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Abstract. Given the good persistence of sea surface temper-
ature (SST) due to the slow-varying nature of the ocean, an
atmospheric model coupled with a slab ocean model (SOM)
instead of a 3-D dynamical ocean model is designed as an
efficient approach for extended-range predictions. The pre-
diction experiments from July to December 2020 are per-
formed based on the Weather Research and Forecasting
(WRF) model coupled to the SOM (WRF-SOM) with the
initial and boundary conditions same as the WRF coupled
to the Regional Ocean Model System (WRF-ROMS). The
WRF-SOM is verified to have better performance of SSTs
in the extended-range predictions than WRF-ROMS since
it avoids the complicated model biases from the ocean dy-
namics and seabed topography when extended-range predic-
tions are made using a 3-D dynamical ocean model. The im-
provement of SSTs can lead to the remarkable impact on the
response of the atmosphere from the surface to the upper
layer. Taking typhoon as an example of extreme events, the
WRF-SOM can obtain comparable intensity predictions and
slightly improved track predictions due to the improved SSTs
in the initialized WRF-SOM system. Overall, the WRF-SOM
can ensure the stability of extended-range prediction and re-
duce the demand for computing resources by roughly 50 %.

1 Introduction

Extended-range predictions fill the gap between weather and
climate predictions. Recent research has demonstrated kinds
of sources of predictability for the extended period such
as the Madden–Julian Oscillation (MJO), the evolution of
El Niño–Southern Oscillation, soil moisture, snow cover,
sea ice, stratosphere–troposphere interactions, ocean con-
ditions, and tropical–extratropical teleconnections (Wheeler
and Hendon, 2004; Vitart and Robertson, 2018). As a grow-
ing demand from the applications community and progress
in identifying and simulating key sources of extended period
(Vitart, 2014; White et al., 2017), it is worthwhile to improve
forecast skills for monthly-scale extended period predictions
to realize the social security, disaster early warning, agricul-
tural management, and water resource management (David,
2010).

In the extended period prediction, sea surface temperature
(SST) is one of the most important information provided by
the oceanic model to the atmospheric model in the air–sea
interaction. For instance, tropical SST plays an important
role in controlling the weather/climate worldwide by vari-
ous teleconnection effects (David, 2010). Dian et al. (2013)
demonstrated the importance of air–sea interaction to the at-
mospheric mesoscale processes by comparing the response
of the precipitation to the SST between the coupled and un-
coupled models. Furthermore, Stan (2018) emphasized that

Published by Copernicus Publications on behalf of the European Geosciences Union.



706 Z. Wang et al.: Monthly-scale extended predictions

the SST anomaly can directly lead to the change in the con-
vection intensity.

The ocean–atmosphere coupling has an important impact
on the extended-range prediction skills (Vitart and Molteni,
2010). Rashid et al. (2011) adopted the Bureau of Meteo-
rology unified atmospheric model (BAM) coupled with the
Australia Community Ocean Model (ACOM) to predict the
MJO and proposed that actual MJO prediction skills may be
further improved through continued development of the dy-
namical prediction system. The coupled ocean–atmosphere
models are mainly used for numerical simulation and predic-
tion in the extended period (Saravanan and Chang, 2019).

However, there are some inherent defects for the specific
problems in extended-range prediction using atmosphere–
ocean coupled models. For instance, the 3-D dynamical
ocean model inevitably introduces unnecessary biases from
the seabed topography, which can transport from bottom to
surface during prediction (Wu et al., 1997). Due to the exis-
tence of seabed topography with finite amplitude, the wave
models in a linear system are no longer independent of each
other, resulting in coupling between models. This coupling
effect between models acts on the circulation field in differ-
ent ways, making the simple linear superposition of models
no longer truly reflect the oceanic circulation field structure.
The effects of seabed topography on the baroclinic model
should be stronger. Therefore, the seabed topography can in-
directly affect the SST through the circulation field. The 3-D
dynamical ocean model coupled to the atmospheric model
can have cold drift during the extended-range prediction pe-
riod due to the overestimation of latent heat in the coupled
model (Ren and Qian, 2010). In addition, the sensitivity of
ocean thermodynamics to the ocean dynamics leads to the
enhancement of mixing in the upper ocean and indirectly re-
duces SST (Hu et al., 2017). In general, the errors of 3-D
dynamical ocean models can be specific to different system
configurations. The model resolution is another way to af-
fect the SST prediction, in which is verified that the biases
can be slightly eliminated in the Kuroshio extension area
with the increase in model resolution (Li et al., 2020). There-
fore, European Centre for Medium-Range Weather Forecasts
(ECMWF) summarized and evaluated the results during the
extended period prediction and proposed that the improve-
ment of extended-range prediction should be accompanied
by the significant reduction of SST biases in a coupled model
(Palmer et al., 1990). In total, based on the good persis-
tence of SST, we can simplify the SST evolution process to
avoid biases from the ocean dynamics and seabed topogra-
phy (Zuidema et al., 2016).

Considering that SST is an important variable affecting
air–sea interactions and 3-D dynamical ocean models have
a deficiency in the SST prediction during the extended pe-
riod, one possible way to improve this period prediction is
that we only focus on the SST as the bottom boundary of at-
mospheric model for the extended-range prediction research.
The SST has good persistence in the extended period, and

only the thermal effect needs to be considered (the time scale
of ocean circulation is relatively long). According to that, the
slab ocean model (SOM) can be utilized as the ocean model
for extended-range prediction such that biases of SST are
easier to manage (Zuidema et al., 2016). More importantly,
the SOM can greatly reduce the computing expense and ob-
tain the forecast results more quickly, which can provide a
more economical and efficient method for further study.

In this paper, we develop a new approach using atmo-
spheric model coupled with a slab ocean model (WRF-SOM)
to do monthly-scale extended-range predictions. For compar-
ison of the prediction results of WRF-SOM, we also carry out
the forecast experiments using WRF coupled to the Regional
Ocean Model System (ROMS) based on the regional coupled
prediction system for the Asia-Pacific (AP-RCP) developed
by Li et al. (2020). Firstly, by comparing the performances
of SST predictions in the WRF-SOM and WRF-ROMS, we
show the rationality of WRF-SOM in the extended-range
predictions. WRF-SOM can avoid the influence of cold devi-
ation at the subsurface in WRF-ROMS on SST in extended
period. Secondly, we discuss the response of atmosphere
(e.g., the air temperature, and geopotential height) on SSTs
to identify the improvement of WRF-SOM compared with
WRF-ROMS in the cold deviation area. Finally, taking ty-
phoons as the representation of the extreme weather events,
we track the differences of typhoon paths and maximum
wind speed (MWS) between WRF-ROMS and WRF-SOM
and suggest that the performances of typhoon predictions are
basically consistent in the two models during the extended
period.

The rest of the paper is organized as follows. Section 2
details the source of SST biases, the brief introduction of
WRF-SOM and WRF-ROMS, the experiment implementa-
tion, and the data sources. Section 3 evaluates the feasibility
of SST predictions in WRF-SOM, compares the response of
the atmosphere to SSTs in WRF-SOM and WRF-ROMS, and
verifies the rationality of WRF-SOM in typhoon predictions.
Finally, the summary and discussion are given in Sect. 4.

2 Methodology

2.1 Brief introduction of WRF-ROMS coupled model

In this study, we use the high-resolution WRF-ROMS cou-
pled system for comparison (Li et al., 2020). The system
covers the area of the Asia-Pacific, which consists of 27 km
WRF, 9 km ROMS, and observational information through
dynamically downscaling coupled assimilation. The vertical
layers of WRF and ROMS are 28 and 33 respectively. The
time step for both WRF and ROMS is 60 s, the coupled in-
terval time between ocean and atmosphere is 600 s, and the
forecast lead time is 34 d for each case. The system is initial-
ized from the Climate Forecast System Version 2 reanalysis
(CFSv2) (Saha et al., 2014), on 1 January 2016, and spun
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up for 2 years. For the ocean component, in model-based
analysis products, the prediction system has similar quality
with CFSv2 and HYCOM in temperature and salinity char-
acteristics and has been verified by Argo observation. For
the atmosphere component, the forecast system also has sim-
ilar forecast skills as CFSv2, National Centers for Environ-
mental Prediction-Global Ensemble Forecast system (NCEP-
GEFS), and European Centre for Medium-Range Weather
Forecasts Ensemble Prediction System (ECMWF-EPS), es-
pecially in precipitation forecasting. The operational system
has realized the extended-range prediction of atmospheric
and oceanic environments and serves as an effective research
platform to study the influence of model resolution on typ-
ical mesoscale atmospheric and oceanic phenomena in the
Asia-Pacific area. The high-resolution prediction system en-
hances the capability of atmosphere–ocean coupled models
to describe many local details, which is a necessary step to
discuss the predictability in the extended period.

2.2 Slab ocean scheme in a coupled model

In order to describe the response of the upper ocean to the
surface wind, a simple model – SOM – is given (Polland et
al., 1973). Compared with the 3-D dynamical ocean model,
the ocean mixed layer temperature is the only prognostic
state variable for the SOM to represent the SST. Jia et al.
(2019) adopted the SOM to study the ocean mesoscale vari-
ability. The related prognostic equation is the first law of ther-
modynamics for the ocean mixed layer given by Eq. (1):

ρCphmix
∂Tmix

∂t
=Qatm−Qocn, (1)

where ρ is the ocean water density, Cp is the specific heat
capacity of the ocean water, hmix is the depth of the mixed
layer, Tmix is the mixed layer temperature, Qatm is the net
surface heat flux from the atmosphere to the mixed layer,
and Qocn is the net heat transfer from mixed-layer column
to the subsurface, which is calculated by mixed layer depth
and temperature lapse rate. Equation (2) shows the heat bud-
get of the sea surface from the atmosphere:

Qatm =Qsol−Ql−Qsen−Qlatent, (2)

where Qsol is the net radiative heating of the ocean mixed
layer by solar radiation, Ql is the net longwave radiative
cooling of the ocean mixed layer, Qsen is the net sensible
heat flux from the ocean to the atmosphere, Qlatent is the net
latent heat flux from the ocean to the atmosphere. Qatm and
Qocn are calculated synchronously with the prediction time
in the model. Equation (3) shows the effect of Coriolis force
and wind stress in the mixed layer:

∂hu

∂t
= f ×hv + τx

∂hv

∂t
=−f ×hu+ τy, (3)

where hu (hv) is the τx-driven (τy-driven) momentum in the
ocean mixed layer, f is Coriolis force, and τx and τy are
respectively the zonal and meridional components of wind
stress at the surface. Equation (3) is calculated by time-
centering difference, and Eq. (4) shows the variations of
ocean mixed layer depth, which is affected by the wind stress
and heat flux:

hmix =
Qatm−Qocn
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2
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2)
0gα

, (4)

where hmix is the mixed layer depth, g is the gravitational
acceleration, 0 is the lapse rate of the water temperature, and
α is the thermal expansion coefficients.

Such basic driving processes of WRF-SOM and the rela-
tionship between the variables are illustrated in Fig. 1. The
SOM is driven by the surface wind, sea surface heat flux,
and heat conduction between the mixed layer and subsurface.
The mixed layer depth is determined by the surface wind
stress (τx and τy) and the heat budget (Qatm andQocn) in the
mixed layer. Both the enhancement of surface wind stress
and heat flux to the mixed layer will lead to the deepening
of the mixed layer depth. When the ocean surface is heated,
there will be a temperature gradient from sea surface to the
areas beneath it. With the wind stirring the upper layer, an al-
most uniform layer is formed, and there is a density gradient
below the mixed layer. In the upper mixed layer, the temper-
ature is independent of depth. We assume that once the initial
delamination is destroyed in this layer, it will mix to a com-
pletely uniform state. It means that the ocean temperature is
well-mixed and the SST is considered the same as Tmix.

Although the SOM has the advantages of computational
stability, easy control of error sources and low computational
consumption, it is worth mentioning that the SOM is driven
only by surface wind and does not include the simulation of
3-D ocean dynamical processes.

2.3 Implementation, data source (including model
setting and initial condition sources), and data
processing method

In this study, the WRF version WRF3.7.1 and the ROMS ver-
sion ROMS3.8 is applied (Skamarock et al., 2008; Shchep-
etkin and Mcwilliams, 2005). The boundary condition of the
forecast is interpolated from the CFSv2 forecast data set.
The WRF-ROMS is initialized from the CFSv2 reanalysis
at 00:00 UTC on 1 January 2016, spun up for 2 years with
the CFSv2 background boundary conditions, and applied
the weakly coupled data assimilation approach (WCDA).
The atmospheric and oceanic components conduct their own
data assimilation procedure within the coupled model frame-
work. The WCDA begins on 00:00 UTC 1 January 2018
after the 2-year spinup. The atmospheric model uses stan-
dard 3-dimensional variational data assimilation (3D-Var) to
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Figure 1. Schematic illustration of a slab ocean model (SOM) coupled to the Weather Research and Forecasting model (WRF). τx and τy
are the zonal and meridional component of wind stress at the surface, respectively. hu (hv) is the τx -driven (τy -driven) momentum in the
ocean mixed layer, f is Coriolis force, C0 is the specific heat capacity of the ocean water, and hmix is the mixed layer depth.

further combine atmospheric observations, and the oceanic
model adopts multi-scale 3D-Var to assimilate the profiles of
temperature and salinity. Then, the states are constrained by
cycling through the real-time operational data assimilation
processes with updated observations every 6 h for the atmo-
sphere and 24 h for the ocean, providing initial conditions for
the routine forecasts. The simulation region covers the Asia–
northwest Pacific and North Indian Ocean (18◦ S–60◦ N, 74–
180◦ E). The forecasts are made every day from 19 July to 31
December 2020. Each case generates a 34 d forecast for the
atmosphere and ocean environment.

The WRF-SOM is completely consistent with WRF-
ROMS in atmospheric model settings. The forecast cases
made by WRF-SOM are the same as those WRF-ROMS ex-
pects to miss for roughly 20 cases, which is caused by hard-
ware damage and untimely release of boundary information.
Li and Ding (2011) proposed that the linear relationship be-
tween the predictability limit and the logarithm of initial er-
ror holds only in the case of relatively small initial errors. If
the initial errors are large, the growth of mean error would di-
rectly enter into the nonlinear phase. Therefore, for each ex-
periment, we keep the initial and boundary conditions of the
WRF-SOM in the atmosphere and ocean the same as those

in the WRF-ROMS and assure that the forecast lead time of
each experiment is over 1 month.

The Hybrid Coordinate Oceanic Circulation Model
(HYCOM) reanalysis (https://www.hycom.org, last access:
27 January 2023) used in this study is provided by Naval
Research Laboratory (Cummings and Smedstad, 2013). The
horizontal resolution of HYCOM reanalysis reaches 0.08◦

and the time interval is 6 h, which is relatively stable and
highly matched with our forecast system. In addition, con-
sidering the HYCOM reanalysis being a mature and widely
recognized analysis system, the global reanalysis can be a
good choice to verify the model prediction performances
(Srinivasan et al., 2011; Chassignet et al., 2003). The ty-
phoon observations are from the National Meteorological
Center (NMC) of China (http://typhoon.nmc.cn/web.html,
last access: 27 January 2023). The validation data of the
atmospheric component are from CFSv2 (https://rda.ucar.
edu/datasets/ds094.1/, last access: 27 January 2023). All the
simulation experiments use the computing nodes configured
with 24 central processing unit (CPU) cores, 2.6 GHz domi-
nant frequency, and 256 GB of global DDR4 memory.

The predictability of SST in WRF-ROMS and WRF-SOM
is evaluated by the root mean square error (RMSE) and the
anomaly correlation coefficient (ACC), which is written as
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follows:

RMSEj =

√√√√ 1
M

M∑
i=1
(xi,j − fi,j ), (5)

ACCj =

M∑
i=1

(
xi,j − xj

)
×
(
fi,j − fj

)
√

M∑
i=1

(
xi,j − xj

)2
×

M∑
i=1

(
fi,j − fj

)2 , (6)

where xi,j is the forecast value, fi,j is the reanalysis data,
xj is the spatial average of the forecast value, fj is the
spatial average of the truth value, and i = 1,2,3. . .M and
j = 1,2,3. . .N represent grid points and time series respec-
tively.

3 Comparing the forecast results of WRF-SOM with
WRF-ROMS

3.1 Predictability of sea surface temperature and bias

The prediction skills of SST in the WRF-SOM and WRF-
ROMS have been assessed by calculating the RMSE aver-
aged of 142 forecast cases from July to December. Figure 2a
shows the RMSE of SSTs in the WRF-SOM is generally
lower than that in the WRF-ROMS, and both forecast errors
increase with the lead time. The maximum different value
of the RMSE variation between the WRF-SOM and WRF-
ROMS occurs in 20–25 d. The averaged values of the SST
errors in both models are within 1.4 ◦C during the forecast
period, and the RMSEs of 75 % forecast cases in WRF-SOM
are better than those in WRF-ROMS, as shown in Fig. 2b.
Moreover, the bias in the WRF-SOM grows more slowly than
that in the WRF-ROMS. Only at the start of the forecasts are
the errors of SST in WRF-ROMS lower than those in WRF-
SOM. This is because the errors in the 3-D dynamical ocean
model have not spread from subsurface to the surface, and
the initial condition still plays a major role (Lekshmi et al.,
2022). Except for July and August, the SST error growth rate
is faster in WRF-SOM over different months in the second
half of the year. From September to December, the predic-
tion of SST in WRF-ROMS after 30 d begins to take advan-
tage, which may be caused by the dynamic processes such
as ocean circulation beginning to dominate the factors of
SST prediction as the timescale becomes larger, as shown in
Fig. 2e. We also notice that the WRF-SOM-simulated SST
has larger errors than the WRF-ROMS in July. Further anal-
yses show that these large errors are associated with the na-
ture that the SOM lacks ocean 3-D dynamical and thermo-
dynamical processes. For example, the major SST errors are
distributed over the large meander of Kuroshio (Yang et al.,
2012), and the lack of ocean dynamics could reduce the hor-
izontal energy transport to a certain extent (Shell, 2013). The

biggest difference of SST RMSEs in WRF-ROMS and WRF-
SOM occurs in September, October, and November, which
also shows that sea ice is not the main reason for the large
cold deviation in WRF-ROMS. In order to match the config-
uration in the ROMS without sea ice component currently,
in this study we did not include sea ice, although the sea ice
parameterization in the SOM is available. In the future study,
it may be necessary to include sea ice in SOM, which may
have influences on middle and high latitudes.

To explore the spatial distribution of skills with differ-
ent forecast periods in WRF-SOM, we use the ACC of SST
anomaly to characterize the temporal and spatial predictabil-
ity of SST in the WRF-SOM and WRF-ROMS (Wu et al.,
2016). Figure 2c shows that their overall ACC can reach
more than 0.75 during the 34 d forecasts, and the perfor-
mance of the WRF-SOM in the whole domain is higher than
that of WRF-ROMS. Meanwhile, the ACC in 74 % forecast
cases in WRF-SOM is better than those in WRF-ROMS, as
shown in Fig. 2b. Finally, Fig. 3a and b show the forecast
SSTs in WRF-ROMS have an obvious cold deviation in the
area around the Kuril Islands and the Sea of Okhotsk (35–
58◦ N, 140–160◦ E). Although the cold deviation in WRF-
ROMS exists every month in the second half of the year in
this region, lack of sea ice model and inappropriate bound-
ary conditions may aggravate the cold deviation in this area,
which needs more experiments to validate.

In order to explore the spatial distribution of SST predic-
tion skills in the two models, especially in the cold deviation
area, we calculate ACC of SSTs at each grid point. Through
the spatial distribution of ACC displayed in Fig. 4 in differ-
ent forecast periods, it is found that the mean biases of WRF-
SOM and WRF-ROMS decrease with time in the whole area.
Since the initial state of the ocean can be maintained for a pe-
riod of time in the simulation, the main patterns of the ACC
are consistent in the two models, and the value increases with
the latitude significantly. The higher skills of WRF-SOM are
mainly concentrated in the area north of 15◦ N compared
with WRF-ROMS. Over 60 % grid points in the simulation
area have higher ACC values of SST in WRF-SOM, and the
proportion rises slightly with the prediction time (green dots
in the right column of Fig. 4). Focused on the cold deviation
area in the green rectangle, the proportion reaches more than
80 % (red dots in the right column of Fig. 4). In summary,
the performance of SSTs in the WRF-SOM is more reason-
able than the WRF-ROMS in terms of temporal variation and
spatial distribution of predictability.

In order to explore the causes of cold deviation area in
WRF-ROMS, the variations of averaged error of SST and the
water temperature at the subsurface are shown. Figure 5a–c
identify the comparison of averaged mixed layer depth dur-
ing the prediction period. The mixed layer depths in WRF-
ROMS and HYCOM are both calculated by the depth at
which the difference from SST is 0.2 ◦C. The mixed layer
depth in WRF-ROMS is significantly greater than that in
WRF-SOM and the reanalysis data from HYCOM. More-
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Figure 2. Time series of (a) averaged root mean square errors (RMSEs), (c) anomaly correlation coefficients (ACCs), and (e) averaged
RMSEs over different seasons of simulated sea surface temperatures (SSTs) against Hybrid Coordinate Ocean Model (HYCOM) reanalysis
of total 142 forecast cases from 19 July to 31 December 2020. The comparison of the (b) RMSEs, and (d) ACC between WRF-SOM and
WRF-ROMS for each case.

Figure 3. The spatial distributions of the SST errors of (a) WRF-SOM, and (b) WRF-ROMS against the HYCOM reanalysis of total 142
forecast cases from 19 July to 31 December 2020 averaged in the 34 d forecast period. The region in the green rectangle (35–58◦ N, 140–
160◦ E) is the cold deviation area in WRF-ROMS.

over, the cold deviation of WRF-ROMS at the subsurface
continues to conduct upward with the forecast time, and
finally the predicted value of SST is low in this area as
shown in Fig. 5d and e. Lack of vertical convection and Ek-
man pumping effect in the SOM can enhance this surface
heat residence effect even more in WRF-SOM forecasts. The
abnormal cold deviation at the subsurface may be caused
by the imperfect data assimilation scheme, imprecise ocean
processes, and insufficient resolution of the coupled model
(Benjamin and Daniel, 1993; Chen et al., 2013; Xu et al.,
2022). These issues require more research work to further
clarify in the follow-up studies.

3.2 Impact on extended-range predictions

The SST differences between WRF-ROMS and WRF-SOM
spread rapidly in all prediction cases and have obvious ther-

modynamic feedback to the atmosphere. For instance, the
region with a large deviation of SST is expected to have a
great impact on the atmospheric process (Hao et al., 2016).
The first mode of SST and air temperature at 850 hPa is veri-
fied to be positively correlated in most of the East China Sea
(Zeng et al., 2010). As shown in Fig. 6, the air temperature
at the surface is directly affected by the SSTs and there is a
strong cold deviation of more than 5 ◦C in the WRF-ROMS
in the Sea of Okhotsk and Kuril Islands during the extended
period. The errors of air temperature at the surface in the Sea
of Okhotsk and Kuril Islands of WRF-SOM are within 3 ◦C
in the extended period, which is much closer to the CFSv2
reanalysis compared with WRF-ROMS.

Since the main deviation between WRF-ROMS and WRF-
SOM mainly comes from the sea surface, in order to explore
the influence of SST on the whole atmosphere, we study
the variation of RMSEs of air temperature and geopotential
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Figure 4. The spatial distributions of ACC of forecasted SSTs in the WRF-SOM (left column, panels a, d, g), WRF-ROMS coupled models
(middle column, panels b, e, h) and their comparisons of each grid (right column, panels c, f, i) in the model domain (green dots) including
cold deviation area (red dots) against HYCOM reanalysis, averaged in the first 10 d (upper panels a–c), days 11–20 (middle panels d–f), days
21–30 (bottom panels g–i) forecasts of total 142 forecast cases from 19 July to 31 December 2020.

height (GPH) with different heights to characterize the sta-
bility of the subtropical high and the upper atmosphere (Lu
and Lin, 2009; Zhou et al., 2009). The RMSEs of air temper-
ature increase with height, and the differences between the
two models are the biggest at the surface (Fig. 7a). The devi-
ation of air temperature gradually disappears when reaching
the height of 300 hPa (Fig. 6b). The RMSEs of the GPH also
increase with the height (Fig. 8a). However, the differences
between the two models are opposite to the temperature and
increases with the height (Fig. 8b). Compared with the WRF-
ROMS, the WRF-SOM performs better in the forecast of the
GPH field in the high, middle, and low atmosphere, as shown
in Fig. 8. The differences between the RMSEs of GPH in the
two models are increasing from the lower level to the up-
per level, which means that the deviation between the WRF-
SOM and the WRF-ROMS is generated from the surface and
propagates to the upper layer. Therefore, combined with the
results of air temperature and GPH, the response of variables
with different physical properties to SST will also appear in
different states. In terms of the extended-range prediction,
WRF-SOM has obvious advantages in the areas around the
Kuril Islands and the Sea of Okhotsk, where WRF-ROMS
has large deviation in SSTs.

3.3 The prediction of tropical cyclones in
extended-range scales

Typhoons are an important extreme weather phenomenon in
the extended-range forecast, and typhoons in the western Pa-
cific have a profound impact on coastal countries (Webster
et al., 2014). The typhoon processes are deeply affected by
the air–sea interaction, which can cover timescales from days
to weeks. Therefore, typhoons are selected as an example
of extreme weather to discuss the atmospheric predictabil-
ity in the extended period. Following previous studies (Web-
ster et al., 2014), we use track and intensity as the key pre-
diction parameters. As the typhoon simulation from August
to October 2020 (Fig. 9a–j), the WRF-SOM can also obtain
slightly better prediction paths than the WRF-ROMS after
abandoning the ocean dynamics framework during the ty-
phoon season. The results of typhoon tracking in the WRF-
SOM are better than those in the WRF-ROMS within 72 h
during the processes of typhoons, as shown in Table 1. The
simulation of typhoon tracks is mainly dominated by steering
flow in the atmosphere model, and the improvement of SST
can only slightly optimize the path (Anthes, 1982; Holland,
1983) such that the forecast results are similar in WRF-SOM
and WRF-ROMS. Figure 10a–j show the performances of
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Figure 5. The spatial distribution of the mixed layer depth in the cold deviation area in the (a) Ocean Reanalysis, (b) WRF-SOM, and (c)
WRF-ROMS of total 142 forecast cases from 19 July to 31 December 2020 averaged in the 34 d forecast period. The time series of averaged
water temperature errors at the (d) surface in WRF-SOM (red) and WRF-ROMS (blue), and the (e) subsurface (300–400 m) in WRF-ROMS
(green) against HYCOM reanalysis in the cold deviation area.

Figure 6. The spatial distribution of air temperature errors in the cold deviation area at the surface in the (a) WRF-SOM, and (b) WRF-ROMS
against Climate Forecast System version 2 (CFSv2) reanalysis of total 142 forecast cases from 19 July to 31 December 2020 averaged in the
34 d forecast period.

Geosci. Model Dev., 16, 705–717, 2023 https://doi.org/10.5194/gmd-16-705-2023



Z. Wang et al.: Monthly-scale extended predictions 713

Figure 7. The (a) variations of RMSE of air temperature with air pressure between the WRF-SOM and WRF-ROMS against the CFSv2
reanalysis averaged in the 34 d of total 142 forecast cases from 19 July to 31 December 2020, and the (b) variation of the difference of
RMSEs in two models with the air pressure.

Figure 8. The (a) variations of RMSEs of the geopotential height (GPH) with air pressure in the WRF-SOM (red) and WRF-ROMS (blue)
against CFSv2 reanalysis of total 142 forecast cases from 19 July to 31 December 2020, and the (b) variation of the difference of RMSEs in
two models with the air pressure.

MWS of 11 typhoons from August to October in 2020, both
in WRF-SOM and WRF-ROMS. Both systems are unable
to achieve accurate simulation for super typhoons exceed-
ing 40 ms−1. However, severe typhoon BAVI – the eighth ty-
phoon in the Pacific in 2020 – has better MWS performances
in WRF-SOM than in WRF-ROMS, as shown in Fig. 10e.
We find that in the process of model simulation, the typhoon
MWS is positively correlated with the SST, which can be
caused by the surface heat flux and the surface water vapor.
Among the 11 typhoons including 3 super ones, there is lit-
tle difference in typhoon MWS between the WRF-SOM and
the WRF-ROMS, which means that both the 3-D dynamical
ocean model and the SOM have defects on the simulation of

high-intensity typhoons. As for typhoon simulation, WRF-
SOM can obtain comparable prediction results with WRF-
ROMS. The analyses in Sect. 3.1 show that the SST in SOM
has large errors in July. It could cause the corresponding de-
viation in the air–sea interaction and may have an influence
on typhoon activities (Potter et al., 2017). Since no typhoon
is found in the examined July, adverse impacts of such SST
errors on typhoons need to be paid particular attention.
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Figure 9. The typhoon tracks simulated in the WRF-SOM (red) and WRF-ROMS (blue) compared with National Meteorological Center
(NMC) (green) during typhoon season (NMC data, http://typhoon.nmc.cn/web.html, last access: 27 January 2023).

Figure 10. The maximum wind speed (MWS) of typhoon simulated in the WRF-SOM (red) and WRF-ROMS (blue) compared with National
Meteorological Center (NMC) (green) during typhoon season (NMC data, http://typhoon.nmc.cn/web.html, last access: 27 January 2023).
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Table 1. Typhoon track errors in different simulation periods com-
pared with observations from NMC.

Lead time Model Distance of typhoon center
(h) against observations (km)

24 WRF-SOM 171
WRF-ROMS 187

48 WRF-SOM 188
WRF-ROMS 204

72 WRF-SOM 224
WRF-ROMS 247

4 Summary and discussion

In this study, to improve the numerical model predictabil-
ity of monthly extended-range scales, we use the simplified
SOM to restrict the SST bias. It is because the 3-D dynamical
ocean model inevitably introduces complex biases from the
dynamics and seabed topography. Therefore, the experiments
are implemented with the WRF-ROMS and WRF-SOM to
investigate the SST deviation in the extended-range period
and the associated atmosphere responses. We systematically
evaluate the SST prediction effect of the WRF-SOM and the
WRF-ROMS against the HYCOM reanalysis. As for SST
prediction, WRF-SOM can manage with the more specific
errors than 3-D dynamical ocean models in some regions
with complex and diverse heat budget, because it can effec-
tively avoid the deviation from deep layers in 3-D dynamical
ocean models. Furthermore, the reduction of SST biases in
the WRF-SOM has a significant impact on the atmosphere
at the surface, which not only affects the air temperature but
also indirectly changes the GPH field in the middle and upper
layer of the atmosphere. The WRF-SOM can obtain the com-
patible typhoon path and maximum wind speed predictions
with WRF-ROMS and reduce the consumption of computing
resources by roughly 50 %.

It is shown by our experiments that the subsurface mod-
eling errors in the 3-D dynamical ocean model could prop-
agate to the surface with the forecast lead time and make a
large deviation in SST. To improve the predictability in the
extended period, it is of vital importance to constrain the de-
viation of SST. Based on the good persistence of SST, it is
verified that using the SOM instead of the 3-D dynamical
ocean model can relieve the problem of rapid error growth
in the prediction of SST in some regions and save a lot of
computing resources. For the extreme weather event such as
typhoons, the predictions of WRF-SOM are in good agree-
ment with WRF-ROMS. However, the WRF-SOM also has
its own limitations. The overall simulation of SST in WRF-
SOM is relatively stable. Due to the abandonment of the dy-
namical framework, the WRF-SOM may not be able to ob-
tain ideal prediction results in some areas dominated by lo-

cal dynamic processes (e.g., surface currents, vortex, Ekman
pumping, and turbulence).

Considering the SST characteristics in the extended-range
predictions and the limitation of available computing re-
sources, our method provides a new idea for exploring the
predictability in the extended period. At present, our predic-
tion experiments cover summer, autumn, and the first half
of winter, which leads to the lack of representation of other
seasons. Moreover, we do not pay too much attention to the
underlying surface temperature before typhoon generation in
this study, but it is an important driving factor for typhoon
generation predictions. In the future, it is useful to expand the
number of prediction examples to cover a longer period such
as 1 year, extend the forecast time of each case, and improve
the model horizontal resolution, and further get insights on
the WRF-SOM in the predictability of typhoon genesis. Fi-
nally, due to the joint impact of the initial conditions and the
external forcing on the extended-range predictability of the
atmosphere, we need to add the control experiments to quan-
titatively evaluate the effect of nonlinear errors growth in the
atmosphere and external forcing differences from the ocean
on the extended-range predictions.
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