Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-813-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-813-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model
School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
Fanny M. Monteiro
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
Jamie D. Wilson
School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
Daniela N. Schmidt
School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
Related authors
Kirsty M. Edgar, Maria Grigoratou, Fanny M. Monteiro, Ruby Barrett, Rui Ying, and Daniela N. Schmidt
Biogeosciences, 22, 3463–3483, https://doi.org/10.5194/bg-22-3463-2025, https://doi.org/10.5194/bg-22-3463-2025, 2025
Short summary
Short summary
Planktic foraminifera are microscopic marine organisms whose calcium carbonate shells provide valuable insights into past ocean conditions. A promising means of understanding foraminiferal ecology and their environmental interactions is to constrain their key functional traits relating to feeding, symbioses, motility, calcification, and reproduction. Here we review what we know of their functional traits, key gaps in our understanding, and suggestions on how to fill them.
Marco Puglia, Thomas Bibby, Jamie Wilson, and Ben Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3050, https://doi.org/10.5194/egusphere-2025-3050, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Mixotrophs use both photosynthesis and predation as source of nutrition. Simulations show they can increase ocean carbon storage, but long-term effects are not yet understood. Using a low-resolution ocean-ecology model that ran for 10,000 years, we compared simulations with and without mixotrophs. Mixotrophs increased global carbon storage by trapping more organic carbon in the ocean interior, although interactions with the ocean circulation offset these effects in the North Atlantic.
Kirsty M. Edgar, Maria Grigoratou, Fanny M. Monteiro, Ruby Barrett, Rui Ying, and Daniela N. Schmidt
Biogeosciences, 22, 3463–3483, https://doi.org/10.5194/bg-22-3463-2025, https://doi.org/10.5194/bg-22-3463-2025, 2025
Short summary
Short summary
Planktic foraminifera are microscopic marine organisms whose calcium carbonate shells provide valuable insights into past ocean conditions. A promising means of understanding foraminiferal ecology and their environmental interactions is to constrain their key functional traits relating to feeding, symbioses, motility, calcification, and reproduction. Here we review what we know of their functional traits, key gaps in our understanding, and suggestions on how to fill them.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
David A. Stappard, Jamie D. Wilson, Andrew Yool, and Toby Tyrrell
EGUsphere, https://doi.org/10.5194/egusphere-2025-436, https://doi.org/10.5194/egusphere-2025-436, 2025
Short summary
Short summary
This research explores nutrient limitations in oceanic primary production. While traditional experiments identify the immediate limiting nutrient at specific locations, this study aims to identify the ultimate limiting nutrient (ULN), which governs long-term productivity. A mathematical model incorporating nitrogen, phosphorus, and iron nutrient cycles is used. The model's results are compared with ocean observational data to assess its effectiveness in investigating the ULN.
Ruby Barrett, Joost de Vries, and Daniela N. Schmidt
Biogeosciences, 22, 791–807, https://doi.org/10.5194/bg-22-791-2025, https://doi.org/10.5194/bg-22-791-2025, 2025
Short summary
Short summary
Planktic foraminifers are a plankton whose fossilised shell weight is used to reconstruct past environmental conditions such as seawater CO2. However, there is debate about whether other environmental drivers impact shell weight. Here we use a global data compilation and statistics to analyse what controls their weight. We find that the response varies between species and ocean basin, making it important to use regional calibrations and consider which species should be used to reconstruct CO2.
Joost de Vries, Fanny Monteiro, Gerald Langer, Colin Brownlee, and Glen Wheeler
Biogeosciences, 21, 1707–1727, https://doi.org/10.5194/bg-21-1707-2024, https://doi.org/10.5194/bg-21-1707-2024, 2024
Short summary
Short summary
Calcifying phytoplankton (coccolithophores) utilize a life cycle in which they can grow and divide into two different phases. These two phases (HET and HOL) vary in terms of their physiology and distributions, with many unknowns about what the key differences are. Using a combination of lab experiments and model simulations, we find that nutrient storage is a critical difference between the two phases and that this difference allows them to inhabit different nitrogen input regimes.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Rachel A. Kruft Welton, George Hoppit, Daniela N. Schmidt, James D. Witts, and Benjamin C. Moon
Biogeosciences, 21, 223–239, https://doi.org/10.5194/bg-21-223-2024, https://doi.org/10.5194/bg-21-223-2024, 2024
Short summary
Short summary
We conducted a meta-analysis of known experimental literature examining how marine bivalve growth rates respond to climate change. Growth is usually negatively impacted by climate change. Bivalve eggs/larva are generally more vulnerable than either juveniles or adults. Available data on the bivalve response to climate stressors are biased towards early growth stages (commercially important in the Global North), and many families have only single experiments examining climate change impacts.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Joost de Vries, Fanny Monteiro, Glen Wheeler, Alex Poulton, Jelena Godrijan, Federica Cerino, Elisa Malinverno, Gerald Langer, and Colin Brownlee
Biogeosciences, 18, 1161–1184, https://doi.org/10.5194/bg-18-1161-2021, https://doi.org/10.5194/bg-18-1161-2021, 2021
Short summary
Short summary
Coccolithophores are important calcifying phytoplankton with an overlooked life cycle. We compile a global dataset of marine coccolithophore abundance to investigate the environmental characteristics of each life cycle phase. We find that both phases contribute to coccolithophore abundance and that their different environmental preference increases coccolithophore habitat. Accounting for the life cycle of coccolithophores is thus crucial for understanding their ecology and biogeochemical impact.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Cited articles
Andersen, K. H., Berge, T., Gonçalves, R. J., Hartvig, M., Heuschele,
J., Hylander, S., Jacobsen, N. S., Lindemann, C., Martens, E. A., Neuheimer,
A. B., Olsson, K., Palacz, A., Prowe, A. E. F., Sainmont, J., Traving, S.
J., Visser, A. W., Wadhwa, N., and Kiørboe, T.: Characteristic Sizes of
Life in the Oceans, from Bacteria to Whales, Annu. Rev. Mar.
Sci., 8, 217–241, https://doi.org/10/f3pdzr, 2016.
Anderson, O. R. and Bé, A. W. H.: The ultrastructure of a planktonic
foraminifer, Globigerinoides sacculifer (Brady), and its symbiotic
dinoflagellates, J. Foramin. Res., 6, 1–21,
https://doi.org/10.2113/gsjfr.6.1.1, 1976.
Anderson, O. R., Spindler, M., Bé, A. W. H., and Hemleben, Ch.: Trophic
activity of planktonic foraminifera, J. Mar. Biol. Ass., 59, 791–799,
https://doi.org/10.1017/S002531540004577X, 1979.
Anderson, R. P.: When and how should biotic interactions be considered in
models of species niches and distributions?, J. Biogeogr., 44,
8–17, https://doi.org/10.1111/jbi.12825, 2017.
Anderson, T. R.: Plankton functional type modelling: running before we can
walk?, J. Plankton Res., 27, 1073–1081,
https://doi.org/10.1093/plankt/fbi076, 2005.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Aze, T., Ezard, T. H. G., Purvis, A., Coxall, H. K., Stewart, D. R. M.,
Wade, B. S., and Pearson, P. N.: A phylogeny of Cenozoic macroperforate
planktonic foraminifera from fossil data, Biol. Rev., 86, 900–927,
https://doi.org/10/dvjwx6, 2011.
Barker, S. and Elderfield, H.: Foraminiferal Calcification Response to
Glacial-Interglacial Changes in Atmospheric CO2, Science, 297, 833–836,
https://doi.org/10.1126/science.1072815, 2002.
Be, A. W. H. and Hamlin, W. H.: Ecology of Recent Planktonic Foraminifera:
Part 3: Distribution in the North Atlantic during the Summer of 1962,
Micropaleontology, 13, 87–106, https://doi.org/10.2307/1484808, 1967.
Bé, A. W. H., Spero, H. J., and Anderson, O. R.: Effects of symbiont
elimination and reinfection on the life processes of the planktonic
foraminifer Globigerinoides sacculifer, Mar. Biol., 70, 73–86,
https://doi.org/10.1007/BF00397298, 1982.
Bec, B., Collos, Y., Vaquer, A., Mouillot, D., and Souchu, P.: Growth
rate peaks at intermediate cell size in marine photosynthetic
picoeukaryotes, Limnol. Oceanogr., 53, 863–867,
https://doi.org/10.4319/lo.2008.53.2.0863, 2008.
Bopp, L., Aumont, O., Kwiatkowski, L., Clerc, C., Dupont, L., Ethé, C., Gorgues, T., Séférian, R., and Tagliabue, A.: Diazotrophy as a key driver of the response of marine net primary productivity to climate change, Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, 2022.
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.:
Toward a Metabolic Theory of Ecology, Ecology, 85, 1771–1789,
https://doi.org/10.1890/03-9000,
2004.
Buckley, L. B., Urban, M. C., Angilletta, M. J., Crozier, L. G., Rissler, L.
J., and Sears, M. W.: Can mechanism inform species' distribution models?,
Ecol. Lett., 13, 1041–1054,
https://doi.org/10.1111/j.1461-0248.2010.01479.x, 2010.
Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S. C., Leblanc, K., Le Quéré, C., Luo, Y.-W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R., and Swan, C.: MAREDAT: towards a world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, 2013.
Buitenhuis, E. T., Quéré, C. L., Bednaršek, N., and Schiebel,
R.: Large Contribution of Pteropods to Shallow CaCO3 Export, Global
Biogeochem. Cy., 33, 458–468, https://doi.org/10/gjpnzt, 2019.
Cao, L., Eby, M., Ridgwell, A., Caldeira, K., Archer, D., Ishida, A., Joos, F., Matsumoto, K., Mikolajewicz, U., Mouchet, A., Orr, J. C., Plattner, G.-K., Schlitzer, R., Tokos, K., Totterdell, I., Tschumi, T., Yamanaka, Y., and Yool, A.: The role of ocean transport in the uptake of anthropogenic CO2, Biogeosciences, 6, 375–390, https://doi.org/10.5194/bg-6-375-2009, 2009.
Caromel, A. G. M., Schmidt, D. N., Phillips, J. C., and Rayfield, E. J.:
Hydrodynamic constraints on the evolution and ecology of planktic
foraminifera, Mar. Micropaleontol., 106, 69–78,
https://doi.org/10.1016/j.marmicro.2014.01.002, 2014.
Castellani, M., Våge, S., Strand, E., Thingstad, T. F., and Giske, J.:
The Scaled Subspaces Method: A new trait-based approach to model communities
of populations with largely inhomogeneous density, Ecol. Model.,
251, 173–186, https://doi.org/10.1016/j.ecolmodel.2012.12.006, 2013.
Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre,
M.-F., Weber, S., Alcamo, J., Alexeev, V., Berger, A., Calov, R.,
Ganopolski, A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I., Petoukhov,
V., Stone, P., and Wang, Z.: Earth system models of intermediate complexity:
closing the gap in the spectrum of climate system models, Clim. Dynam.,
18, 579–586, https://doi.org/10.1007/s00382-001-0200-1, 2002.
Daniels, C. J., Poulton, A. J., Balch, W. M., Marañón, E., Adey, T., Bowler, B. C., Cermeño, P., Charalampopoulou, A., Crawford, D. W., Drapeau, D., Feng, Y., Fernández, A., Fernández, E., Fragoso, G. M., González, N., Graziano, L. M., Heslop, R., Holligan, P. M., Hopkins, J., Huete-Ortega, M., Hutchins, D. A., Lam, P. J., Lipsen, M. S., López-Sandoval, D. C., Loucaides, S., Marchetti, A., Mayers, K. M. J., Rees, A. P., Sobrino, C., Tynan, E., and Tyrrell, T.: A global compilation of coccolithophore calcification rates, Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, 2018.
Droop, M. R.: Vitamin B12 and Marine Ecology. IV. The Kinetics of Uptake,
Growth and Inhibition in Monochrysis Lutheri, J. Mar. Biol. Ass., 48,
689–733, https://doi.org/10.1017/S0025315400019238, 1968.
Edgar, K. M., Bohaty, S. M., Gibbs, S. J., Sexton, P. F., Norris, R. D., and
Wilson, P. A.: Symbiont “bleaching” in planktic foraminifera during the
Middle Eocene Climatic Optimum, Geology, 41, 15–18,
https://doi.org/10/f4jwbp, 2013.
Edwards, K. F., Thomas, M. K., Klausmeier, C. A., and Litchman, E.:
Allometric scaling and taxonomic variation in nutrient utilization traits
and maximum growth rate of phytoplankton, Limnol. Oceanogr., 57, 554–566,
https://doi.org/10.4319/lo.2012.57.2.0554, 2012.
Edwards, N. R. and Marsh, R.: Uncertainties due to transport-parameter
sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24, 415–433,
https://doi.org/10/fcvq9k, 2005.
Ezard, T. H. G., Aze, T., Pearson, P. N., and Purvis, A.: Interplay Between
Changing Climate and Species' Ecology Drives Macroevolutionary Dynamics,
Science, 332, 349–351, https://doi.org/10/bd77gm, 2011.
Fiksen, Ø., Follows, M. J., and Aksnes, D. L.: Trait-based models of
nutrient uptake in microbes extend the Michaelis-Menten framework, Limnol.
Oceanogr., 58, 193–202, https://doi.org/10.4319/lo.2013.58.1.0193, 2013.
Fisher, R. A., Corbet, A. S., and Williams, C. B.: The Relation Between the
Number of Species and the Number of Individuals in a Random Sample of an
Animal Population, J. Anim. Ecol., 12, 42–58,
https://doi.org/10.2307/1411, 1943.
Flynn, K. J.: The importance of the form of the quota curve and control of
non-limiting nutrient transport in phytoplankton models, J. Plankton Res., 30, 423–438, https://doi.org/10.1093/plankt/fbn007, 2008.
Follows, M. J. and Dutkiewicz, S.: Modeling Diverse Communities of Marine
Microbes, Annu. Rev. Mar. Sci., 3, 427–451, https://doi.org/10/b3w27x,
2011.
Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.: Emergent
Biogeography of Microbial Communities in a Model Ocean, Science, 315,
1843–1846, https://doi.org/10/bf6j95, 2007.
Fraile, I., Schulz, M., Mulitza, S., and Kucera, M.: Predicting the global distribution of planktonic foraminifera using a dynamic ecosystem model, Biogeosciences, 5, 891–911, https://doi.org/10.5194/bg-5-891-2008, 2008.
Fraile, I., Schulz, M., Mulitza, S., Merkel, U., Prange, M., and Paul, A.:
Modeling the seasonal distribution of planktonic foraminifera during the
Last Glacial Maximum, Paleoceanography, 24, PA2216, https://doi.org/10.1029/2008PA001686, 2009.
Frick, H., Chow, F., Kuhn, M., Mahoney, M., Silge, J., and Wickham, H.: rsample: General Resampling Infrastructure, https://rsample.tidymodels.org, last access: July 2022.
Gaskell, D. E., Ohman, M. D., and Hull, P. M.: Zooglider-Based Measurements
of Planktonic Foraminifera in the California Current System, J. Foramin. Res., 49, 390–404,
https://doi.org/10.2113/gsjfr.49.4.390, 2019.
Geider, R. J., Maclntyre, H. L., and Kana, T. M.: A dynamic regulatory model
of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43, 679–694, https://doi.org/10.4319/lo.1998.43.4.0679, 1998.
Gregoire, L. J., Valdes, P. J., Payne, A. J., and Kahana, R.: Optimal tuning
of a GCM using modern and glacial constraints, Clim. Dynam., 37, 705–719,
https://doi.org/10.1007/s00382-010-0934-8, 2011.
Grigoratou, M., Monteiro, F. M., Schmidt, D. N., Wilson, J. D., Ward, B. A., and Ridgwell, A.: A trait-based modelling approach to planktonic foraminifera ecology, Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019, 2019.
Grigoratou, M., Monteiro, F. M., Wilson, J. D., Ridgwell, A., and Schmidt,
D. N.: Exploring the impact of climate change on the global distribution of
non-spinose planktonic foraminifera using a trait-based ecosystem model,
Glob. Change Biol., 28, 1063–1076, https://doi.org/10.1111/gcb.15964, 2021a.
Grigoratou, M., Monteiro, F. M., Ridgwell, A., and Schmidt, D. N.:
Investigating the benefits and costs of spines and diet on planktonic
foraminifera distribution with a trait-based ecosystem model, Mar. Micropaleontol., 166, 102004, https://doi.org/10/gkbn65, 2021b.
Hemer, M. A. and Trenham, C. E.: Evaluation of a CMIP5 derived dynamical
global wind wave climate model ensemble, Ocean Model., 103, 190–203,
https://doi.org/10.1016/j.ocemod.2015.10.009, 2016.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern Planktonic Foraminifera,
Springer Verlag, New York, 112–127, 134–136,
1989.
Henehan, M. J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt,
D. N., Rae, J. W. B., Witts, J. D., Landman, N. H., Greene, S. E., Huber, B.
T., Super, J. R., Planavsky, N. J., and Hull, P. M.: Rapid ocean
acidification and protracted Earth system recovery followed the
end-Cretaceous Chicxulub impact, P. Natl. Acad. Sci. USA, 116, 22500–22504,
https://doi.org/10/ggbnrm, 2019.
Holling, C. S.: The Functional Response of Predators to Prey Density and its
Role in Mimicry and Population Regulation, Mem. Entomol. Soc. Can., 97,
5–60, https://doi.org/10/fhjtms, 1965.
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J.,
Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E.,
Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto,
T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B.:
The Geological Record of Ocean Acidification, Science, 335, 1058–1063,
https://doi.org/10/gdj3zf, 2012.
Jonkers, L. and Kučera, M.: Global analysis of seasonality in the shell flux of extant planktonic Foraminifera, Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, 2015.
Keller, D. P., Oschlies, A., and Eby, M.: A new marine ecosystem model for the University of Victoria Earth System Climate Model, Geosci. Model Dev., 5, 1195–1220, https://doi.org/10.5194/gmd-5-1195-2012, 2012.
Kiørboe, T., Visser, A., and Andersen, K. H.: A trait-based approach to
ocean ecology, ICES J. Mar. Sci., 75, 1849–1863,
https://doi.org/10.1093/icesjms/fsy090, 2018.
Kretschmer, K., Kucera, M., and Schulz, M.: Modeling the distribution and
seasonality of Neogloboquadrina pachyderma in the North Atlantic Ocean
during Heinrich Stadial 1, Paleoceanography, 31, 986–1010,
https://doi.org/10.1002/2015PA002819, 2016.
Kretschmer, K., Jonkers, L., Kucera, M., and Schulz, M.: Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale, Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, 2018.
Kucera, M. and Schonfeld, J.: The origin of modern oceanic foraminiferal
faunas and Neogene climate change, in: Deep-Time Perspectives on Climate
Change: Marrying the Signal from Computer Models and Biological Proxies,
edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N.,
The Geological Society of London on behalf of The Micropalaeontological
Society, 409–425, https://doi.org/10.1144/TMS002.18, 2007.
Legendre, P. and Legendre, L.: Numerical Ecology, 2nd edn., Elsevier, 316–317, ISBN 0-444089249-4, 1998.
LeKieffre, C., Spero, H. J., Russell, A. D., Fehrenbacher, J. S., Geslin,
E., and Meibom, A.: Assimilation, translocation, and utilization of carbon
between photosynthetic symbiotic dinoflagellates and their planktic
foraminifera host, Mar. Biol., 165, 104, https://doi.org/10.1007/s00227-018-3362-7, 2018.
Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S., Howa, H., and Jorissen, F.: Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach, Biogeosciences, 8, 853–873, https://doi.org/10.5194/bg-8-853-2011, 2011.
Marsh, R., Müller, S. A., Yool, A., and Edwards, N. R.: Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: “eb_go_gs” configurations of GENIE, Geosci. Model Dev., 4, 957–992, https://doi.org/10.5194/gmd-4-957-2011, 2011.
Mitra, A., Flynn, K. J., Tillmann, U., Raven, J. A., Caron, D., Stoecker, D.
K., Not, F., Hansen, P. J., Hallegraeff, G., Sanders, R., Wilken, S.,
McManus, G., Johnson, M., Pitta, P., Våge, S., Berge, T., Calbet, A.,
Thingstad, F., Jeong, H. J., Burkholder, J., Glibert, P. M., Granéli,
E., and Lundgren, V.: Defining Planktonic Protist Functional Groups on
Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse
Mixotrophic Strategies, Protist, 167, 106–120, https://doi.org/10/f3p5h2,
2016.
Monteiro, F. M., Follows, M. J., and Dutkiewicz, S.: Distribution of diverse
nitrogen fixers in the global ocean, Global Biogeochem. Cy., 24, GB3017,
https://doi.org/10/ctkc4h, 2010.
Moore, J. K., Doney, S. C., Kleypas, J. A., Glover, D. M., and Fung, I. Y.:
An intermediate complexity marine ecosystem model for the global domain,
Deep-Sea Res. Pt. II, 49, 403–462,
https://doi.org/10/bp99zn, 2001.
Ohman, M. D.: A sea of tentacles: optically discernible traits resolved from
planktonic organisms in situ, ICES J. Mar. Sci., 76,
1959–1972, https://doi.org/10.1093/icesjms/fsz184, 2019.
Ortiz, J. D., Mix, A. C., and Collier, R. W.: Environmental control of
living symbiotic and asymbiotic foraminifera of the California Current,
Paleoceanography, 10, 987–1009, https://doi.org/10/ft8jc7, 1995.
Pianosi, F. and Wagener, T.: A simple and efficient method for global
sensitivity analysis based on cumulative distribution functions,
Environ. Modell. Softw., 67, 1–11, https://doi.org/10/f677qs,
2015.
Quéré, C. L., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T.,
Aumont, O., Bopp, L., Claustre, H., Cunha, L. C. D., Geider, R., Giraud, X.,
Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R.
B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.:
Ecosystem dynamics based on plankton functional types for global ocean
biogeochemistry models, Glob. Change Biol., 11, 2016–2040,
https://doi.org/10/cm9nzc, 2005.
Rae, J. W. B., Gray, W. R., Wills, R. C. J., Eisenman, I., Fitzhugh, B.,
Fotheringham, M., Littley, E. F. M., Rafter, P. A., Rees-Owen, R., Ridgwell,
A., Taylor, B., and Burke, A.: Overturning circulation, nutrient limitation,
and warming in the Glacial North Pacific, Science Advances, 6, eabd1654,
https://doi.org/10/ghrj7m, 2020.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: July 2022), 2021.
Renaud, S. and Schmidt, D. N.: Habitat tracking as a response of the
planktic foraminifer Globorotalia truncatulinoides to environmental
fluctuations during the last 140 kyr, Mar. Micropaleontol., 49, 97–122,
https://doi.org/10/bgp3cz, 2003.
Ridgwell, A. and Hargreaves, J. C.: Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model, Global Biogeochem. Cy., 21, GB2008,
https://doi.org/10.1029/2006GB002764, 2007.
Ridgwell, A. and Schmidt, D. N.: Past constraints on the vulnerability of
marine calcifiers to massive carbon dioxide release, Nat. Geosci., 3,
196–200, https://doi.org/10.1038/ngeo755, 2010.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007.
Ridgwell, A., Ying R., Reinhard, C., van de Velde, S., Adloff, M., Monteiro, F., Hülse, D., Wilson, J., Ward, B., Vervoort, P., Kirtland, S., Turner, S., and Li, M.: ruiying-ocean/cgenie.muffin: ForamEcoGENIE (v0.9.26), Zenodo [code and data set], https://doi.org/10.5281/zenodo.6808760, 2022.
Roy, T., Lombard, F., Bopp, L., and Gehlen, M.: Projected impacts of climate change and ocean acidification on the global biogeography of planktonic Foraminifera, Biogeosciences, 12, 2873–2889, https://doi.org/10.5194/bg-12-2873-2015, 2015.
Salter, I., Schiebel, R., Ziveri, P., Movellan, A., Lampitt, R., and Wolff,
G. A.: Carbonate counter pump stimulated by natural iron fertilization in
the Polar Frontal Zone, Nat. Geosci., 7, 885–889,
https://doi.org/10.1038/ngeo2285, 2014.
Sarrazin, F., Pianosi, F., and Wagener, T.: Global Sensitivity Analysis of
environmental models: Convergence and validation, Environ. Modell. Softw., 79, 135–152, https://doi.org/10/f8n8kp, 2016.
Schiebel, R.: Planktic foraminiferal sedimentation and the marine calcite
budget, Global Biogeochem. Cy., 16, 1065,
https://doi.org/10/bdxfhs, 2002.
Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean,
Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-662-50297-6, 2017.
Schiebel, R. and Movellan, A.: First-order estimate of the planktic foraminifer biomass in the modern ocean, Earth Syst. Sci. Data, 4, 75–89, https://doi.org/10.5194/essd-4-75-2012, 2012.
Schmidt, D. N., Thierstein, H. R., Bollmann, J., and Schiebel, R.: Abiotic
Forcing of Plankton Evolution in the Cenozoic, Science, 303, 207–210,
https://doi.org/10/b37mvn, 2004a.
Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., and Thierstein, H.
R.: Size distribution of Holocene planktic foraminifer assemblages:
biogeography, ecology and adaptation, Mar. Micropaleontol., 50,
319–338, https://doi.org/10/b6nqrj, 2004b.
van Sebille, E., Scussolini, P., Durgadoo, J. V., Peeters, F. J. C.,
Biastoch, A., Weijer, W., Turney, C., Paris, C. B., and Zahn, R.: Ocean
currents generate large footprints in marine palaeoclimate proxies, Nat.
Commun., 6, 6521, https://doi.org/10/f67xqv, 2015.
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L.,
Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J.,
Gehlen, M., Ilyina, T., John, J. G., Li, H., Long, M. C., Luo, J. Y.,
Nakano, H., Romanou, A., Schwinger, J., Stock, C., Santana-Falcón, Y.,
Takano, Y., Tjiputra, J., Tsujino, H., Watanabe, M., Wu, T., Wu, F., and
Yamamoto, A.: Tracking Improvement in Simulated Marine Biogeochemistry
Between CMIP5 and CMIP6, Curr. Clim. Change Rep., 6, 95–119,
https://doi.org/10.1007/s40641-020-00160-0, 2020.
Siccha, M. and Kucera, M.: ForCenS, a curated database of planktonic
foraminifera census counts in marine surface sediment samples, Sci. Data, 4,
170109, https://doi.org/10.1038/sdata.2017.109, 2017.
Spero, H. J. and Parker, S. L.: Photosynthesis in the symbiotic planktonic
foraminifer Orbulina universa, and its potential contribution to oceanic
primary productivity, J. Foramin. Res., 15, 273–281,
https://doi.org/10/c2rt2q, 1985.
Suggett, D. J., Warner, M. E., and Leggat, W.: Symbiotic Dinoflagellate
Functional Diversity Mediates Coral Survival under Ecological Crisis, Trends
Ecol. Evol., 32, 735–745,
https://doi.org/10.1016/j.tree.2017.07.013, 2017.
Sunagawa, S., Acinas, S. G., Bork, P., Bowler, C., Eveillard, D., Gorsky,
G., Guidi, L., Iudicone, D., Karsenti, E., Lombard, F., Ogata, H., Pesant,
S., Sullivan, M. B., Wincker, P., and de Vargas, C.: Tara Oceans: towards
global ocean ecosystems biology, Nat. Rev. Microbiol., 18, 428–445,
https://doi.org/10.1038/s41579-020-0364-5, 2020.
Takagi, H., Kimoto, K., Fujiki, T., Saito, H., Schmidt, C., Kucera, M., and Moriya, K.: Characterizing photosymbiosis in modern planktonic foraminifera, Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019, 2019.
Takahashi, K. and Be, A. W. H.: Planktonic foraminifera: factors controlling
sinking speeds, Deep-Sea Res., 31,
1477–1500, https://doi.org/10.1016/0198-0149(84)90083-9, 1984.
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng,
R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N.,
Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L.,
Goddéris, Y., Huber, B. T., Ivany, L. C., Kirtland Turner, S., Lunt, D.
J., McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A.,
and Zhang, Y. G.: Past climates inform our future, Science, 370, eaay3701,
https://doi.org/10/gh6c3g, 2020.
Todd, C. L., Schmidt, D. N., Robinson, M. M., and Schepper, S. D.: Planktic
Foraminiferal Test Size and Weight Response to the Late Pliocene
Environment, Paleoceanography and Paleoclimatology, 35, e2019PA003738,
https://doi.org/10/ghrd4r, 2020.
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M.,
Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O.,
Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence
of diatom diversity on the ocean biological carbon pump, Nat. Geosci.,
11, 27–37, https://doi.org/10/gcxznd, 2018.
Uhle, M. E., Macko, S. A., Spero, H. J., Lea, D. W., Ruddiman, W. F., and
Engel, M. H.: The fate of nitrogen in the Orbulina universa
foraminifera-symbiont system determined by nitrogen isotope analyses of
shell-bound organic matter, Limnol. Oceanogr., 44, 1968–1977,
https://doi.org/10/ffgtfw, 1999.
Våge, S., Castellani, M., Giske, J., and Thingstad, T. F.: Successful
strategies in size structured mixotrophic food webs, Aquat. Ecol., 47,
329–347, https://doi.org/10.1007/s10452-013-9447-y, 2013.
van de Velde, S. J., Hülse, D., Reinhard, C. T., and Ridgwell, A.: Iron and sulfur cycling in the cGENIE.muffin Earth system model (v0.9.21), Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, 2021.
Ward, B. A. and Follows, M. J.: Marine mixotrophy increases trophic transfer
efficiency, mean organism size, and vertical carbon flux, P. Natl. Acad. Sci.
USA, 113, 2958–2963, https://doi.org/10/ggnmm5, 2016.
Ward, B. A., Wilson, J. D., Death, R. M., Monteiro, F. M., Yool, A., and Ridgwell, A.: EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model, Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, 2018.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Waterson, A. M., Edgar, K. M., Schmidt, D. N., and Valdes, P. J.:
Quantifying the stability of planktic foraminiferal physical niches between
the Holocene and Last Glacial Maximum: Niche Stability of Planktic
Foraminifera, Paleoceanography, 32, 74–89, https://doi.org/10/f9vbtb, 2017.
Watterson, I. G.: Non-Dimensional Measures of Climate Model Performance,
Int. J. Climatol., 16, 379–391,
https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<379::AID-JOC18>3.0.CO;2-U, 1996.
Watterson, I. G., Bathols, J., and Heady, C.: What Influences the Skill of
Climate Models over the Continents?, B. Am. Meteorol.
Soc., 95, 689–700, https://doi.org/10.1175/BAMS-D-12-00136.1, 2014.
West, G. B., Brown, J. H., and Enquist, B. J.: A General Model for the
Origin of Allometric Scaling Laws in Biology, Science, 276, 122–126,
https://doi.org/10.1126/science.276.5309.122, 1997.
Wilson, J. D., Andrews, O., Katavouta, A., de Melo Viríssimo, F.,
Death, R. M., Adloff, M., Baker, C. A., Blackledge, B., Goldsworth, F. W.,
Kennedy-Asser, A. T., Liu, Q., Sieradzan, K. R., Vosper, E., and Ying, R.:
The biological carbon pump in CMIP6 models: 21st century trends and
uncertainties, P. Natl. Acad. Sci. USA, 119, e2204369119,
https://doi.org/10.1073/pnas.2204369119, 2022.
Zakharova, L., Meyer, K. M., and Seifan, M.: Trait-based modelling in
ecology: A review of two decades of research, Ecol. Model., 407,
108703, https://doi.org/10.1016/j.ecolmodel.2019.05.008, 2019.
Žarić, S., Schulz, M., and Mulitza, S.: Global prediction of planktic foraminiferal fluxes from hydrographic and productivity data, Biogeosciences, 3, 187–207, https://doi.org/10.5194/bg-3-187-2006, 2006.
Short summary
Planktic foraminifera are marine-calcifying zooplankton; their shells are widely used to measure past temperature and productivity. We developed ForamEcoGEnIE 2.0 to simulate the four subgroups of this organism. We found that the relative abundance distribution agrees with marine sediment core-top data and that carbon export and biomass are close to sediment trap and plankton net observations respectively. This model provides the opportunity to study foraminiferal ecology in any geological era.
Planktic foraminifera are marine-calcifying zooplankton; their shells are widely used to measure...