

Supplement of

ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model

Rui Ying et al.

Correspondence to: Rui Ying (rui.ying@bristol.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Literature	Source	Region
Kuroyanagi and	https://doi.org/10.1016/j.marmicro.	Japan Seas
Kawahata, 2004	2004.06.001	
Sousa et al., 2014	https://doi.org/10.1016/j.csr.2013.1	SE Brazilian margin
	1.027	
Bahr et al., 2013	https://doi.org/10.1016/j.epsl.2013. 09.036	Caribbean
Schmuker&	https://doi.org/10.1016/S0377-	Caribbean
Schiebel, 2002	8398(02)00082-8	
Ortiz, Mix & Collier (1995)	https://doi.org/10.1029/95PA02088	California Current
Bé et al. (1985)	https://doi.org/10.1016/0377- 8398(85)90002-7	Panama Basin
Ufkes et al. (1998)	https://doi.org/10.1016/S0377- 8398(97)00032-7	ES Atlantic
Bergami et al.,	https://doi.org/10.1016/j.marmicro.	Ross Sea
(2009)	2009.06.007	
Schiebel and	https://doi.org/10.1016/S0967-	eastern North Atlantic (BIOTRANS)
Hemleben (2000)	0645(00)00008-4	
Schiebel et al., 2002	https://doi.org/10.1016/S0967- 0645(02)00141-8	Azores Front
Schiebel et al., 2004	https://doi.org/10.1016/j.marmicro. 2004.02.001	Arabian Sea
Rebotim et al., 2017	https://doi.org/10.5194/bg-14-827- 2017	eastern North Atlantic
Meilland et al.,	https://doi.org/10.5194/bg-17-	Barents Sea
2020	1437-2020	
Lessa et al., 2020	https://doi.org/10.5194/bg-17- 4313-2020	subtropical South Atlantic
Taylor et al., 2018	https://doi.org/10.1016/j.quascirev. 2018.05.006	North Pacific
Rippert et al., 2016	https://doi.org/10.1016/j.marmicro. 2016.08.004	western Pacific warm pool
Tolderlund and Bé, 1971	https://doi.org/10.2307/1485143	western North Atlantic
Meilland, 2015	PhD thesis	Southern Ocean

Table S1 Collected studies in plankton net tow data compilation

Literature	Source	Region
Zaric et al., 2005	https://doi.org/10.1016/j.marmicro.2005.01.002	global
Chapman et al., 2010	https://doi.org/10.1029/2008PA001708	NE Atlantic
Mohtadi et al., 2009	https://doi.org/10.1029/2008PA001636	Java sea

Table S2 Collected studies in sediment trap data compilation

Table S3 Model parameter value and units adapted from EcoGEnIE (Ward et al., 2018)

Parameter	Description	Value	Unit	Equation
Cell Quota				
Q _c	Cell carbon	1.45E-11 x V ^{0.88} mmol C cell ⁻¹		
	content			
Q ^p _{min}	Minimum P/C	3.3E-3	3.3E-3 mmol P (mmol	
	quota ratio		C) ⁻¹	
Q ^p _{max}	Maximum P/C	1.1E-2	mmol P (mmol	2
	quota ratio	C) ⁻¹		
Q^{Fe}_{min}	Minimum Fe/C	1.0E-6	mmol Fe (mmol	2
	quota ratio		C) ⁻¹	
Q^{Fe}_{max}	Maximum Fe/C	4.0E-6	mmol Fe (mmol	2
	quota ratio		C) ⁻¹	
Nutrient uptake				
V ^m _{PO4}	Maximum PO ₄	4.4E-2 x V ^{0.06}	mmol P (mmol	12
	uptake rate		C) ⁻¹ d ⁻¹	
V^{m}_{Fe}	Maximum Fe	1.4E-4 x V ^{-0.09}	mmol Fe (mmol	12
	uptake rate		C) ⁻¹ d ⁻¹	
α_{PO4}	Affinity to PO ₄	1.1 x V ^{-0.35}	m ³ (mmol C) ⁻¹ d ⁻¹	12
α_{Fe}	Affinity to Fe	0.175 x V ^{-0.36}	m ³ (mmol C) ⁻¹ d ⁻¹	12
Temperature				
A	Temperature	0.05		5
	dependency			
T_{ref}	Reference	20	0	5
	temperature			
Loss terms				
Ybasal	Respiration loss		mmol C (mmol	4
	·		P) ⁻¹	
m _{basal}	Mortality loss		d ⁻¹	6
Photosynthesis	·			
Pa	Maximum	3.08		13
P _b	photosynthesis	5		13
Pc	rate definition	-3.08		13
	(P _{a,b,c})			
Q ^m _{chl}	maximum Chl a/P	48	mg Chl <i>a</i> (mmol	16
	ratio		P) ⁻¹	
α	initial P-I curve	3.83E-7	, mmol C (mg Chl	16
	slope		a) ⁻¹ (µEin m ⁻²) ⁻¹	
Grazing	·		- ·• *	
K	Half-saturation	5.0	mmol C m-3	7
	concentration			

σ	Prey range	0.5		10
V	Optimal predator:prey size ratio	10		10
٨	Grazing refuge strength	-1	(mmol C m-3)-1	7
G _m	Maximum grazing rate	21.9 x V- ^{0.16}	d ⁻¹	7
Carbon flux				
β_{max}	maximum DOM fraction	0.8		22
•				
β _{min}	minimum DOM fraction	0.4		22

Table S4 Functional group classification of planktic foraminifer species. Taxonomy is following mikrotax (Young et al. 2017) and symbiosis follows Takagi et al., (2019) and Schiebel and Hemleben, (2017)

Name	Symbiosis	Spinose	Remark
Dentigloborotalia	No	No	
anfracta			
Globorotalia	No	No	
cavernula			
Globorotalia	No	No	
crassaformis			
Globorotalia	No	No	Synonyms: Hirsutella hirsuta
hirsuta			
Globorotalia	Yes	No	Symbionts facultative
menardii			
Globorotalia	No	No	Synonyms: Hirsutella scitula
scitula			
Globorotalia	No	No	Synonyms: Truncorotalia
truncatulinoides			truncatulinoides
Globorotalia	No	No	
tumida			
Globorotalia	No	No	
ungulata			
Globorotalia	No	No	
theyeri			
Globoconella	Yes	No	Symbionts facultative. Synonyms:
inflata			Globorotalia inflata;
Neogloboquadrina	Yes	No	Symbionts facultative
dutertrei			
Neogloboquadrina	No	No	Previously called Neogloboquadrina
incompta			pachyderma (right)
Neogloboquadrina	No	No	Previously called Neogloboquadrina
pachyderma			pachyderma (left)
Pulleniatina	Yes	No	Symbionts facultative
obliquiloculata			
Globoquadrina	No	No	
conglomerata			
Globorotaloides	No	No	
hexagonus			
Berggrenia	No	No	
pumilio			
Globigerina	No	Yes	Symbiont-barren spinose
bulloides			
Globigerina	Yes	Yes	
falconensis			
Globigerinoides	Yes	Yes	
conglobatus			
Globigerinoides	Yes	Yes	Darling and Wade, (2008). Include
ruber			two subspecies G. ruber pink and G.
			<i>ruber</i> white
		1	

Trilobatus	Yes	Yes	Synonyms: Globigerinoides sacculifer;
sacculifer			Globigerinoides elongatus
Globigerinoides	No	Yes	spinose without symbionts (Aze et al.,
tenellus			2011); Synonyms Globoturborotalita
			tenellus
Orbulina universa	Yes	Yes	
Beella digitata	Yes	Yes	unclear as subthermocline dwelling,
			Coxall et al 2007; Synonyms:
			Globigerinella digitata
Globigerinella	Yes	Yes	Synonyms: Globigerina aequilateralis
siphonifera			
Globigerinella	Yes	Yes	Synonyms: Globigerina calida
calida			
Globigerinella	Yes	Yes	
adamsi			
Turborotalita	No	No	
quinqueloba			
Turborotalita	Yes	Yes	
humilis			
Globoturborotalita	Yes	Yes	
rubescens	~		
Sphaeroidinella	Yes	Yes	
dehiscens			
Candeina nitida	Yes	No	Symbionts facultative
Globigerinita	Yes	No	Symbionts facultative
glutinata			
Globigerinita	Yes	No	Symbionts facultative; (Takagi et al.,
uvula			2019, 2020)
Globigerinita	NO	NO	
minuta Tamuitalla iata	No	No	
Tenultella lota	NO	NO	
Hastigerina	No	Yes	Symbiont-barren spinose
pelagica			
Hastigerinella	No	Yes	sister species of <i>H.pelagica</i> ; symbiont
digitata			bearing Takagi et al. (2019)
Streptochilus	Undetermined	Undetermined	very rare, limited information
globigerus			
Tenuitella	Undetermined	Undetermined	Synonyms: Tenuitella fleisheri
compressa Tanuitalla flaiahani			(synonyms under discussion)
Tenultella fleisheri	Undetermined	Undetermined	Synonyms: Tenuitella compressa
Tenuitella	Undetermined	Undetermined	limited information
parkerae			
Turborotalita	Undetermined	Yes	
clarkei			
Giobigerinella	res	Yes	very close to G.siphonifera
rualans Oreardía: riadal			Dava anaging limited information
Urcaala riedeli	Undetermined	Undetermined	Kare species, limited information,
Claboratalia	No	No	(Schleber et al., 2017)
floruoca	INO		flowers
Jiexuosu			JIEXUUSU

Table S5 Root Mean Square Error (RMSE) of our model with optimal parameters for inter-model comparison

	Biomass (mmol C m ⁻³)	Carbon Export (mmol C m ⁻² d ⁻¹)	Relative Abundance	Column Total
symbiont-barren non-spinose	0.03	0.09	0.19	0.31
symbiont-barren spinose	0.02	0.04	0.12	0.18
symbiont-facultative non- spinose	0.01	0	0.34	0.35
symbiont-obligate spinose	0.01	0.02	0.42	0.46
Row Total	0.06	0.16	1.08	1.3

Figure S1. A histogram of sampled duration in collected sediment trap and plankton net data. The sediment traps tend to record seasonal signatures while plankton nets represent sampling of a single record of a few hours (the only two-month sampled data should be a result of sampling at the end of month).

Figure S2. Number of runs for each parameters (linking to Cluster "A" in Figure 2) associated with low annual mean export production of foraminifers (< 1 mmol C m⁻² d⁻¹) and relatively high relative abundance M-score (>= 0.45). Cluster A achieves the highest (i.e., the best) relative-abundance Mscore with good biomass and POC export predictions. Cluster A is also the only cluster with low foraminifer export, suggesting that low export is required to have a high total M-score. Parameter abbreviations are as follows: cal, calcification; mort, mortality; red, reduction strength; palat: palatability; respir, respiration; a, autotroph; h, heterotroph. ss, symbiont-obligate spinose foram, sn, symbiont-facultative non-spinose foram

Figure S3. Same histogram as Figure S3 but associated with negative relative abundance M-score (<=-0.3, proxy of Cluster "D" in Figure2). The runs with negative scoring (Cluster D) have large foraminifer size (peaking in 500-600 μ m), over protection from grazing. These results suggest the crucial role of foraminifer body size and calcification trait in matching observed data.

Figure S4. Variable-based M-score distribution histogram of global sensitivity analysis. Dashed line is the M-score of the run with best fit with plankton net (biomass), sediment trap (POC export) and sediment core-top (relative abundance).

Figure S5. Foraminiferal group-based M-score distribution histogram of global sensitivity analysis. Dashed line is the M-score of optimal parameters.

Figure S6 The biomass distribution of the 19 μ m phytoplankton which is the "favourite" food of foraminifer given optimal predator: prey size ratio of 10. The biogeographical similarity between this group and non-symbiont foraminifer indicates that foraminifer distribution mostly resembles their food.

Figure S8. Biomass seasonal comparison between the model (lines) and plankton net data (dots) (mmol C m⁻³) in selected locations (shown in the map with corresponding letter). We selected the locations with the most data points

References

Darling, K. F. and Wade, C. M.: The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes, Marine Micropaleontology, 67, 216–238, https://doi.org/10/fdg3pd, 2008.

Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-50297-6, 2017.

Schiebel, R., Spielhagen, R. F., Garnier, J., Hagemann, J., Howa, H., Jentzen, A., Martínez-Garcia, A., Meilland, J., Michel, E., Repschläger, J., Salter, I., Yamasaki, M., and Haug, G.: Modern planktic foraminifers in the high-latitude ocean, Marine Micropaleontology, 136, 1–13, https://doi.org/10/gckqmg, 2017.

Takagi, H., Kimoto, K., Fujiki, T., Saito, H., Schmidt, C., Kucera, M., and Moriya, K.: Characterizing photosymbiosis in modern planktonic foraminifera, Biogeosciences, 16, 3377–3396, https://doi.org/10/gj35bq, 2019.

Takagi, H., Kurasawa, A., and Kimoto, K.: Observation of asexual reproduction with symbiont transmission in planktonic foraminifera, Journal of Plankton Research, 42, 403–410, https://doi.org/10/gkr66r, 2020.

Young, J.R., Wade, B.S., & Huber B.T. (eds) pforams@mikrotax website. 21 Apr. 2017. URL: http://www.mikrotax.org/pforams