (Pechony and Shindell, 2010; Malhi et al., 2008).
These factors highlight the need for better understanding,
prediction, and management of these critical fire regions to
minimize economic losses, human health hazards, and natu-
ral ecosystem degradation. Therefore, improved understand-
ing and accurate prediction of wildfire activity is increasingly
important for effective fire management and sustainable de-
cision making.

Climate is acknowledged as one of the most dominant con-
trollers of ASA wildfires (Chen et al., 2011; Andela et al.,
2017). For example, precipitation variations contribute sub-
stantially to burned-area patterns in southern and northern
Africa (Andela and Van Der Werf, 2014; Archibald et al.,
2009) and are also closely linked to wildfire spatiotemporal
dynamics in South America (Chen et al., 2011; Van Der Werf
et al., 2008; Malhi et al., 2008). More importantly, the strong
controls of climate on wildfires often show time lags, and the
time delay can be on the order of multiple months (Van Der
Werf et al., 2008; Andela and Van Der Werf, 2014). Mean-
while, ocean dynamics (e.g., El Niño–Southern Oscillation,
ENSO) may also exert considerable influences on ASA wild-
fires through influencing wet- and wet-to-dry-season climate
and fuel conditions (Yu et al., 2020; Chen et al., 2016; An-
dela and Van Der Werf, 2014; Chen et al., 2011, 2017). The
time lags between ocean dynamics and wildfires can be even
longer than that between climate and wildfires (Chen et al.,
2020), which enables wildfire predictions ahead of fire sea-
son (Chen et al., 2011, 2016, 2020; Turco et al., 2018). The
spatiotemporal responses of wildfires to climate changes are
complicated by non-linear interactions among climate, veg-
etation, and human activities (Van Der Werf et al., 2008;
Andela et al., 2017). In more xeric subtropical regions, in-
creasing precipitation during the wet season can be the dom-
inant controller on increasing wildfire during the following
dry season (through regulation of fuel availability and fuel
spatial structures) (Van Der Werf et al., 2008; Littell et al.,
2009; Archibald et al., 2009). In contrast, increasing precip-
itation in more mesic regions results in excessive fuel mois-
ture, thereby becoming the main limitation of dry-season
wildfires (i.e., opposite fire trends are observed with increas-
ing precipitation in northern and southern Africa) (Van Der
Werf et al., 2008; Andela and Van Der Werf, 2014). In addi-
tion to natural processes, human activities are primary igni-
tion sources and have shaped fire patterns in the ASA regions
(Aragao et al., 2008; Archibald et al., 2009; Andela et al.,
2017). Fire-use types driven by local socio-economic condi-

tions and fire management policies may also affect the fire–
climate relationships (Andela et al., 2017). Therefore, strong
climate controls from wet season to dry season need to be
considered along with fuel distributions and human activities
for continental fire predictions under climate change.

Accurate predictive modeling of wildfire with skillful rep-
resentation of how environmental and anthropogenic factors
modulate the burned area is still challenging. State-of-the-art
process-based fire models (e.g., the Fire Model Intercompar-
ison Project; Rabin et al., 2017) have reasonably simulated
the spatial distribution of burned areas. However, they gen-
erally do not accurately capture burned-area seasonal vari-
ation and inter-annual trends and variability (Andela et al.,
2017). Improving predictability and reducing uncertainties of
process-based models require more sophisticated representa-
tion of fire processes and parameterization, which remain a
long-term challenge (Bowman et al., 2009; Hantson et al.,
2016; Teckentrup et al., 2019). In response to this challenge,
data-driven statistical or machine learning (ML) approaches
have been developed and demonstrated to effectively cap-
ture wildfire severity and burned-area dynamics (Archibald
et al., 2009; Chen et al., 2020, 2011; Zhou et al., 2020).
However, the spatially heterogenous, non-linear, and time-
lagged controls have been oversimplified, e.g., using linear
models or only considering climate variables at specific time
lags or seasons (Chen et al., 2011, 2016, 2020; Archibald
et al., 2009; Gray et al., 2018) or have been black boxed.
For example, the commonly used neural network or deep-
learning models (Zhu et al., 2022; Joshi and Sukumar, 2021)
themselves are complex and built upon hidden neural lay-
ers with non-linear activation functions and thus cannot di-
rectly identify the relative importance of different drivers for
wildfires (Murdoch et al., 2019; Jain et al., 2020). A few ML
models (e.g., decision tree and random forest) provide vari-
able importance; however, such importance scores are con-
stant across the entire dataset rather than spatiotemporally
varied (S. S. C. Wang et al., 2021; Yuan et al., 2022b). While
post-hoc analyses could interpret ML models (Altmann et
al., 2010; Lundberg and Lee, 2017), inconsistent and unsta-
ble explanations can be derived with different post-hoc meth-
ods or settings (Slack et al., 2021; Molnar et al., 2020). Such
limitations impede an interpretable and reliable way to un-
derstand the critical spatiotemporal processes from wet sea-
son to dry season (Reichstein et al., 2019; Jain et al., 2020).

In this work, we developed a wildfire model (Attention-
Fire) leveraging on an interpretable long short-term mem-
ory (LSTM) framework to predict wildfire burned areas over
northern hemispheric Africa (NHAF), southern hemispheric
Africa (SHAF), and southern hemispheric South America
(SHSA) (Giglio et al., 2013). We also focused on using
the AttentionFire model to explore the dependency of simu-
lated burned area on different drivers from wet season to dry
season across different grid cells. We assessed model pre-
dictability with observed burned area from the Global Fire
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Emission Database (GFED) and compared it with five other
machine-learning-based fire models.

2 Methods

2.1 AttentionFire model

The AttentionFire model is based on an interpretable
attention-augmented LSTM (Liang et al., 2018; Qin et al.,
2017; Guo et al., 2019; Li et al., 2020; Vaswani et al.,
2017) framework. Like the traditional artificial neural net-
work (ANN) models, the LSTM is also built upon neu-
rons and the non-linear activation functions; specifically, the
LSTM uses the gating mechanism (i.e., forget, input, and out-
put gates) (Hochreiter and Schmidhuber, 1997; Wang and
Yuan, 2019) to filter out useless information while keeping
useful information underlying in the time series as hidden
states (Fig. 1). Relative to traditional ANN, the LSTM has
shown advantages in capturing short- and long-term depen-
dencies in input time series (Hochreiter and Schmidhuber,
1997), such as the time-lagged controls from wet-to-dry-
season climate conditions on wildfires. However, LSTM can-
not explicitly and dynamically select important drivers from
multiple driving time series to make predictions (Qin et al.,
2017; Liang et al., 2018; Guo et al., 2019; Li et al., 2020;
Vaswani et al., 2017). Further, LSTM works as a black box,
lacking interpretability to identify the relative importance of
each driver across different time steps (Guo et al., 2019; Li
et al., 2020; Liang et al., 2018). Attention mechanisms over-
come these challenges by adaptively assigning larger weights
to more important drivers and time steps (Liang et al., 2018;
Vaswani et al., 2017). Here, we use attention mechanisms to
explicitly capture controlling factors of fire predictions with
various time lags (Fig. 1). Below are detailed descriptions of
the fire model.

Given four categories of time series, X =

(Xl,Xs,Xf,Xc)T , where T is the length of time series, we
use Xi

= (xi
1,x

i
2, . . ., xi

T )T ∈ RT , where 1≤ i ≤ n, to denote
the ith time series, and we use Xt = (x1

t ,x2
t , . . ., xn

t )T ∈ Rn,
where 1≤ t ≤ T , to represent the vector at time step t . xI

t ,
xs
t , xf

t , and xc
t represent the variables of ignition (e.g., pop-

ulation density), suppression (e.g., road network density),
fuel availability (e.g., living biomass), and climate (e.g.,
precipitation) at time step t . The AttentionFire model aims
to learn a nonlinear function F to map the n time series to
the observed burned area YT+1 at time step T + 1:

ŶT+1 = F(Xl,Xs,Xf,Xc)T , (1)

where ŶT+1 is the predicted burned area at time step T + 1.
First, the model iteratively transforms the ith driving vari-

able at time step t to a hidden state vector hi
t , where 1≤ t ≤

T and 1≤ i ≤ n, through LSTM gate mechanisms (please re-
fer to Li et al., 2020, for the details of the gates in Fig. 1). Sec-
ond, as the importance of each time step varies, temporal at-

tention is applied to hi
t to calculate its corresponding weight

or importance wi
t . Third, the weighted summation hi

sum of hi
t

is obtained to represent the summarized information for the
ith driving variable:

wi
t = fattn(h

i
t )

hi
sum =

T∑
t=1

wi
t h

i
t , (2)

where hi
t ∈ Rm is the hidden state vector of the ith driving

series at time step t that stores the summary of the past in-
put sequence (Hochreiter and Schmidhuber, 1997); wi

t is the
calculated weight for the ith driver at time step t through at-
tention function fattn:

wi
t

′
= tanh(Wph

i
t )

wi
t =

ewi
t
′∑T

j=1e
w

j
t

′
, (3)

where Wp ∈ R1×m is a parameter matrix that needs to be
learned.

To further capture the relative importance of the ith driving
variable compared to other driving variables, variable atten-
tion is used for the summarized information hi

sum and hi
T .

Note that hi
T is also a kind of summarized information de-

rived by the LSTM (Hochreiter and Schmidhuber, 1997; Guo
et al., 2019). The weight or importance of the ith driving vari-
able wi is calculated as

wi
′
= tanh(Wa[h

i
sum,hi

T ])

wi =
ewi ′∑n
j=1e

wj ′
. (4)

Finally, using the weighted sum of all driving variables, the
model generates the prediction ŶT+1 :

oi =Wo[h
i
sum,hi

T ] + bo

ŶT+1 =

n∑
i=1

oiwi, (5)

where Wa ∈ R1×2m is a learnable parameter matrix, and the
linear function with weight Wo ∈ Rm and bias bo ∈ R, along
with attention-calculated weight wi , produce the final pre-
diction result. The parameters of attention-based LSTM are
learned via a back-propagation algorithm by minimizing the
mean-squared error between predictions and observations
(Guo et al., 2019; Leung and Haykin, 1991).

The AttentionFire model is implemented with Python un-
der Python 3 environment. The model is open access at https:
//doi.org/10.5281/zenodo.7416437 (Li et al., 2022b) under
Creative Commons Attribution 4.0 International license. De-
tailed code and descriptions are included in the repository,
including loading datasets, model initialization, training, pre-
dicting, saving parameters, and loading the trained model
(see more details in “Code availability” section).
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Figure 1. An illustrative workflow for AttentionFire_v1.0 model prediction. Four kinds of drivers are considered: ignition related, suppression
related, fuel, and climate. The temporal attention is used to identify important time steps for each kind of driver, while the variable attention
is used to identify important drivers for final burned-area prediction.

2.2 Baseline models and model settings

Five other widely used machine learning (ML) models are
used as baseline models to compare with AttentionFire
model: ANN (Joshi and Sukumar, 2021; Zhu et al., 2022),
decision tree (DT) (Amatulli et al., 2006; Coffield et al.,
2019), random forest (RF) (Yu et al., 2020; Li et al., 2018;
Gray et al., 2018), gradient-boosting decision tree (GBDT)
(Coffield et al., 2019; Jain et al., 2020), and naive LSTM
(Liang et al., 2019; Natekar et al., 2021; Gui et al., 2021;
Mei and Li, 2019). The details of the baseline models se-
lected, including strengths, potential limitations, and their
applications in wildfire studies, and references are listed in
Table 1. The ANN and LSTM have shown good performance
on multiple earth science problems (Yuan et al., 2022a; Re-
ichstein et al., 2019), including wildfires (Joshi and Suku-
mar, 2021; Liang et al., 2019; Zhu et al., 2022); however,
the black-box nature of such models makes them lack inter-
pretability. The DT method provides variable importance and
is easily interpretable with its single-tree structure, but it is
prone to overfitting compared to RF and GBDT. The RF alle-
viates the overfitting through feature selection and ensemble
learning (Breiman, 2001), while the GBDT avoids overfit-
ting by constructing multiple trees with shallow depth (Ke et
al., 2017). DT, RF, and GBDT provide variable importance
scores for dominant driver inference; however, such impor-
tance scores are constant across the entire dataset and thus

impede detailed interpretation of the variable importance,
like over space and time. The aforementioned ML models
have been commonly used in wildfire science (Jain et al.,
2020).

The inputs of climate- and fuel-related variables for the
first four models (non-sequence models) are variables of the
latest three months available for prediction (Yu et al., 2020),
while the corresponding inputs of naive LSTM and Atten-
tionFire models are whole-year historical time sequences
which cover dynamics from wet to dry seasons to capture
short- and long-term dependencies underlying the input se-
quence (Qin et al., 2017; Vaswani et al., 2017; Guo et al.,
2019; Li et al., 2020). The socioeconomic predictors (i.e.,
population, road density, livestock) consider only the more
recent and available statistics typically reported at a year
scale. For each model, we iteratively leave a 1-year dataset
(one out of all 19 years’ datasets for the period 1997–2015,
∼ 5 % of all datasets) out (i.e., a holdout dataset, such as the
dataset in 2015, that the model has never seen) for testing,
1 year of data (∼ 5 % of all datasets, such as the dataset in
2014) for validation (the model was stopped for training, and
its parameters were saved when it showed the highest per-
formance on the validation dataset to avoid overfitting dur-
ing training; Yuan et al., 2022b; Jabbar and Khan, 2015) and
use the remaining dataset (∼ 90 % of all datasets, such as
the dataset during 1997–2013) for model training (i.e., tun-
ing model parameters). Such an evaluation scheme quanti-
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Table 1. Strengths, potential limitations, and applications of selected baseline models in wildfire studies.

Model (acronym) Strengths Potential limitations Applications

Random forest (RF)
(Breiman, 2001)

Provides variable importance;
alleviates overfitting through feature se-
lection and ensemble learning

Constant variable importance rather than var-
ied; time-consuming when building large trees;
may not perform well on time series with lags

Gray et al. (2018);
Yu et al. (2020)

Decision tree (DT)
(Safavian and
Landgrebe, 1991)

Provides variable importance; easily in-
terpretable with its single-tree structure

Prone to overfitting; constant variable impor-
tance rather than varied; time-consuming when
building a large tree; may not perform well on
time series with lags

Amatulli et al. (2006);
Coffield et al. (2019)

Gradient-boosting
decision tree (GBDT)
(Ke et al., 2017)

Alleviates overfitting by building multi-
ple shallow trees; generally fast because
of the shallowness of each tree built

Constant variable importance rather than var-
ied; may not perform well on time series with
lags

Coffield et al. (2019);
Jain et al. (2020)

Artificial neural
network (ANN)
(Ke et al., 2017)

Shows good performance on com-
plex and non-linear problems; allevi-
ates overfitting through techniques like
dropout and regularization

Lack of interpretability; hard to know the op-
timal neural network structures for different
problems

Joshi and Sukumar (2021);
Zhu et al. (2022)

Long short-term mem-
ory (LSTM)
(Hochreiter and
Schmidhuber, 1997)

Shows good performance on time se-
ries predictions; alleviates overfitting
through techniques like dropout and
regularization

Lack of interpretability; may not be suitable
for non-time-series problems; vanishing gradi-
ent problem when deployed to long time series
(Li et al., 2020; Liang et al., 2018)

Liang et al. (2019);
Natekar et al. (2021)

fied model performance on deducing the temporal dynamics
of fires at the annual scale, which is critical for future projec-
tions, while leveraging as much data as possible for model
training. Details of the settings for used models in the exper-
iments are listed in Table S1.

2.3 Datasets and experiments

The satellite-based global burned-area dataset (Global Fire
Emissions Database; Giglio et al., 2013) is used as prediction
target, and datasets of various socio-environmental drivers
are used as model inputs. Population density, livestock den-
sity, road-network density, and land use are considered as an-
thropogenic factors on fire ignition and spread. Fuel variables
include fuel moisture and live- and dead-vegetation biomass.
Seven meteorology variables from National Centers for Envi-
ronmental Prediction–Department of Energy (NCEP–DOE)
Reanalysis are considered, including air temperature, pre-
cipitation, surface pressure, wind speed, specific humidity,
downward shortwave radiation, and vapor pressure deficit.
Details of each dataset and corresponding references are
listed in Table 2. The raw datasets were unified to the same
spatial resolution (T62 resolution: ∼ 210 km at the Equator)
at the monthly scale, with a covering period from 1997 to
2015.

In addition to the local socio-environmental drivers, we
also explored the impacts of ocean indices on burned-area
predictions. Chen et al. (2011) found that wildfires in South
America were closely linked to the Oceanic Niño Index
(ONI) and the Atlantic Multidecadal Oscillation (AMO) in-
dex. The ONI and AMO reflected the sea surface temperature
(SST) anomalies in the tropical Pacific and north Atlantic.
The SST anomalies directly affected ocean–atmosphere in-

teractions and thus the wet-, wet-to-dry-, and onset-of-dry-
season climate in South America (Chen et al., 2011). The two
indices were significantly correlated with peak fire month
wildfires 3 to 7 months later and could predict fire season
wildfires in many regions of South America with lead times
of 3 to 5 months (Chen et al., 2011). The controls of SST
anomalies in the tropical Pacific on climate and thus on wild-
fires were also found in northern and southern Africa (An-
dela and Van Der Werf, 2014). In addition, SST anomalies in
the tropical northern and southern Atlantic could also affect
wildfires in South America (Chen et al., 2016) and Africa (Yu
et al., 2020; Chen et al., 2020). Therefore, we included ocean
indices (Table 2) and investigated their impacts on wildfire
predictions with the AttentionFire model (see Sect. 3.4).

For future projection (2016–2055) of burned area with
the AttentionFire model, land use changes (Hurtt et al.,
2020), population growth, projected climate, and fuel from
five fully coupled Earth system model (ESM) simulations of
CMIP6 (O’Neill et al., 2016) under low- (SSP126) and high-
emission (SSP585) scenarios were used as the ML model
input, respectively. The reason to select 2016–2055 as the
projected period was that, during 2016–2055, the 99th per-
centiles of precipitation, temperature, and vapor pressure
deficit were within the range of corresponding historical ob-
servations, which means that the trained model has covered
the range of most projected drivers in the near future and can
alleviate extrapolation uncertainty caused by climate change.
We also made a longer projection till the end of 21st century
and analyzed its longer-term trend (see Sect. 3.4). All avail-
able ESMs with outputs of historical and future (SSP126 and
SSP585) fuel availability (i.e., biomass of coarse wood de-
bris, vegetation, and litter) and climate variables (Table 2)
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Table 2. Input and output variables and datasets of the AttentionFire model.

Variable category Variables (abbreviation, units) Spatial (temporal) resolution Dataset and reference

Wildfire Burned area (BA, ha per month) 0.25◦ (monthly) Global Fire Emissions
Database 4
(Giglio et al., 2013)

Climate Precipitation (RAIN, mm s−1), temperature
(TA, K), surface air pressure (PA, Pa), specific
humidity (SH, kg kg−1), downward shortwave
radiation (SW, W m−2), wind speed (WIND,
m s−1), vapor pressure deficit (VPD, hPa)
(VPD calculated according to Bolton; 1980)

∼ 1.9◦ (monthly) NCEP–DOE Reanalysis 2
(Kanamitsu et al., 2002)

Fuel conditions Fuel moisture (FUELM, %), coarse wood de-
bris (CWDC, gC m−2 s−1), vegetation biomass
(VegC, gC m−2 s−1), litter biomass (LitterC,
gC m−2 s−1)

∼ 1.9◦ (monthly) ELM prognostic simulations
(Zhu et al., 2019)

Human activities Population density (Popu, persons
per grid)

∼ 1 km (yearly) Dobson et al. (2000)

Road density (Road, km km−2) 0.5◦ (yearly) Meijer et al. (2018)

Livestock density (LS, number of livestock per
grid)

0.5◦ (yearly) Rothman-Ostrow et al. (2020)

Land cover Bare soil (Bare, %), Forest (Forest, %), and
Grass (Grass, %)

0.25◦ (yearly) LUH2 (Hurtt et al., 2020)

Oceanic indices Ocean Niño Index (ONI), Atlantic Multidecadal
Oscillation (AMO) index, tropical Northern At-
lantic (TNA) index, and tropical Southern At-
lantic (TSA) index

monthly NOAA climate indices
(Enfield et al., 1999, 2021)

were selected, including ACCESS-ESM1-5 (Ziehn et al.,
2020), CESM2 (Danabasoglu et al., 2020), NorESM2-LM
(Seland et al., 2020), NorESM2-MM (Seland et al., 2020),
and TaiESM1 (Y. C. Wang et al., 2021). For each ESM, the
variable bias was corrected with the mostly used linear scal-
ing method (Maraun, 2016; Dangol et al., 2022; Shrestha
et al., 2017), which adjusted the bias in model simulations
based on the ratio of modeled- and observed-variable mean
value. Then the bias-corrected variables of each ESM were
used to drive the AttentionFire model for future burned-
area projection. Finally, given the uncertainty of each ESM,
the multi-model ensemble (MME) mean of projected burned
area was calculated (Li et al., 2022a) and analyzed. Details of
the bias correction method can be found in Maraun (2016).
For future projections, temporally constant road and live-
stock density were used due to the lack of future data in the
two scenarios (i.e., SSP585 and SSP126), and the Attention-
Fire model was not coupled in the ESMs. Such limitations
and uncertainties were discussed in Sect. 3.5.

3 Results and discussions

3.1 Model predictability on burned-area
spatial-temporal dynamics

The AttentionFire model accurately captured the spatial dis-
tribution and temporal variations (Figs. 2 and S1) of wildfire-
burned areas over NHAF, SHAF, and SHSA regions. The
AttentionFire model had the lowest mean absolute errors
(MAEs) between model-predicted and observed (GFED)
gridded monthly burned areas among the six ML approaches.
The gridded MAEs of burned area for AttentionFire were
110, 142, and 39 Kha yr−1 in NHAF, SHAF, and SHSA re-
gions, which were respectively 6 %–66 %, 13 %–65 %, and
11 %–42% lower than the other five ML approaches in the
three regions. These results highlight the capability of the At-
tentionFire model to capture critical driving factors of burned
area across time and space.

The fact that the AttentionFire model outperformed the
other five models (Fig. 2g–i) indicates the benefit of skillfully
integrating time-lagged and spatially heterogenous controls
from critical drivers on wildfires. Compared to non-sequence
models (i.e., RF, MLP, DT, and GBDT), the AttentionFire
model adaptively captured historical dependencies of wild-
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Figure 2. The AttentionFire model accurately captured burned-area spatial dynamics. Spatial distribution of observed and AttentionFire-
predicted fire season mean burned area (BA) with one-month lead time in northern hemispheric African (NHAF) (a–b), southern hemispheric
African (SHAF) (c–d), and southern hemispheric South American (SHSA) (e–f) regions. (g–i) Performance (in terms of mean absolute error
between predicted and observed burned area) of AttentionFire and other five baseline models, including long short-term memory (LSTM),
random forest (RF), artificial neural network (ANN), decision tree (DT), and gradient-boosting decision tree (GBDT).

fires on climate conditions from wet to dry seasons (Van Der
Werf et al., 2008; Archibald et al., 2009; Andela and Van
Der Werf, 2014; Chen et al., 2011). A more detailed analy-
sis is provided in next section. Compared to the naive LSTM
models, the variable and temporal attention mechanisms in-
tegrated in AttentionFire has proven to be beneficial to model
performance.

The spatial heterogeneity and temporal variation of wild-
fire responses to complex environmental and human fac-
tors have made wildfire predictions challenging, especially
at large spatial scales (Chen et al., 2016; Littell et al., 2016;
Andela and Van Der Werf, 2014; Chen et al., 2011; Zhou et
al., 2020). The capability of the AttentionFire model to rea-
sonably predict spatial and temporal distributions of burned
area ahead of fire season allows more time to explore and im-
plement management options, such as allocation of firefight-
ing resources, fuel clearing, or targeted burning restrictions
(Chen et al., 2011).

3.2 Dominant drivers of tropical burned-area
dynamics

The AttentionFire model dynamically weights variable im-
portance and highlights critical temporal windows (Qin et
al., 2017; Vaswani et al., 2017; Liang et al., 2018; Guo et

al., 2019; Li et al., 2020) that maximize model predictabil-
ity. Therefore, the variable weights could inform dominant
physical processes, while the temporal weights reflect the
temporal dependency structure, making it interpretable for
spatial-temporal analysis. For the AttentionFire model pre-
dictions, the variable weights showed that climate wetness
exerted strong and spatially heterogenous controls on burned
areas. Specifically, precipitation (for SHAF and SHSA re-
gions) and vapor pressure deficit (VPD; for NHAF region)
played the most important roles (Fig. 3) in burned-area pre-
diction during fire seasons (defined as the four months with
the largest burned areas, Fig. S2), and the control strengths
from those climate wetness variables on fires were signifi-
cantly (one-tailed t test, p value <0.05) stronger in regions
with larger burned areas (grid cells with top 10 % burned ar-
eas) than those with smaller burned areas (grid cells with last
90 % burned areas; Fig. 4a–f).

In AttentionFire model predictions, the precipitation and
VPD explained ∼ 66 % to ∼ 80% (Fig. S3) of the annual
mean fire season wildfire-burned areas. Variations of VPD
and precipitation not only affect fire season ignition likeli-
hood and fire spread (Sedano and Randerson, 2014; Holden
et al., 2018) through fuel moisture but also regulate vegeta-
tion growth, fuel structure (e.g., fuel composition and spatial
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Figure 3. Ranked top-five important variables for fire season burned area in northern hemispheric Africa (NHAF) (a), southern hemispheric
Africa (SHAF) (b), and southern hemispheric South America (SHSA) (c). For each grid cell within each study region, there is a mean variable
weight, representing the importance of the variable for fire prediction in the grid cell. For each region, the variable weights are summed,
weighted by their corresponding mean burned areas, and normalized.

Figure 4. Spatial-temporal importance of climate wetness variables for burned-area dynamics. (a–c) Spatial importance of climate wetness
variables for fire season burned areas. (d–f) Statistical comparison of the climate wetness variable importance over regions with large and
small burned areas. (g–i) Fire season burned-area dependency on the history of the climate wetness driver over northern hemispheric African
(NHAF), southern hemispheric African (SHAF), and southern hemispheric South American (SHSA) regions.

connectivity; Gale et al., 2021), and fuel availability (Mueller
et al., 2020; Littell et al., 2009, 2016; Van Der Werf et al.,
2008). The importance of these climate wetness variables
confirms the dominant roles of local water balances and air
dryness for wildfire prediction from sub-seasonal to seasonal
scales (Littell et al., 2016; Archibald et al., 2009; Chen et al.,
2011), especially in regions with large burned areas.

Furthermore, we found that the emergent functional rela-
tionships between climate wetness and wildfire-burned area
were parabolic (Fig. S3): i.e., enhancement of historical pre-
cipitation or decline of historical VPD (indicating wetter con-
ditions) first increased burned area in more xeric conditions,
then suppressed burned area under more mesic conditions,
consistent with previous findings in subtropical regions (An-
dela and Van Der Werf, 2014; Van Der Werf et al., 2008). The
transition points of these emergent functional relationships
(thresholds at which the relationships reverse) were region

specific, and these relationships may be useful for develop-
ing, tuning, and benchmarking wildfire models (Zhu et al.,
2022).

For the time lags between those dominant climate wetness
variables and fire season burned areas, our results demon-
strated that burned area over NHAF was more modulated by
relatively short-term wetness (VPD during wet-to-dry and
onset of dry season, from September to December), while
SHAF and SHSA burned areas depended more on long-term
wetness (precipitation during wet and wet-to-dry season, De-
cember to March in SHAF and November to April in SHSA)
(Fig. 4g–i). The short-term variations of climate wetness can
directly affect near-surface temperature and moisture avail-
ability, which affect fuel flammability (Littell et al., 2016;
Holden et al., 2018), while the long-term wetness (e.g., dur-
ing rainy season) can affect fuel availability, composition,
and spatial connectivity, which can result in even stronger
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long time-lagged controls on dry-season burned areas (Abat-
zoglou and Kolden, 2013; Littell et al., 2016; Chen et al.,
2011; Van Der Werf et al., 2008; Archibald et al., 2009; An-
dela and Van Der Werf, 2014).

Previous work has shown that when and where fires oc-
curred during the dry season can be affected by precipitation-
induced fuel availability patterns during the wet season and
during wet-to-dry transition seasons in savannah ecosystems
(Van Der Werf et al., 2008; Archibald et al., 2009; Andela
and Van Der Werf, 2014). Also, precipitation variations dur-
ing the wet season and wet-to-dry transition seasons in the
tropical forest ecosystem can affect soil recharge during the
wet season and further affect plant transpiration, local sur-
face humidity, and precipitation during the following dry sea-
son (Chen et al., 2011; Ramos da Silva et al., 2008; Malhi
et al., 2008). The exact responses of fires to short- and long-
term climate variations depend on both local wetness and fuel
conditions (e.g., fires in wetter ecosystems with enough fuel
availability can be mainly limited by the length of dry season,
while fires in drier ecosystems can be limited by fuel avail-
ability during wet season; Van Der Werf et al., 2008; An-
dela and Van Der Werf, 2014). Therefore, an effective way
of integrating the climate wetness history (i.e., AttentionFire
model) can lead to more accurate predictions of burned-area
spatial-temporal dynamics.

3.3 Possible usage of oceanic index for
long-leading-time predictions

In ASA regions, large-scale variations of oceanic dynamics
can directly influence local climate (e.g., precipitation varia-
tions during wet seasons; Chen et al., 2011; Andela and Van
Der Werf, 2014) through time-lagged controls of teleconnec-
tions and indirectly influence fires during the following dry
seasons (Chen et al., 2016, 2011; Andela et al., 2017). There-
fore, we hypothesized that ocean dynamics might benefit At-
tentionFire model predictions, especially for long-leading-
time fire predictions, through providing additional informa-
tion that has not been reflected in local climate and land sur-
face conditions (Chen et al., 2016, 2011; Andela et al., 2017;
Chen et al., 2020).

We compared model performance for short-term (1–4
months ahead) and long-term (5–8 months ahead) fire pre-
dictions with and without considering the four oceanic in-
dices (OIs). Relative to the MAE of short-term predictions,
the mean MAE of long-term predictions without and with
teleconnections increased by ∼ 34 % and ∼ 14 % in NHAF,
∼ 34 % and ∼ 15 % in SHAF, and ∼ 17 % and ∼ 7 % in
SHSA, respectively, indicating the decline of system pre-
dictability with longer leading time (Fig. 5). However, for
long-term predictions, including OIs could decrease the
mean MAE by ∼ 20 %, ∼ 19 %, and ∼ 11 % in NHAF,
SHAF, and SHSA regions, respectively, compared with the
case without oceanic indices. While the mean variable im-
portance of OIs was consistently lower than that of local cli-

mate (Fig. S4) across the three regions, the OIs did provide
additional information for long-term predictions with lower
biases (Fig. 5). The results demonstrated the potential usage
of teleconnections for long-leading-time burned-area predic-
tions (Chen et al., 2020, 2016, 2011).

3.4 Future trends of burned area over Africa and
South America

Due to climate change and human activities (Andela et al.,
2017), strong but opposing trends of burned areas have been
observed in northern (decreasing) and southern (increasing)
hemispheric Africa (Andela and Van Der Werf, 2014) and
within different regions of southern hemispheric America
(Andela et al., 2017) during the recent two decades, resulting
in an overall declining burned-area trend in Africa and South
America. However, whether this decline will persist is under
debate. On the one hand, the projected increases in popula-
tion, expansion of agriculture, mechanized (fire-free) man-
agement, and fire suppression policies will likely continue to
decrease burned areas (Andela and Van Der Werf, 2014), e.g.,
human activities were regarded as one of the main drivers for
fire decline in NHAF region. On the other hand, future cli-
mate change (Dai, 2013; Taufik et al., 2017) could outweigh
human impacts and result in unprecedented fire-prone envi-
ronments in the tropics (Pechony and Shindell, 2010; Malhi
et al., 2008), e.g., fires showed strong dependency on climate
wetness in NHAF, SHAF (Andela and Van Der Werf, 2014;
Archibald et al., 2009) and SHSA (Chen et al., 2011) regions.

Considering land use changes, population growth, and
projected climate and fuel conditions under the SSP585 high-
emission scenario, our model predicted that burned areas in
the NHAF region will continue to decline; the currently in-
creasing trend will be dampened in the SHAF region, and
the currently decreasing trend will be reversed in the SHSA
region (Fig. 6). The increasing trend in SHSA, decreasing
trend in NHAF, and dampened trend in SHAF under SSP585
were robust when projecting burned area till the end of the
21st century (Fig. S5). Over NHAF and SHSA, burned-area
trends at the grid cell level were mostly robust (Fig. 6a, c;
p<0.05) and of the same sign, thus resulting in a robust
trend at the regional scale. Under the low-emission scenario
(i.e., SSP126), the decreasing trend in NHAF disappeared
(Fig. S5a), and the increasing trend in SHSA was reduced
by ∼ 69 % (Fig. S5c), implying the big influences of climate
changes and socioeconomic development pathways on future
burn-area changes in the two regions.

To investigate what drives future burned-area changes
under SSP585, we iteratively surrogated each driver with
its climatology while keeping the other factors the same.
Burned-area changing trends in NHAF and SHSA were
mostly affected by VPD changes because removing VPD
inter-annual changes resulted in non-significant burned-area
trends throughout the whole of the NHAF and SHSA re-
gions (Fig. 6a, c). VPD was projected to continuously in-
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Figure 5. Performance of AttentionFire burned-area predictions with 1–4 months leading time (short term) and with 5–8 months leading
(long term). MAE is mean absolute error. Four ocean indices which have been widely used for fire prediction over South American and
African regions were considered for long-term forecasting, including Oceanic Niño Index, Atlantic Multidecadal Oscillation index, tropical
Northern Atlantic index, and tropical Southern Atlantic index.

Figure 6. Future burned-area trends under the SSP585 high-emission scenario. (a–c) Spatial distribution of fire season burned-area trends
using drivers with interannual variations; dots in (a)–(c) indicate grid cells with statistically significant changes in the trend. (d–f) Regionally
aggregated burned-area changes with historical mean subtracted. Blue and red lines respectively represent burned-area anomaly in history
and the future; the black line represents the future burned-area trend while removing the interannual variations of the dominant variable.
Solid lines represent significant BA trends (p value <0.05), while dashed lines represented non-significant BA trends.

crease due to warming but had different implications over
NHAF and SHSA. Over the relatively fuel-abundant SHSA
region, increased VPD will likely increase burned area (Pear-
son r = 0.64, p value <0.05, Fig. S6) through increasing fuel
dryness and combustibility (Kelley et al., 2019; Chen et al.,
2011; Malhi et al., 2008; Van Der Werf et al., 2008). In
contrast, over the semi-arid savannah-dominated NHAF re-
gion (less fuel, compared with SHSA), higher VPD could
decrease burned area (Pearson r =−0.71, p value <0.05,

Fig. S6) through limiting plant growth and fuel availability
(Van Der Werf et al., 2008; Andela and Van Der Werf, 2014;
Andela et al., 2017). For the SHAF, population growth and
climate changes showed stronger influences on burned-area
changes (Andela and Van Der Werf, 2014), while the hetero-
geneity of wildfire responses finally led to a non-significant
trend at the regional scale (Fig. 6). Our findings highlight
the importance of climate changes for understanding future
burned-area dynamics and motivate for better representation
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of climate wetness effects on wildfire dynamics in process-
based and machine-learning-based wildfire prediction mod-
els.

3.5 Directions for future research

The time-lagged controls of climate on ASA wildfires are
critical for sub-seasonal to seasonal wildfire prediction (Chen
et al., 2020; Andela and Van Der Werf, 2014; Chen et al.,
2011) but remain less well represented due to the complex
interactions among fire, climate, fuel, and human activities.
Here, we deployed the interpretable AttentionFire model to
understand and predict fire dynamics in the ASA region.
We revealed the dominant, spatially heterogenous, and time-
lagged controls of climate wetness on ASA wildfires. Such
climate wetness importance on ASA wildfires was consis-
tent with previous findings (Andela and Van Der Werf, 2014;
Chen et al., 2011) and was also confirmed by the other three
tree-based ML models (i.e., DT, RF, and GBDT) with vari-
able importance (e.g., precipitation and VPD were regarded
as the top-five most important variables in Fig. S7). How-
ever, differences existed across the model-identified most im-
portant drivers (Fig. 3 versus Fig. S7). The variable impor-
tance of the AttentionFire model was spatiotemporally var-
ied (Fig. 4), while tree-based-model-provided variable im-
portance was constant over the entire dataset. We showed
that the climate wetness was more (less) important in ar-
eas with large (small) burned areas, and its importance also
varied over time (Fig. 4), but the other MLs did not explic-
itly distinguish such differences. Albeit, the higher accuracy
and generally acceptable computation speed of AttentionFire
(Table S2), its memory consumption, and its model training
time could be up to 141 % and 22 times higher than the other
ML models. The implementation of LSTM in the Attention-
Fire model is a serial model instead of a parallel model;
therefore, future work could improve the model efficiency
by deploying some easy-for-parallel-computing time series
prediction frameworks, e.g., temporal convolutional attention
(Lin et al., 2021) and self attention (Mohammadi Farsani and
Pazouki, 2020; Vaswani et al., 2017).

This study focused on wildfire prediction in the ASA re-
gion, and we showed the performance improvement of the
AttentionFire model by representing the time-lagged con-
trols of climate on wildfires. Whether the AttentionFire
model can also outperform other ML models in other regions
may depend on the dependency strength and time lags be-
tween wildfires and climate variables. For example, in North
American boreal forests, lightning was identified as the ma-
jor driver of the interannual variability in burned areas by
influencing the number of ignitions in the dry season (Ve-
raverbeke et al., 2017). In such regions, the AttentionFire
model might not outperform other ML models due to the
lesser dominance of time-lagged controls. In regions like the
western US and India, where wildfires showed time-lagged
dependencies with local climate (Littell et al., 2009; Kale et

al., 2022) and where some extreme wildfires were caused by
persistent drought from wet to dry seasons with multi-month
lags (Taufik et al., 2017; Littell et al., 2016), the Attention-
Fire model could potentially be useful.

With the fully coupled ESMs of CMIP6, we analyzed fu-
ture burned-area changes under high- (SSP585) and low-
emission (SSP126) scenarios in the ASA region. While the
MME mean was considered, substantial uncertainty has been
found across different ESMs in history (Yuan et al., 2022a,
2021; Wu et al., 2020) and the future (Li et al., 2022a; Lauer
et al., 2020). Therefore, further work is needed to narrow
the projection uncertainty of ESMs, e.g., with constraints of
causality (Nowack et al., 2020; Li et al., 2022a) and observa-
tions (Tokarska et al., 2020; Lauer et al., 2020). Meanwhile,
for future projections, although land use and land cover
changes, population growth, and climate and fuel changes
were considered, constant livestock and road density were
adopted due to lack of data. The impacts of livestock and road
density therefore need further exploration with available data
under different future scenarios. In addition, the Attention-
Fire model is currently not coupled with the ESM; therefore,
the feedback among fires, climate, and biomass was ignored.
To analyze such feedback, the AttentionFire model needs to
surrogate the original fire module and be coupled with the
ESM (Zhu et al., 2022).

4 Conclusions

This study developed an interpretable machine learning
model (AttentionFire_v1.0) for burned-area predictions over
African and South American regions. Compared with ob-
servations and another five widely used machine learning
baseline models, we demonstrated the effectiveness of the
AttentionFire model to capture the magnitude, spatial dis-
tribution, and temporal variation of burned areas. Attention
mechanisms enabled the interpretation of complex but criti-
cal spatial-temporal patterns (Li et al., 2020; Guo et al., 2019;
Liang et al., 2018; Vaswani et al., 2017; Qin et al., 2017), thus
uncovering the black-box relationships in machine learning
models for burned-area predictions. We demonstrated the
spatiotemporally heterogenous and strong time-lagged con-
trols from local climate wetness on burned areas. Further-
more, under the SSP585 high-emission scenario, our results
suggested that the increasing trend in burned area over south-
ern Africa will be dampened, and the declining trend in
burned area over fuel-abundant southern America will re-
verse. This study highlights the importance of the skillful
representation of spatiotemporally heterogenous and strong
time-lagged climate wetness effects on understanding wild-
fire dynamics and developing advanced early fire warning
models.
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Code availability. The source code of AttentionFire_v1.0 and all
baseline machine learning models is archived at Zenodo reposi-
tory: https://doi.org/10.5281/zenodo.7416437 (Li et al., 2022b) un-
der Creative Commons Attribution 4.0 International license, with
four zip files: data, data_preparation, model, and example. The
“data” file contains the links to all raw datasets used to drive the
model (e.g., burned areas, climate forcing). The “data_preparation”
file contains the code to preprocess the raw datasets and make
them ready for training and testing of the AttentionFire model. The
“model” file contains the Python code of the AttentionFire model.
The “example” file gives a detailed example of how to use the At-
tentionFire model for burned-area predictions.

There is also a tutorial file “Data_Model_Tutorial” that contains
descriptions on (1) how to load the raw datasets, (2) how to prepare
the input and output datasets for the ML model, (3) how to initialize
the ML model and run the model, (4) how to train the ML model
and use the trained ML model for predictions, and (5) how to save
and load the model parameters and save the predicted results.

Data availability. We used NCEP-DOE Reanalysis Climate forc-
ings: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
(Kanamitsu et al., 2002) and NOAA oceanic index data:
https://psl.noaa.gov/data/climateindices/list/ (NOAA, 2022).
Population density data are from https://landscan.ornl.gov/
(Dobson et al., 2000). Road density data are from
https://www.globio.info/download-grip-dataset (Meijer
et al., 2018). Livestock density data could be found at
https://www.fao.org/dad-is/en/ (Robinson et al., 2014). We used
LUH2 land cover change data: https://luh.umd.edu/data.shtml
(Hurtt et al., 2020). The grid-cell-level burned area data
are from the Global Fire Emissions Database https:
//daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html
(https://doi.org/10.3334/ORNLDAAC/1293, Randerson et al.,
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