Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-813-2023
https://doi.org/10.5194/gmd-16-813-2023
Development and technical paper
 | 
02 Feb 2023
Development and technical paper |  | 02 Feb 2023

ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model

Rui Ying, Fanny M. Monteiro, Jamie D. Wilson, and Daniela N. Schmidt

Related authors

Reviews and Syntheses: Trait-based approach to constrain controls on planktic foraminiferal ecology: key trade-offs and current knowledge gaps
Kirsty Marie Edgar, Maria Grigoratou, Fanny Monteiro, Ruby Barrett, Rui Ying, and Daniela Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3295,https://doi.org/10.5194/egusphere-2024-3295, 2024
Short summary

Related subject area

Biogeosciences
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024,https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024,https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024,https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024,https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary

Cited articles

Anderson, O. R. and Bé, A. W. H.: The ultrastructure of a planktonic foraminifer, Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates, J. Foramin. Res., 6, 1–21, https://doi.org/10.2113/gsjfr.6.1.1, 1976. 
Anderson, O. R., Spindler, M., Bé, A. W. H., and Hemleben, Ch.: Trophic activity of planktonic foraminifera, J. Mar. Biol. Ass., 59, 791–799, https://doi.org/10.1017/S002531540004577X, 1979. 
Anderson, R. P.: When and how should biotic interactions be considered in models of species niches and distributions?, J. Biogeogr., 44, 8–17, https://doi.org/10.1111/jbi.12825, 2017. 
Anderson, T. R.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005. 
Download
Short summary
Planktic foraminifera are marine-calcifying zooplankton; their shells are widely used to measure past temperature and productivity. We developed ForamEcoGEnIE 2.0 to simulate the four subgroups of this organism. We found that the relative abundance distribution agrees with marine sediment core-top data and that carbon export and biomass are close to sediment trap and plankton net observations respectively. This model provides the opportunity to study foraminiferal ecology in any geological era.