Articles | Volume 16, issue 2
https://doi.org/10.5194/gmd-16-705-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-705-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean
Zhenming Wang
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Shaoqing Zhang
CORRESPONDING AUTHOR
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Pilot National Laboratory for Marine Science and Technology, Qingdao, 266100, China
Yishuai Jin
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Yinglai Jia
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
Yangyang Yu
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Pilot National Laboratory for Marine Science and Technology, Qingdao, 266100, China
Key Laboratory of Marine Environment and Ecology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Ministry of Education, Ocean University of China, Qingdao, 266100, China
Xiaolin Yu
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Pilot National Laboratory for Marine Science and Technology, Qingdao, 266100, China
Mingkui Li
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Pilot National Laboratory for Marine Science and Technology, Qingdao, 266100, China
Xiaopei Lin
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Pilot National Laboratory for Marine Science and Technology, Qingdao, 266100, China
Lixin Wu
Key Laboratory of Physical Oceanography, Ministry of Education, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China, Qingdao, 266100, China
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Pilot National Laboratory for Marine Science and Technology, Qingdao, 266100, China
Data sets
Monthly-scale Extended Predictions Using the Atmospheric Model Coupled with a Slab-Ocean Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu https://doi.org/10.5281/zenodo.6630331
Model code and software
Monthly-scale Extended Predictions Using the Atmospheric Model Coupled with a Slab-Ocean Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu https://doi.org/10.5281/zenodo.6630331
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
To improve the numerical model predictability of monthly extended-range scales, we use the...