Articles | Volume 16, issue 23
https://doi.org/10.5194/gmd-16-7107-2023
https://doi.org/10.5194/gmd-16-7107-2023
Development and technical paper
 | 
07 Dec 2023
Development and technical paper |  | 07 Dec 2023

A novel Eulerian model based on central moments to simulate age and reactivity continua interacting with mixing processes

Jurjen Rooze, Heewon Jung, and Hagen Radtke

Related authors

Temperature driven coastal processes and their far reaching effects on deep Baltic Sea biogeochemical dynamics
Anju Mallissery, Hagen Radtke, Thomas Neumann, and H.E. Markus Meier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4568,https://doi.org/10.5194/egusphere-2025-4568, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Flux coupling approach on an exchange grid for the IOW Earth System Model (version 1.04.00) of the Baltic Sea region
Sven Karsten, Hagen Radtke, Matthias Gröger, Ha T. M. Ho-Hagemann, Hossein Mashayekh, Thomas Neumann, and H. E. Markus Meier
Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024,https://doi.org/10.5194/gmd-17-1689-2024, 2024
Short summary
CompLaB v1.0: a scalable pore-scale model for flow, biogeochemistry, microbial metabolism, and biofilm dynamics
Heewon Jung, Hyun-Seob Song, and Christof Meile
Geosci. Model Dev., 16, 1683–1696, https://doi.org/10.5194/gmd-16-1683-2023,https://doi.org/10.5194/gmd-16-1683-2023, 2023
Short summary
The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment
Matthias Gröger, Manja Placke, H. E. Markus Meier, Florian Börgel, Sandra-Esther Brunnabend, Cyril Dutheil, Ulf Gräwe, Magnus Hieronymus, Thomas Neumann, Hagen Radtke, Semjon Schimanke, Jian Su, and Germo Väli
Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022,https://doi.org/10.5194/gmd-15-8613-2022, 2022
Short summary
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022,https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary

Cited articles

Arbel, J., Lijoi, A., and Nipoti, B.: Full Bayesian inference with hazard mixture models, Comput. Stat. Data An., 93, 359–372, https://doi.org/10.1016/j.csda.2014.12.003, 2016. a
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J., Pancost, R., and Regnier, P.: Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth-Sci. Rev., 123, 53–86, https://doi.org/10.1016/j.earscirev.2013.02.008, 2013. a, b
Boudreau, B. P.: Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Ac., 58, 1243–1249, https://doi.org/10.1016/0016-7037(94)90378-6, 1994. a
Boudreau, B. P.: Diagenetic models and their implementation, vol. 505, Springer Berlin, https://doi.org/10.1007/978-3-642-60421-8, 1997. a
Boudreau, B. P. and Ruddick, B. R.: On a reactive continuum representation of organic matter diagenesis, Am. J. Sci., 291, 507–538, https://doi.org/10.2475/ajs.291.5.507, 1991. a, b, c
Download
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Share