Articles | Volume 16, issue 22
https://doi.org/10.5194/gmd-16-6609-2023
https://doi.org/10.5194/gmd-16-6609-2023
Methods for assessment of models
 | 
16 Nov 2023
Methods for assessment of models |  | 16 Nov 2023

A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research

Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig

Related authors

Description of a global marine particulate organic carbon-13 isotope data set
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021,https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024,https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024,https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024,https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024,https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
The need for carbon-emissions-driven climate projections in CMIP7
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024,https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary

Cited articles

Abramson, I. S.: On bandwidth variation in kernel estimates-a square root law, Ann. Stat., pp. 1217–1223, https://doi.org/10.1214/aos/1176345986, 1982. a, b, c
Berlinet, A.: Hierarchies of higher order kernels, Prob. Theory Rel., 94, 489–504, https://doi.org/10.1007/bf01192560, 1993. a
Bernacchia, A. and Pigolotti, S.: Self-Consistent Method for Density Estimation, J. R. Stat. Soc. B, 73, 407–422, https://doi.org/10.1111/j.1467-9868.2011.00772.x, 2011. a
Boccara, N.: Functional Analysis – An Introduction for Physicists, Academic Press, Inc., ISBN 0121088103, 1990. a
Botev, Z. I., Grotowski, J. F., and Kroese, D. P.: Kernel density estimation via diffusion, Ann. Stat., 38, 2916–2957, https://doi.org/10.1214/10-AOS799, 2010. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Download
Short summary
Kernel density estimators (KDE) approximate the probability density of a data set without the assumption of an underlying distribution. We used the solution of the diffusion equation, and a new approximation of the optimal smoothing parameter build on two pilot estimation steps, to construct such a KDE best suited for typical characteristics of geoscientific data. The resulting KDE is insensitive to noise and well resolves multimodal data structures as well as boundary-close data.