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Abstract. Probability density functions (PDFs) provide in-
formation about the probability of a random variable taking
on a specific value. In geoscience, data distributions are of-
ten expressed by a parametric estimation of their PDF, such
as, for example, a Gaussian distribution. At present there
is growing attention towards the analysis of non-parametric
estimation of PDFs, where no prior assumptions about the
type of PDF are required. A common tool for such non-
parametric estimation is a kernel density estimator (KDE).
Existing KDEs are valuable but problematic because of the
difficulty of objectively specifying optimal bandwidths for
the individual kernels. In this study, we designed and devel-
oped a new implementation of a diffusion-based KDE as an
open source Python tool to make diffusion-based KDE ac-
cessible for general use. Our new diffusion-based KDE pro-
vides (1) consistency at the boundaries, (2) better resolution
of multimodal data, and (3) a family of KDEs with differ-
ent smoothing intensities. We demonstrate our tool on arti-
ficial data with multiple and boundary-close modes and on
real marine biogeochemical data, and compare our results
against other popular KDE methods. We also provide an ex-
ample for how our approach can be efficiently utilized for
the derivation of plankton size spectra in ecological research.
Our estimator is able to detect relevant multiple modes and it
resolves modes that are located closely to a boundary of the
observed data interval. Furthermore, our approach produces a
smooth graph that is robust to noise and outliers. The conver-
gence rate is comparable to that of the Gaussian estimator,
but with a generally smaller error. This is most notable for
small data sets with up to around 5000 data points. We dis-

cuss the general applicability and advantages of such KDEs
for data–model comparison in geoscience.

1 Introduction

In geoscience, the application of numerical models has be-
come an integral part of research. Given the complexity of
some models, such as earth system models with their de-
scriptions of detailed processes in the ocean, atmosphere,
and land, a number of plausible model solutions may ex-
ist. Accordingly, there is a strong demand for the analysis of
model simulations on various temporal and spatial scales and
to evaluate these results against observational data. A viable
evaluation procedure is to compare non-parametric probabil-
ity density functions (PDFs) of the data with their simulated
counterparts. By non-parametric PDFs, it is meant that no
assumptions are made regarding any particular (parametric)
probability distribution, such as the normal distribution.

Some studies have already documented the advantage of
analyzing changes in PDFs, for example, when results of
climate models are evaluated on a regional scale and their
sensitivities to uncertainties in model parameterizations and
forcing are examined (e.g., Dessai et al., 2005; Perkins et al.,
2007). Likewise, problems of model parameterizations can
be approached in a stochastic rather than deterministic frame-
work, which requires a simulated probability distribution
to compare well with the probability distribution of truth
(Palmer, 2012). Perkins et al. (2007) stressed that the cred-
ibility of projecting future distributions of temperature and
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precipitation is more likely to be good in cases when the
PDFs of hindcast simulation results are similar to the PDFs
of the observations. A critical point is the quantification of
the similarity between respective non-parametric PDFs, typ-
ically expressed by some distance or divergence measure, as
analyzed and discussed in Thorarinsdottir et al. (2013).

The examination of the suitability of certain divergence
functions for data–model assessment is only one aspect; an-
other is the quality or representativeness of the estimated
PDFs. Well-approximated PDFs have been used to benefit
data analysis in the geosciences (e.g., O’Brien et al., 2019;
Teshome and Zhang, 2019; Ongoma et al., 2017). Obtain-
ing high-quality approximations of non-parametric PDFs is
certainly not limited to applications in the geosciences but is
likely desirable in other scientific fields as well. In aquatic
ecological research, for example, continuous plankton size
spectra can be well derived from PDFs of cell size measure-
ments sorted by individual species or plankton groups (e.g.,
Quintana et al., 2008; Schartau et al., 2010; Lampe et al.,
2021). The identification of structural details in the size spec-
tra, such as distinct elevations (modes) and troughs within
certain size ranges, is useful, since they can reveal some of
the underlying structure of the plankton foodweb. A typical
limitation of the approach described in Schartau et al. (2010)
and Lampe et al. (2021) is the specification of an estimator
for the continuous size spectra, such that all significant de-
tails are well resolved.

Mathematically formulated, PDFs are integrable non-
negative functions f :�→ [0,∞) from a sample space�⊆
R into the non-negative real numbers with

∫
∞

−∞
f (x)dx = 1.

PDFs correspond to the probability P of the occurrence of a
data value X ∈ R within a specific range [a,b] ⊆ R via the
relationship

P(a < X < b)=

b∫
a

f (x)dx for all a < b ∈ R. (1)

The application of kernel density estimators (KDEs) has
become a common approach for approximating PDFs in a
non-parametric way (Parzen, 1962), which means that prob-
ability parameters (e.g., expectation or variance) of the data
and the type of the underlying probability distribution (e.g.,
normal or lognormal) are not prescribed. The general con-
cept of KDEs takes into account information of every single
data point and treats all of them equally. Consequently, every
point’s information weighs the same in the resulting estimate
without introducing additional assumptions.

A KDE is based on a kernel function and a smoothing pa-
rameter. The kernel function is ideally chosen to be a PDF
itself, usually unimodal and centered around zero (Sheather,
2004). The estimation process sums up the kernel function
sequentially centered around each data point. The sum of
these individual kernels is standardized by the number of data
points. This ensures that the final estimate is again a PDF

by inheriting all properties of its kernels. The smoothing pa-
rameter, referred to as bandwidth, determines the smoothness
of the estimate. If it is chosen to be small, more details of
the underlying data structure become visible. If it is larger,
more structure becomes smoothed out (Jones et al., 1996)
and information from single data points can get lost. Hence,
it is crucial to determine some kind of an optimal size of the
bandwidth parameter to represent a suitable signal-to-noise
ratio that allows a separation of significant distinctive fea-
tures from ambiguous details. The question of optimal band-
width selection is widely discussed in the literature (e.g.,
Sheather and Jones, 1991; Jones et al., 1996; Heidenreich
et al., 2013; Chacón and Duong, 2018; Gramacki, 2018). It
also takes into account that there might not be one single “op-
timal” choice for such bandwidth (Abramson, 1982; Terrell
and Scott, 1992; Chaudhuri and Marron, 2000; Scott, 2012),
to use adaptive bandwidth approaches (Davies and Baddeley,
2017) or to optimize the kernel function shape instead of the
bandwidth (Bernacchia and Pigolotti, 2011).

The reformulation of the most common Gaussian KDEs
(Sheather, 2004) into a diffusion equation provides a differ-
ent view on KDE (Chaudhuri and Marron, 2000). This differ-
ent approach comes with three main advantages: (1) consis-
tency at the boundaries, (2) better resolution of multimodal
data, and (3) a family of KDEs with different smoothing
intensities which can be produced as a by-product of the
numerical solution. This perspective change is possible be-
cause the Gaussian kernel function solves the partial differ-
ential equation describing the diffusion heat process as the
Green function. The time parameter of this differential equa-
tion corresponds to the smoothness of the estimate and thus
becomes tantamount to the estimate’s bandwidth parameter
(Chaudhuri and Marron, 2000). The initial value is typically
set to include the δ distribution of the input data, which will
formally be defined in Sect. 3. This differentiates the initial
value problem from classical problems, since the δ distribu-
tion is not a proper function itself. In specific applications
this diffusion approach delivered convincing results (e.g.,
Botev et al., 2010; Deniz et al., 2011; Qin and Xiao, 2018),
especially for the resolution of multiple modes (e.g., Maj-
dara and Nooshabadi, 2020). The improved structure reso-
lution has, for example, already shown useful for the opti-
mization of photovoltaic power generation (Li et al., 2019),
analysis of flood frequencies (Santhosh and Srinivas, 2013),
or the prediction of wind speed (Xu et al., 2015). However, it
tends to resolve too many details or overfit the data in others
(e.g., Ma et al., 2019; Chaudhuri and Marron, 2000; Farmer
and Jacobs, 2022). One main benefit of the diffusion KDE is
that it provides a series of PDF estimates for a sequence of
bandwidths by default (Chaudhuri and Marron, 2000). As a
consequence, it offers the chance to choose between varying
levels of smoothness by design.

In this study, we present a new, modified diffusion-based
KDE with an accompanying Python package, diffKDE (Pelz
and Slawig, 2023). Our aim is to retain the original idea of
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diffusion-based KDEs by Chaudhuri and Marron (2000) and
Botev et al. (2010), but to avoid the complex fixed-point it-
eration by Botev et al. (2010). The main objective of our re-
fined approach is to achieve high performance for analyses
of high variance and multimodal data sets. Our diffusion-
based KDE is based on an iterative approximation that dif-
fers from others, using a default optimal bandwidth and two
preliminary pilot estimates. This way the KDE can provide a
family of estimates at different bandwidths to choose from,
in addition to a default solution optimally designed for data
from geoscience and ecological research. This allows for an
interactive investigation of estimated densities at different
smoothing intensities.

This paper is structured as follows: first, we will briefly
summarize the general concept of KDEs. Afterwards, our
specific KDE approach will be introduced and described,
as developed and implemented in our software package. We
explain the two pilot estimation steps and the selection of
the smoothing parameters. Then the performance of our re-
fined estimator will be compared with other state-of-the-art
KDEs while considering known distributions and real ma-
rine biogeochemical data. The real test data include carbon
isotope ratios of particulate organic matter (δ13CPOC) and
plankton size data. Our analyses presented here involve in-
vestigations of KDE error, runtime, the sensitivity to data
noise, and the characteristics of convergence with respect to
increasing sample size.

2 The general kernel density estimator

A kernel density estimator is a non-parametric statistical tool
for the estimation of PDFs. In practice, diverse specifica-
tions of KDEs exist that may improve the performance with
respect to individual needs. Before we explain our specifi-
cations of the diffusion-based KDE, we will provide basic
background information about KDEs.

From now on, let �⊆ R be a domain and Xj ∈�, j ∈
{1, . . .,N}, be N ∈ N independent identically distributed real
random variables.

The most general form of a KDE approximates the true
density f of the input data (Xj )Nj=1 by

f̂ (x;h)=
1
N h

N∑
j=1

K

(
x−Xj

h

)
, (2)

where x ∈ R, h ∈ R>0 and f̂ (x;h) ∈ R≥0.
The sets R>0 and R≥0 denote the positive real numbers

and the non-negative real numbers, respectively. The ker-
nel function K : R→ R satisfies the following conditions

(Parzen, 1962):

sup
y∈R
|K(y)|<∞,

∫
R

|K(y)|dy <∞,

lim
y→∞
|yK(y)| = 0,

∫
R

K(y)dy = 1, (3)

meaning thatK is bounded, integrable, and for the limit y→
∞ decreases faster to zero than y approaches infinity. The
final condition means that K integrates to 1 over the whole
real domain, which implies that also the KDE f̂ integrates to
1 as is necessary for a PDF.

The parameter h determines the smoothness of the esti-
mate calculated by Eq. (2) and is called the bandwidth pa-
rameter (Silverman, 1986). An optimal choice for the band-
width parameter is regarded as the minimizer of the asymp-
totic mean integrated squared error between the true density
of (Xj )Nj=1 and their KDE (Sheather and Jones, 1991). The
mean integrated squared error (MISE) is defined as

MISE(f̂ )(h)= E

∫
R

(
f̂ (x;h)− f (x)

)2

dx, (4)

where h ∈ R>0 for all PDFs f and respective KDEs f̂ (Scott,
1992). In the following, we will work with the asymptotic
MISE denoted as AMISE, which describes the asymptotic
behavior of the MISE for the bandwidth parameter approach-
ing zero h→ 0, meaning

lim
h→0

MISE(f̂ )(h)

AMISE(f̂ )(h)
= 1. (5)

If now f̂ is a KDE and there exists a h∗ ∈ R>0 with

AMISE(f̂ )(h∗)= min
h∈R>0

AMISE(f̂ )(h), (6)

we call h∗ the optimal bandwidth of f̂ by (Xj )Nj=1 (Scott,
1992). A kernel function K that suffices the additional con-
ditions∫
R

yK(y)dy = 0,
∫
R

y2
|K(y)|dy <∞,

∫
R

y2K(y)dy = k2 ∈ Rr {0}, (7)

is a second-order kernel as its second moment
∫
Ry

2K(y)dy
is its first non-zero moment. Those kernels are positive and
together with the final condition from Eq. (3) are PDFs them-
selves. For the general KDE from Eq. (2) with a second-order
kernel, the optimal bandwidth can be calculated as

h∗ =

(
||K||2

L2

Nk2
2 ||f

′′||
2
L2

) 1
5

. (8)
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This result was already obtained by Parzen (1962) and is
discussed in more detail in Appendix A.

In Eq. (8), the true density f is involved in the calcula-
tion of the optimal bandwidth h∗, which is in turn needed for
the approximation of f by a KDE and thus prevents a direct
derivation of an optimal bandwidth. One possibility of how
this implicit relation can be solved is the calculation of pilot
estimation steps. Our specific approach to this is shown in
Sects. 3.1 and 3.2.

There exists a variety of available choices for the type of
kernel function K , which all have their individual benefits
and shortcomings. Among these choices are, for example, the
uniform, triangle, or the Epanechnikov kernel (Scott, 1992):

KE(w)=
3
4
(1−w2), (9)

where w ∈ R and KE(w) ∈ R≥0.
A common choice for K is the Gaussian kernel (Sheather,

2004):

8(w)=
1
√

2π
e−

1
2w

2
, (10)

where w ∈ R and 8(w) ∈ R≥0.
The standard KDE from Eq. (2) – despite being widely ap-

plied and investigated – comes with several disadvantages in
practical applications (Khorramdel et al., 2018). For exam-
ple, severe boundary bias can occur when applied on a com-
pact interval (Marron and Ruppert, 1994). It means that a ker-
nel function with a specified bandwidth, attributed to a single
point near the boundary, may actually exceed the boundary.
Furthermore, it can lack a proper response to variations in
the magnitude of the true density f (Breiman et al., 1977).
The introduction of a parameter that depends on the respec-
tive data region can address the latter (Breiman et al., 1977).
Unfortunately, no true independent local bandwidth strategy
exists (Terrell and Scott, 1992), meaning that in all local ap-
proaches there is still an influence of neighboring data points
on each locally chosen bandwidth.

3 The diffusion-based kernel density estimator

The diffusion-based KDE provides a different approach to
Eq. (2) by solving a partial differential equation instead of the
summation of kernel functions. This different calculation of-
fers three main advantages: (1) consistency at the boundaries
can be ensured by adding Neumann boundary conditions,
(2) better resolution of multimodal data can be achieved by
the inclusion of a suitable parameter function in the differ-
ential equation leading to adaptive smoothing intensity, and
(3) a family of KDEs with different bandwidths is produced
as a by-product of the numerical solution of the partial dif-
ferential equation in individual time steps.

This KDE solves Eq. (11), the partial differential equation
describing the diffusion heat process, starting from an initial

value based on the input data (Xj )Nj=1 and progresses for-
ward in time to a final solution at a fixed time T ∈ R>0:

∂

∂t
u(x; t)=

1
2
d2

dx2 u(x; t),x ∈�,t ∈ R>0. (11)

The input data are treated as the initial value u(x,0) at the
initial time t0 = 0 and generally set to infinitely high peaks
at every data point Xj ,j ∈ {1, . . .,N}. The time propagation
in solving Eq. (11) smooths the initial shape of u, meaning
that u contains less details of the input data (Xj )Nj=1 for in-
creasing values in time t ∈ R>0. If we observe the solution
u of Eq. (11) at a specific fixed final iteration time T ∈ R>0,
this parameter determines the smoothness of the function u
and how many details of the input data are resolved. This
is an equivalent dependency as already seen for the KDE as
the solution of Eq. (2) depending on a bandwidth parameter
h ∈ R>0.

An advantageous connection to Eq. (2) is that the widely
applied Gaussian kernel is a fundamental solution of this
differential equation. Precisely, the Gaussian kernel from
Eq. (10) as applied in the construction of a Gaussian KDE
depends on the location x ∈ R and the smoothing parameter
h ∈ R>0 and has the form

8(x; t)=
1
√

2π
e
−

1
2

(
x−Xj
√
t

)2

, (12)

where x ∈ R, t ∈ R>0 and 8(x; t) ∈ R≥0.
This function solves Eq. (11) as Green’s function, where

the time parameter t ∈ R>0 equals the squared bandwidth pa-
rameter h2 (Chaudhuri and Marron, 2000). Consequently, we
can use the result of the optimal bandwidth from Eq. (8), only
as the squared result as

T =

(
||K||2

L2

Nk2
2 ||f

′′||
2
L2

) 2
5

, (13)

where we denote the optimal bandwidth now with T ∈ R>0
as this is the final iteration time in the solution of Eq. (11).
This idea to use the diffusion heat equation to calculate a
KDE was first proposed by Chaudhuri and Marron (2000)
and its benefits were widely explored in Botev et al. (2010).

Our implementation of the diffusion KDE is based on
Chaudhuri and Marron (2000), which we extended by some
advancements proposed by Botev et al. (2010): we included a
parameter function p ∈ C2 (�,R>0) with

∣∣|p′′∣∣ |∞ <∞ into
Eq. (11), acting inversely to a diffusion quotient. This pa-
rameter function allows to influence the intensity of the dif-
fusion applied adaptively depending on the location x ∈ R.
Its role and specific choice is discussed in detail in Sect. 4.
Boundary conditions are set to be Neumann and the initial
value being a normalized sum of the δ distributions centered
around the input data points. In the following, we call a func-
tion u ∈ C2,1 (�×R>0,R≥0

)
the diffusion kernel density es-

timator (diffKDE) if it solves the diffusion partial differential
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equation

∂

∂t
u(x; t)=

1
2
d2

dx2

(
u(x; t)

p(x)

)
, x ∈�,t ∈ R>0, (14)

∂

∂x

(
u(x; t)

p(x)

)
= 0, x ∈ ∂�,t ∈ R>0, (15)

u(x;0)=
1
N

N∑
j=1

δ(x−Xj ), x ∈�. (16)

The final iteration time T ∈ R>0 of the solution process
of Eq. (14) is called the squared bandwidth of the diffKDE.
In Eq. (16), the data are incorporated as initial values via
the Dirac δ distribution, i.e., a generalized function which
takes the value infinity at its argument and zero anywhere
else. In general, δ is defined by δ(x)= 0 for all x ∈ Rr {0}
and

∫
∞

−∞
xδ(x)= 1 (Dirac, 1927). When regarded as a PDE,

the Dirac δ distribution puts all of the probability as the corre-
sponding data point. The δ distribution can be defined exactly
as a limit of functions, the so-called Dirac sequence. In actual
implementations, it has to be approximated (see Sect. 5.3).

This specific type of KDE has several advantages. First of
all, it naturally provides a sequence of estimates for different
smoothing parameters (Chaudhuri and Marron, 2000). This
makes the identification of one single optimal bandwidth un-
necessary, which is ideal because the optimal value can be
specific to a certain application and is often debated (e.g.,
Abramson, 1982; Terrell and Scott, 1992; Chaudhuri and
Marron, 2000; Scott, 2012). Additionally, such a sequence al-
lows a specification of the estimate’s smoothness that is most
appropriate for the analysis. The parameter function p in-
troduces adaptive smoothing properties (Botev et al., 2010).
Thus, choosing p to be a function allows for a spatially de-
pendent influence on the smoothing intensity, which solves
the prior problem of having to locally adjust the bandwidth to
the respective region to prevent oversmoothing of local data
structure (Breiman et al., 1977; Terrell and Scott, 1992; Pe-
dretti and Fernàndez-Garcia, 2013). In contrast to local band-
width adjustments, local variations in the smoothing intensity
can be applied to resolve multimodal data as well as values
close to the boundary.

3.1 Bandwidth selection

We now focus on the selection of the optimal squared band-
width T ∈ R>0 according to the relationship T = h2 between
final iteration time T of the diffKDE and bandwidth param-
eter h (Chaudhuri and Marron, 2000). In the following we
refer to this as the bandwidth selection for simplicity.

We stressed in Eq. (13) that the optimal choice of the band-
width parameter depends on the true density f . In our setup
of the diffKDE, the analytical solution for T of Eq. (6) de-
pends not only on the true density f , but also on the param-

eter function p. It can be calculated as

T ∗ =

 E
(√
p(X)

)
2N
√
π

∣∣∣∣∣∣∣∣(fp )′′∣∣∣∣∣∣∣∣2
L2


2
5

, (17)

where || · ||L2 is the L2 norm and E(·) the expected value.
The proof of this equation is given in detail in Botev et al.
(2010). The role of the parameter function p is described in
detail in Sect. 3.2.

In the simplified setup with p = 1 as in Eq. (11), the ana-
lytical optimal solution of Eq. (13) becomes

T ∗(p=1) =

(
1

2N
√
π ||f ′′| |2

L2

) 2
5

. (18)

Still, the smoothing parameter depends on the unknown
density function f and its derivatives. So we will need to find
a suitable approximation of f , which might again be depen-
dent on f and p. This implicit dependency can be solved by
so-called pilot estimation steps. Pilot estimates are generally
rough estimates of f calculated in an initial step to use them
for an approximation of Eqs. (17) and (18), which later serve
to calculate a more precise estimate of f . A more detailed
introduction into pilot estimation and its specific benefit for
diffusion-based KDEs is presented in Sect. 3.2.

Botev et al. (2010) used an iterative scheme to solve the
implicit dependency of the bandwidth parameter on the true
distribution f . This additional effort is avoided in our ap-
proach by directly approximating f with a simple data-based
bandwidth approximation based on two pilot estimation steps
described in detail in Sect. 4.

The possible difficulties in finding one single optimal
bandwidth (e.g., Scott, 2012) do not arise in the calculation
of the diffKDE by default. This problem is solved by creat-
ing a family of estimates from different bandwidth parame-
ters (Breiman et al., 1977) ranging from oversmoothed esti-
mates to those with beginning oscillations (Sheather, 2004).
For the diffKDE, the progression of the time t up to a final
iteration time T is equivalent to the creation of such a family
of estimates. We thus only need to find a suitable optimal fi-
nal iteration time T ∗. Then the temporal solution of Eq. (14)
provides solutions for the diffKDE for the whole sequence of
the temporal discretization time steps smaller than T ∗, which
we can use as the requested family of estimates.

3.2 Pilot estimation

A crude first estimate of the true density f can serve as a
pilot estimation step for several purposes (Abramson, 1982;
Sheather, 2004). The most obvious purpose in our case is
to obtain an estimate of f for the calculations of the opti-
mal bandwidth in Eq. (17). The second purpose is its usage
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for the definition of the parameter function p in Eq. (14).
Setting this as an estimate of the true density itself intro-
duces locally adaptive smoothing properties (Botev et al.,
2010). Since p appears in the denominator in the diffusion
equation, it operates conversely to a classical diffusion co-
efficient. Choosing p to be a function allows for a spatially
dependent influence on the smoothing intensity as follows:
at points where the function p is small, the smoothing be-
comes more pronounced, whereas if p is larger, the smooth-
ing is less intense. Low smoothing resolves more variability
within areas with many similar values (high density), while
the intensity of smoothing is increased where data values are
more dispersed. Eventually, we calculate two pilot estimates
– one for p and one for f – to support the calculation of the
diffKDE. We set both pilot estimates to be the solution of
Eq. (11) with an optimal smoothing parameter approximat-
ing Eq. (18). This approach combines Gaussian KDE and
diffKDE interchangeably to make best use of both of their
benefits (Chung et al., 2018).

4 The new bandwidth approximation and pilot
estimation approach of the diffKDE

Our new approach solves the diffusion equation in three
stages, where the first two provide pilot estimation steps for
the diffKDE. The three chosen bandwidths increase in com-
plexity and accuracy over this iteration. This algorithm was
implemented in Python 3.

For the optimal final iteration time T ∗ from Eq. (17), we
need the parameter function p as well as the true density f .
We approximate them both by a simple KDE, each as pi-
lot estimation steps. We use for both cases the simplified
diffKDE defined in Eq. (11), without additional parameter
functions. We denote the final iteration times for p and f
as Tp,Tf ∈ R>0, respectively. We use a simple bandwidth as
variants of the rule of thumb by Silverman (1986) to calculate
both of them.

We begin to estimate Tp, which is the final iteration time
for the KDE that serves as p. It shall be the smoothest of the
three estimates, since p limits the resolution fineness of the
diffKDE as a lower boundary. This occurs because the dif-
fKDE converges to this parameter function and hence never
resolves less details than p itself (Botev et al., 2010).

As seen in Eq. (18), the optimal bandwidth for the approxi-
mation of p depends on the second derivative of f . We there-
fore need to make some initial assumption about f . For a first
simplification, we assume that f belongs to the normal dis-
tribution family. Then the variance can be estimated by the
standard deviation of the data. This leads us to the paramet-
ric approximation of the bandwidth TP (Silverman, 1986),

Tp =

(
1

2N
√
π ||f ′′| |2

L2

) 2
5

=

(
1

2N
√
πσ−5 ||8′′| |2

L2

) 2
5

=

 1

2N
√
πσ−5 3

8
1
√
π

 2
5

= σ 2
(

4
3
N

)− 2
5
, (19)

whose estimate is known to be overly smooth on multimodal
distributions.

To calculate the final iteration time Tf for the approxima-
tion of f in Eq. (17), we choose a refined approximation of
Eq. (18) that has been proposed by Silverman (1986) as

Tf =

(
0.9min

(
σ,

iqr(data)
1.34

))2

N−
2
5 . (20)

The iqr is the interquartile range defined as iqr(data)=
q(0.75)−q(0.25). The value q(0.25) denotes the lower quar-
tile and describes the value in data, at which 25 % of the el-
ements in data have a value smaller than q(0.25). q(0.75)
denotes the upper quartile and describes the analogue value
for 75 % (Dekking et al., 2005).

We approximate optimal final iteration time T ∗ from
Eq. (17) by calculating p and f by Eq. (11), based on
Eqs. (19) and (20), respectively, on an equidistant spatial
grid (xi)ni=0 ⊆ �̄ of the spatial domain �⊆ R. The nomi-
nator is approximated by the unbiased estimator and denoted
as Eσ ∈ R (Botev et al., 2010), that is,

E(p(X))≈
1

n+ 1

n+1∑
i=0

√
p(xi)

= Eσ , (21)

and the second derivative in the denominator by finite dif-
ferences (McSwiggan et al., 2016) and set to qi ∈ R for all
i ∈ {1, . . .,n}:(
f

p

)′′
(xi)≈

1
h2

(
f

p
(xi+1)− 2

f

p
(xi)+

f

p
(xi−1)

)
= qi . (22)

For the boundary values we set the second derivative at the
lower boundary to q0 ∈ R, that is,(
f

p

)′′
(x0)≈

1
h2

(
2
f

p
(x1)− 2

f

p
(x0)

)
= q0, (23)

and the second derivative at the upper boundary to qn+1 ∈ R:(
f

p

)′′
(xn+1)≈

1
h2

(
2
f

p
(xn−1)− 2

f

p
(xn)

)
= qn+1. (24)

We set the finite differences approximation from
Eqs. (22)–(24) as a discrete function with image q :=
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(q0, . . .,qn+1). In this way we derived an already discrete
formula for approximation of the optimal squared bandwidth
T ∗ ∈ R>0 of the diffKDE on the discretization (xi)ni=0 of �
as

T ∗ =

(
Eσ

2N
√
π ||q| |2

L2

) 2
5

. (25)

The L2 norm is calculated on the discretized versions of f
and p by array operations. The integration is performed by
the trapz function of the SciPy integrate package (Gommers
et al., 2022) and the square root is part of the math package
(Van Rossum, 2020).

5 Discretization and implementation of the diffKDE

Equation 14 is solved numerically using a spatial and tem-
poral discretization. The discretization is based on finite dif-
ferences and sparse matrices in Python. A similar approach
can be found in a diffusion-based kernel density estimator
for linear networks implemented in R by McSwiggan et al.
(2016).

5.1 Spatial discretization

We start with the description of the discretization of the spa-
tial domain �⊆ R. This will reduce the partial differential
equation in Eq. (14) into a system of linear ordinary differ-
ential equations. Let n ∈ N and (xi)ni=0 ⊆ �̄, an equidistant
discretization of � with xi−1 < xi and spatial discretization
step size R>0 3 h= xi − xi−1 for all i ∈ {1, . . .,n}. For the
following calculations, we set x−1 = x0−h ∈ R and xn+1 =

xn+h ∈ R. Let u be the solution of the diffKDE and p its
parameter function, both as defined in Sect. 3. We assume
that u and p are both defined on x−1 and xn+1 and we set
ui = u(xi) and pi = p(xi) for all i ∈ {−1, . . .,n+ 1}.

Let t ∈ R>0. We approximate Eq. (15) at x = x0 by apply-
ing a first-order central difference quotient as

0=
∂

∂x

(
u(x0; t)

p(x0)

)
≈

1
2h

(
u1(t)

p1
−
u−1(t)

p−1

)
.

This implies

u−1(t)

p−1
=
u1(t)

p1
.

We approximate Eq. (14) at x = x0 by applying a second-
order central difference quotient:

u′0(t)≈
1
2

1
h2

(
u1(t)

p1
− 2

u0(t)

p0
+
u−1(t)

p−1

)
=

1
2

1
h2

(
2
u1(t)

p1
− 2

u0(t)

p0

)
. (26)

Analogously, we approximate Eqs. (15) and (14) at x = xn
again by first- and second-order central difference quotients,
respectively. This gives

u′n(t)≈
1
2

1
h2

(
un+1(t)

pn+1
− 2

un(t)

pn
+
un−1(t)

pn−1

)
=

1
2

1
h2

(
2
un−1(t)

pn−1
− 2

un(t)

pn

)
. (27)

Finally, we derive from Eq. (14) by applying a second-
order central difference quotient for all i ∈ {1, . . .,n− 1}:

u′i(t)≈
1
2

1
h2

(
ui+1(t)

pi+1
− 2

ui(t)

pi
+
ui−1(t)

pi−1

)
. (28)

Now, we identify p := (p0, . . .,pn) ∈ Rn+1, u′(t) :=(
u′0(t), . . .,u

′
n(t)

)
∈ Rn+1, and u(t) := (u0(t), . . .,un(t)) ∈

Rn+1 with their spatial discretizations. Furthermore, we
define vupper := (2,1, . . .,1) ∈ Rn, vmain := (−2, . . .,−2) ∈
Rn+1, and vlower := (1, . . .,1,2) ∈ Rn to be the upper,
main, and lower diagonal of the tridiagonal matrix V ∈
R(n+1)×(n+1). Now, we set
1
2

1
h2 V

1
p
= A ∈ R(n+1)×(n+1), (29)

where A ∈ R(n+1)×(n+1) means that A has real entries and
n+1 rows and n+1 columns, and the division by p is applied
column-wise. Then, Eqs. (26)–(28) can be summarized as a
linear system of ordinary differential equations:

u′(t)≈
1
2

1
h2 V

u(t)

p
= Au(t). (30)

By these calculations the solution of the partial differential
equation from Eq. (14) can also be approximated by solving
the system of ordinary differential equations:

u′(t)= Au(t), t ∈ R>0. (31)

5.2 Temporal discretization

The time-stepping applied to solve the ordinary differential
equation from Eqs. (31) and (16) is again built on equidistant
steps forward in time. Let 1 ∈ R>0 be small and set t0 = 0
and tk = tk−1+1 for all k ∈ N. Set uk,i = u(xi, tk) ∈ R for
all i ∈ {0, . . .,n+1} and k ∈ N0 and identify uk = (uk,i)

n
i=0 ∈

Rn+1 for all k ∈ N0 with their discretizations.
We use an implicit Euler method to approximate Eq. (31)

for all k ∈ N0, that is,

uk+1 =1Auk+1+uk (32)

from which we obtain

uk = (In+1−1A)uk+1 for all k ∈ N0. (33)

The implicit Euler method is chosen at this place, since it
is A-stable and by this ensures convergence of the solver.

Equation (33) together with the initial value Eq. (16) de-
scribes an implementation-ready time stepping procedure.
The linear equation for uk+1 will be solved in every time
step k ∈ N0.
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Figure 1. Dirac sequence (8h)h∈R>0 for the approximation of the δ distribution in the initial value in Eq. (16). The function 8h depends
on the spatial discretization fineness h and converges to δ for h→ 0. The function 8h is piecewise linear with a peak at each data point
Xj ,j ∈ {1, . . .,N} integrating to 1.

5.3 Initial value

The initial value in Eq. (16) depends on the δ distribution
(Dirac, 1927). The δ distribution is not a proper function but
can be calculated as a limit of a suitable function sequence.
A common approximation for the δ distribution is to use a
Dirac sequence (Hirsch and Lacombe, 1999). Such is a se-
quence (8n)n∈N of integrable functions that are non-negative
and satisfy∫
8n(x)dx = 1 for all n ∈ N (34)

and

lim
n→∞

∫
RrBρ (0)

8ndx = 0 for all ρ ∈ R>0, (35)

where Bρ(0)= {x ∈ R; |x− 0|< ρ} = (−ρ,ρ) is the open
subset of R centered around R with radius ρ. For our imple-
mentation we define a Dirac sequence (8h)h∈R>0 depending
on the spatial discretization step size h ∈ R>0 as an approx-
imation of δ in Eq. (16). The spatial discretization step size
h ∈ R>0 equals the length of the domain |�| divided by the
number of spatial discretization points n, namely h= |�|

n
.

This relationship provides the dependency of 8h on n ∈ N
and the equivalence of the limits n→∞ and h→ 0 in this

framework. In the following we give the specific definition
of our function sequence of choice and proof that this indeed
defines a proper Dirac sequence.

We assume 0 ∈�. Then there exists an i ∈ {0, . . .,n} with
0 ∈

[
xi−1,xi). If not readily defined, we set xi−2 = xi−1−

h ∈ R and xi+1 = xi +h ∈ R, and we define the following
(see also Fig. 1):

8h(x)=


xi
h3 x+

xi |xi−2|

h3 , x ∈
[
xi−2,xi−1)

xi+xi−1
h3 x+ xi

xi+xi−1
h3 −

xi−1
h2 , x ∈

[
xi−1,xi)

xi−1
h3 x+

xi+1|xi−1|

h3 , x ∈
[
xi ,xi+1

]
0, else,

(36)

where x,8h(x) ∈ R.
Then 8h is non-negative for all h ∈ R>0 and as

a composition of integrable functions integrable with∫
8h(x)dx = 1 (see Appendix B) and 8h ∈ L

1 (R)= {f :
R→ R;f integrable and

∫
|f (x)|dx <∞}.

Now, let ρ ∈ R>0 and set h= ρ
2 ∈ R>0. Then we have by

Eq. (36)

∫
RrBρ (0)

8hdx =

ρ∫
−∞

8hdx+

∞∫
ρ

8hdx =

ρ∫
−∞

0dx+

∞∫
ρ

0dx = 0,
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Table 1. Input variables. The only required input variable for the calculation of the diffKDE is a one-dimensional data set as an array-like
type. All other variables are optional, with some prescribed defaults. On demand the user can set individual lower and upper bounds for their
data evaluation under the diffKDE as well as the number of used spatial and temporal discretization intervals. The individual selection of the
final iteration time provides the opportunity to choose the specific smoothing grade on demand.

Index Name Type Default Description

0 data Array-like Required Input data X ∈ RN
1 xmin Float minX Lower data boundary for KDE calculation
2 xmax Float maxX Upper data boundary for KDE calculation
3 n Integer 1004 Number of spatial discretization intervals in �
4 time steps Integer 20 Number of temporal discretization intervals
5 T Float T ∗ Final iteration time for diffKDE

and it follows that

lim
h→0

∫
RrBρ (0)

8hdx = 0 for all ρ ∈ R>0. (37)

Hence Eq. (36) defines a Dirac sequence. We use 8h for
the approximation of the δ distribution in our implementation
of Eq. (16).

The concept of the Dirac sequence also provides the jus-
tification to generally rely on the δ distribution in the con-
struction of the initial value of the diffKDE. The Gaussian
kernel defined in Eq. (10) that solves the diffusion equation
as a fundamental solution is again a Dirac sequence (Boc-
cara, 1990). This link connects the diffKDE directly back to
the δ distribution.

5.4 The diffKDE algorithm realization in Python

The implementation was conducted in Python and its con-
cept is shown in Algorithm 1. We used the Python libraries
Numpy (Harris et al., 2020) and SciPy (Virtanen et al., 2020;
Gommers et al., 2022) and the Python Math module (Van
Rossum, 2020) for data preprocessing, calculation of the
bandwidths, as well as setup of the differential equations
and their solution. The algorithm iteratively calculates three
KDEs: first, the two for the approximations of p and f as
the pilot estimation steps described in Sect. 4, and the last
one being u, the solution of the diffKDE built on the prior
two. All three KDEs are calculated by solving the diffusion
equation up to the respective final iteration time. The solu-
tion is realized in while loops solving Eq. (33). The two pilot
estimation steps can be calculated simultaneously, since they
are independent of each other and only differ in their final
iteration times Tp and Tf . All input variables are displayed
in Table 1 and the return values are listed in Table 2.

The spatial grid discretizing � is set up according to the
description in Sect. 5.1 in lines 1 and 2 of Algorithm 1. It con-
sists of n ∈ N intervals, where n can be set by the user. The
boundary values are xmin =minX ∈ R and xmax =maxX ∈
R by default but can also be chosen individually. Setting
the boundary values to an individually chosen interval in

Algorithm 1 Finite-differences-based algorithm for the im-
plementation of the diffusion KDE.
Note: the routine solve(M,b)means that the system Mx= b
is solved.

Require: X ∈ RN , n ∈ N, t imesteps ∈ N, xmin ∈ R, xmax ∈ R
1: h← (xmax− xmin)/(n− 4)
2: �← (xmin− 2h,xmin−h, . . .,xmax+h,xmax+ 2h) ∈ Rn+1

3: p,f ,u←8h

4: Tp← σ 2
(

4
3N

)− 2
5

5: Tf ←
(

0.9min
(
σ,
iqr(data)

1.34

))2
N−

2
5

6: t← 0, 1p← Tp/timesteps, 1f ← Tf /timesteps

7: while t < Tp do
8: p← solve

(
In+1−1pApilot,p

)
9: f ← solve

(
In+1−1fApilot,f

)
10: t← t +1p
11: end while

12: q←

√∫
�

((
f
p

)′′)2
dh

13: Eσ ← 1
n+1

∑n+1
i=0

√
p(xi)

14: T ←
(

Eσ
2N
√
πq2

) 2
5

15: t← 0, 1← T/timesteps

16: while t < T do
17: u← solve

(
In+1−1A,u

)
18: t← t +1

19: end while
20: return u,�

the function call results in a clipping of the used data to
this smaller one before KDE calculation. Outside the inter-
val boundaries, the diffKDE adds two additional discretiza-
tion points to make it applicable for the case of a data point
Xj , j ∈ {1, . . .,N} being directly located at one of the bound-
aries. This way it is possible to construct the initial value
defined in Eq. (36), which takes into account the two neigh-
boring discretization points in each direction. This leads to
a full set of n+ 1 equidistant discretization points (xi)ni=0
saved in a vector variable denoted in Algorithm 1 as �. The
spatial discretization (xi)ni=0 includes an inner discretization
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between the handed in (or default set) interval endpoints xmin
and xmax of n−4 equally sized inner discretization intervals.

The Dirac sequence 8h for the implementation of the ini-
tial value is defined in Eq. (36) and we use the same for ini-
tialization of all three approximations of the PDF (p,f ,u)
in line 3 of Algorithm 1. In its calculation, the algorithm
searches for each j ∈ {1, . . .,N} for the i ∈ {1, . . .,n+1}with
xi being the closest right neighbor of Xj . Then the initial
value is constructed by assigning the values 1

h

xi−Xj
xi−xi−1

and
1
h

Xj−xi−1
xi−xi−1

at grid point xi and xi−1, respectively, and zero
elsewhere. These values correspond to the weighted heights
Hi and Hi−1 displayed in Fig. 1. The final initial value is the
normalized sum of all these individual approximations of the
δ distribution. All three used KDEs (p,f ,u) are initialized
with this initial value.

In the pilot estimation steps, we calculate the KDEs for p

and for f required for the setup of the final iteration time T ∗

for the diffKDE. The final iteration times Tp and Tf for p and
f , respectively, are calculated based on the input data X in
lines 4 and 5 of Algorithm 1 as described in Sect. 4. Then the
KDEs are calculated by solving a linear ordinary differential
equation by an implicit Euler approach in the first while loop
in lines 7–9 of Algorithm 1. For the pilot estimation steps
calculating p and f the matrix A defined in Eq. (29) does
not incorporate a parameter function and reduces to a matrix
denoted as Apilot, that is

1
2

1
h2 V= Apilot ∈ R(n+1)×(n+1), (38)

where Apilot ∈ R(n+1)×(n+1) means thatApilot has real entries
and n+1 rows and n+1 columns. Apart from this, the solu-
tions for the pilot KDEs are the same as for the final diffKDE.
The two pilot KDEs can be solved simultaneously, since they
share their matrix Apilot and have independent pre-computed
final iteration times. The difference in their bandwidths is im-
plemented in different time step sizes 1p and 1f for p and
f , respectively, which are initialized in line 6 of Algorithm 1
directly before this first while loop. The temporal solutions
are calculated time steps ∈ N times in equidistantly increas-
ing time steps until each individual final iteration time. Since
we solve implicitly, there is no restriction to the time step
size. But a larger time steps parameter reduces the numerical
error proportional to the step size parameters 1p and 1f . In
this temporal solution we rely on the fact that the involved
matrices are sparsely covered. The applied solver is part of
the SciPy Python library and designed for efficient solution
of linear systems including sparse matrices (Virtanen et al.,
2020; Gommers et al., 2022).

The final iteration time T for the diffKDE solution u is
calculated after the calculations of p and f , using them both
as described in Sect. 4 in lines 12–14 of Algorithm 1. For the
diffKDE u, the differential equation is given in Eq. (31) and
the solution uses the implicit Euler approach in Eq. (33). This
is implemented in a second while loop described in lines 16–

18 in Algorithm 1, which is separated from the final iteration
time T ∗ and the matrix A identical to the calculations in the
pilot step.

The return value is a tuple providing the user the diffKDE
and the spatial discretization as displayed in Table 2.

Possible problems are caught in assert and if clauses. Ini-
tially, the data are reshaped to a Numpy array for the case of
a list handed in, and it is made sure that this is non-empty.
For the case of numerical issues leading to a pilot estimate
including zero values, the whole pilot is set back equal to 1
to ensure numerical convergence. Accordingly for the case
of NaN value being delivered for the optimal bandwidth for
the diffKDE, in which case this is also set to the bandwidth
chosen for f in Eq. (20).

5.5 Pre-implemented functions for visual outputs

Besides the standard use to calculate a diffKDE at an approx-
imated optimal final iteration time for direct usage, we also
included three possibilities to generate a direct visual out-
put, one of them being interactive. Matplotlib (Hunter, 2007)
provides the software measures for creating the plots. Most
methods are part of the submodule Pyplot, whereas the inter-
active plot is based on the submodule Slider.

The function call evol_plot opens a plot showing the time
evolution of the diffKDE (e.g., see Fig. 2 for an example out-
put). The plot includes drawings of the data points on the
x axis. In the background the initial values are drawn. The
y axis range is cut off at 20 % above the global maximum of
the diffKDE to preserve focus of the graphic on the diffKDE
and evolution. The evolution is presented by drawings of the
individual time evolution stages using the sequential color
map Viridis. The diffKDE is drawn in a bold blue line. This
visualization of the evolution provides the user with insight
into the data distribution and their respective influence on the
final form of the diffKDE.

The function call pilot_plot opens which shows the dif-
fKDE together with its pilot estimate p, showing the inten-
sity of local smoothing (e.g., see Fig. 3 for an example out-
put). With this the user has the possibility to gain insight to
the influence of this pilot estimator on the performance of the
diffKDE. This plot also includes the data points on the x axis.

The function call custom_plot opens an interactive plot,
allowing the user to slide through different approximation
stages of the diffKDE (e.g., see Fig. 4 for an example out-
put). This feature is based on the Slider module from the Mat-
plotlib library (Hunter, 2007) and opens a plot showing the
diffKDE. At the bottom of this plot is a scale that shows the
time, initially being set to the optimal iteration time derived
from Eq. (17) in the middle of the scale. By clicking on the
scale, the user can display the evolution stages at the respec-
tive (closest) iteration time. This reaches down to the initial
value and up to the doubled optimal iteration time. This in-
teractive tool provides the user a simple tool to follow the
estimate at different bandwidths. With the help of such a plot
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Figure 2. Pre-implemented direct visual output of the evolution pro-
cess of the diffKDE. The input data are 100 samples randomly col-
lected from Eq. (39). The individual data points are drawn on the
x axis. The y axis represents the estimated probability density. The
light yellow vertical lines in the background are the initial value of
the diffKDE. The temporal evolution of the solution of Eq. (33) is
visualized by the sequent color scheme from light yellow over green
to the bold blue graph in the front. This bold blue graph equals the
diffKDE at the approximated optimal final iteration time.

Figure 3. The diffKDE and its pilot estimate p. The input data are
100 samples randomly collected from Eq. (39). The data points are
drawn on the x axis. The y axis represents the estimated density of
the diffKDE in blue and the pilot estimate in red.

it is possible to decide on whether the diffKDE is desired to
be applied with a final iteration time that is different from the
default.

Table 2. Return values of the diffKDE. The return variable of the
diffKDE is a vector. Its first entry is the diffKDE evaluated on the
spatial grid. Its second entry is the spatial grid �.

Index Name Type Size Description

0 u Numpy array n+ 1 diffKDE values on �
1 � Numpy array n+ 1 Spatial discretization

6 Results on artificial data

In the following we document the performance of the dif-
fKDE on artificial and real marine biogeochemical data.
Whenever not stated otherwise, we used the default values
of the input variables given in Table 1 in the calculation of
the diffKDE.

For testing our implementation against a known true PDF,
we first constructed a three-modal distribution. The objec-
tive was to assess the diffKDE’s resolution and to exem-
plify the pre-implemented plot routines. The distribution was
constructed from three Gaussian kernels centered around
µ1 = 3, µ2 = 6.5, and µ3 = 9 and with variances σ 2

1 = 1,
σ 2

2 = 0.72, and σ 2
3 = 0.52, each of them with a relative con-

tribution of 30 %, 60 %, and 10 %, respectively:

f (x)= 0.3
1
√

2π
e−

1
2 (x−3)2

+ 0.6
1

0.7
√

2π
e
−

1
2

(
x−6.5

0.7

)2

+ 0.1
1

0.5
√

2π
e
−

1
2

(
x−9
0.5

)2

. (39)

6.1 Pre-implemented outputs

As described in Sect. 5.5, we included three plot func-
tions in the diffKDE implementation. All of them open pre-
implemented plots to give an impression of the special fea-
tures that come with the diffKDE. An overview of the three
possible direct visual outputs of the diffKDE software is de-
scribed below.

First we demonstrate how to display the diffKDE’s evo-
lution. By calling the evol_plot function, a plot opens
that shows all temporal evolution stages of the solution of
Eq. (33). The temporal progress is visualized by a sequen-
tial color scheme progressing from light yellow over differ-
ent shades of green to dark blue. On the x axis, all used data
points are drawn. In the background, a cut-off part of the ini-
tial value as the beginning of the temporal evolution is de-
picted in light yellow. The final diffKDE is plotted as a bold
blue line in front of the evolution process. This gives the user
insight into the distribution of the initial data and their influ-
ence on the shape of the estimate. As an example of the de-
fault setting, we created an evolution plot from 100 random
samples of Eq. (39) visualized in Fig. 2. The second exam-
ple shows the possibility of displaying the diffKDE together
with the pilot estimate p by the function pilot_plot. This is
the parameter function in Eq. (16) responsible for the adap-
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Figure 4. Different snapshots from the interactive visualization of the diffusion KDE generated from the artificial data set
(0.1,0.2,0.3,0.33,0.34,0.35,0.36,0.37,0.5,0.55,0.7,0.8). Panel (a) shows the output at time= 0 and hence the initial value. Panel (b)
shows an intermediate smoothing stage of the diffKDE. Panel (c) shows the diffKDE of the input data at the approximated optimal iteration
time T ∗. This is the initial stage of the interactive graphic. By clicking the button on the lower right, the graphic can be reset to this stage.
Panel (d) shows an oversmoothed version of the diffKDE at the doubled approximated optimal iteration time.

tive smoothing. Where this function is larger, the smoothing
is less intense and allows more structure in the estimate of the
diffKDE. Contrarily, where it is smaller the smoothing be-
comes more pronounced and data gaps are better smoothed
out. The result of the diffKDE is shown together with its pa-
rameter function p in figure Fig. 3 on the same random sam-
ple of the distribution from Eq. (39) as before.

Lastly, we illustrate example snapshots of the interactive
option to investigate different smoothing stages of the dif-
fKDE by the function. We chose simpler and smaller ex-
ample data for this demonstration, because these are better
suited for visualization of this tool’s possibilities. The func-
tion custom_plot opens an interactive graphic, starting with a

plot of the approximated optimal default solution of the dif-
fKDE at T ∗. In this graphic the user is able to individually
choose, by a slider, the iteration time at which the desired ap-
proximation stage of the diffKDE can be seen. The time can
be chosen from 0, where the initial value is shown, up until
the doubled approximated optimal time (2×T ∗). A reset but-
ton sets the graphic back to its initial stage of the diffKDE at
T ∗. Four snapshots of this interactive experience are shown
in Fig. 4.
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6.2 Performance analyses on known distributions and
in comparison to other KDEs

In this section we present results obtained by random sam-
ples of the trimodal distribution from Eq. (39) and lognor-
mal distributions with differing parameters. Wherever suit-
able, the results are compared with other commonly used
KDEs. These include the most common Gaussian KDE with
the kernel function from Eq. (10) in an implementation from
SciPy (Gommers et al., 2022), the Epanechnikov KDE with
the kernel function from Eq. (9) in an implementation from
Scikit-learn (Pedregosa et al., 2012), and an improved imple-
mentation of the Gaussian KDE by Botev et al. (2010) in a
Python implementation by Hennig (2021). We begin with an
example of how the user may choose individually different
smoothing grades of the diffKDE, then compare the different
KDEs with the true distribution, followed by investigating
the influence of noise on different KDEs, and finally show
the convergence of different KDEs to the true distribution
with increasing sample size.

We start with an individual selection of the approxima-
tion stages. This is one of the main benefits of the diffKDE
compared with standard KDEs by providing naturally a fam-
ily of approximations. This family can be observed by the
function custom_plot. Individual members can be produced
by setting the bandwidth parameter T in the function call of
the diffKDE. This gives the user the chance to choose among
more and less smooth approximations. A selection of such
approximations along with the default solution are shown in
Fig. 5 on a random sample of 50 data points from the tri-
modal distribution in Eq. (39). The plot shows how smaller
iteration times resolve more structure in the estimate, while a
substantially larger iteration time has only little influence on
the increased smoothing of the diffKDE.

In the following we only work with the default solution of
the diffKDE at T ∗. We start with comparisons of the diffKDE
and the three other popular KDEs directly to the underlying
true distribution.

We use differently sized random samples of the known
distribution from Eq. (39) and the standard lognormal dis-
tribution both over [−1,12] for a direct comparison of the
accuracy of the KDEs. The random samples are 50, 100, and
1000 data points of each distribution and all four KDEs are
calculated and plotted together in Fig. 6. The underlying true
distribution is plotted in the background to visually assess
the approximation accuracy. In general, the diffKDE resolves
more of the details of the structure of the true distribution
while not being too sensitive to patterns introduced by the
selection of the random sample and individual outliers. For
the 50 random samples test of the trimodal distribution, all
KDEs do not detect the third mode and only the diffKDE and
the Epanechnikov KDE detect the second. The magnitude
of the main mode is also best resolved by these two. In the
100 random samples test of the trimodal distribution, the dif-
fKDE and the Botev KDE are able to detect all three modes.

Figure 5. Family of diffKDEs evaluated at different bandwidths. A
data set of 50 random samples drawn as gray circles on the x axis
serve to show the possibility to investigate a whole family of es-
timates by the diffKDE. The bold blue line represents the default
solution of the diffKDE by solving the diffusion equation up to the
approximated optimal final iteration time T ∗. The other colors de-
pict more detailed prior approximation stages with smaller band-
width, i.e., earlier iteration times, and a smoother estimate with a
far larger iteration time.

The main mode is best resolved by the diffKDE, whereas
the third mode is best resolved by the Botev KDE. In both
test cases for the trimodal distribution, the Gaussian KDE is
the smoothest and the Epanechnikov KDE provides the least
smooth graph. In the 1000 random samples test the diffKDE
best detects the left mode and the Botev KDE best detects the
two others. Generally, diffKDE and Botev KDE are closely
aligned in this case. The Gaussian and Epanechnikov KDEs
are also closely aligned but with a worse fit of all structures of
the true distribution. The steep decline to 0 is best reproduced
by the diffKDE particularly with low random sample sizes.
The Gaussian KDE always performs the worst. The Botev
KDE is generally also close to the diffKDE but resolves in
the tail of the distribution too much influence of individual
outliers. In the 1000 random samples test with the lognor-
mal distribution are again diffKDE and Botev KDE closely
aligned as well as Gaussian and Epanechnikov KDE. The
first two are very close to the true distribution but resolve too
much structure of the random sample. The diffKDE resolves
more structure in the area close to 0 and becomes smoother
towards the tail of the distribution. The Botev KDE performs
the other way around and provides a smoother estimate close
to 0 and more structure of the random sample towards higher
data values. An analysis of the integral of the KDEs over the
observed domain is presented in Table 3 and reveals that the
diffKDE is the only one that integrates to 1 in all test cases.

We refined the test cases from Fig. 6 by investigating a
lognormal distribution with different parameters and a re-
striction to the interval [0,12] in Fig. 7. We varied mean and
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Figure 6. Test cases with known distributions. Panels (a)–(c) show KDEs of random samples of the trimodal distribution defined in Eq. (39),
(d)–(f) the same for a lognormal distribution. The left figure column is constructed from 50 random samples, the middle from 100, and the
right from 1000. In all plots the true distribution is drawn in gray in the background and the random data sample as gray dots on the x axis.
Each panel shows four KDEs: the diffKDE, the Botev KDE, the Gaussian KDE, and the Epanechnikov KDE. In the labels of the KDEs are
also the integrals over the interval [−1,12] given for each of the KDEs.

Table 3. Integrals of the KDEs displayed in Figs. 6 and 7.

Graphic diffKDE Botev KDE Gaussian KDE Epanechnikov KDE

Fig. 6a 1.0 0.999984 0.999984 0.999998
Fig. 6b 1.0 0.999999 0.999677 1.0
Fig. 6c 1.0 1.0 0.999989 1.0
Fig. 6d 1.0 0.999955 0.961448 0.999999
Fig. 6e 1.0 1.0 0.987128 0.999998
Fig. 6f 1.0 0.996 0.995571 0.996372
Fig. 7a 1.0 0.9986 0.894 0.9163
Fig. 7b 1.0 0.9094 0.802 0.8968
Fig. 7c 1.0 0.9999 0.9986 0.9617
Fig. 7d 1.0 1.0 0.9983 0.996
Fig. 7e 1.0 0.7703 0.0914 0.6171
Fig. 7f 1.0 0.6825 0.0337 0.5718

variances of the normal distribution and used two different
means and three different variances resulting in six test cases.
All of them are run with 300 random samples and again with
all four KDEs. The larger the variance becomes, the more
structure of individual data points is resolved by the Botev
KDE. The Gaussian KDE fails for increasing variance too,
resulting in intense oversmoothing. The Epanechnikov KDE
performs well for smaller variances and larger means, but it
also oversmoothes in the other cases. The diffKDE is gener-
ally one of the closest to the true distribution while not re-
solving too much of the structure introduced by the choice of

the random sample, especially for increased variances. But
this too tends to resolve too much structure in the vicinity
of the mode for smaller variances. The integrals of the KDEs
are also presented in Table 3 and our implementation is again
always exactly 1.

Now we show the performance of the diffKDE on increas-
ingly large data sets. We still use the trimodal distribution
from Eq. (39). We start with four larger random data samples
ranging from 100 to 10 million data points of the trimodal
distribution and then restrict ourselves to our core area of in-
terest [−1,12]. We calculate the diffKDE from all of them
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Figure 7. Lognormal test cases with different mean and variance parameters. Of each distribution 300 random samples were taken and the
diffKDE, the Botev KDE, the Gaussian KDE, and the Epanechnikov KDE were calculated and plotted together with the true distribution.
The random data sample is drawn as gray circles on the x axis. Panels (a) and (b) use σ = 1, (c) and (d) σ = 0.5, and (e) and (f) σ = 3 in
their underlying normal distributions. The means of the underlying normal distributions are µ= 0 in (a), (c), and (e), and µ= 1 in (b), (d),
and (f).

as well as the respective runtime on a consumer laptop from
2020. We compare the results again to the true distribution
in Fig. 8. All of the estimates could be calculated in less
than 1 min. For 100 data points there is still an offset to the
true distribution visible in the estimate. For the larger data
samples the estimate only shows some minor uneven areas,
which smooth out until the largest test case.

Furthermore, we investigated the convergence of the dif-
fKDE to the true distribution, again in comparison with the
three other KDEs. The error between the respective KDE and
the true distribution is calculated by the Wasserstein distance
(Panaretos and Zemel, 2019) with p = 1 by a SciPy func-
tion and the MISE defined in Eq. (4). For the approxima-
tion of the expected value in Eq. (4) we applied an averaging
of the integral value for 100 different random samples for
each observed sample size. We used increasingly large ran-

dom samples from the trimodal distribution starting with 10
and reaching up to 1 million. The errors calculated for each
of the KDEs on each of the random samples are listed in Ta-
ble C1. The values from Table C1 are visualized in Fig. 9 on
a log-scale. The diffKDE, the Gaussian, and the Botev show
a similar steep decline, whereas the Epanechnikov KDE de-
creases its error much slower with increased sample size. The
diffKDE and the Botev KDE generally show similar error
values, the diffKDE relatively smaller ones on smaller data
samples and the Botev KDE relatively smaller ones on data
samples larger than around 5000.

Finally, we investigated the noise sensitivity of the dif-
fKDE compared with the three other KDEs on data contain-
ing artificially introduced noise. We again used the trimodal
distribution from Eq. (39) and 1000 random samples. From
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Figure 8. Test cases with different sample sizes. All four plots show the diffKDE of random samples of the known trimodal distribution
defined in Eq. (39). Panel (a) is calculated from a subsample of 100 data points, (b) 100000, (c) 1000000, and (d) 10000000, all cut to the
interval [−1,12] and hence lacking a few data points. The true numbers of incorporated data points in the four test cases are given in the
respective subheadings. The measured computing time on a 2020 MacBook Air is also drawn in the respective label.

this, we created noised data Xθ ∈ RN by

(Xθ )i = (X)i + (−1)τ rand10−2θσ

for all i ∈ {1, . . .,1000}, (40)

where θ ∈ {0,1,5,15,30} defines the percentage of noise
with respect to the standard deviation σ ∈ R. τ ∈ {1,2} was
chosen randomly as well as rand ∈ [0,1]. The error is again
expressed by the Wasserstein distance between the original
probability density and the respective KDE. The results are
visualized in Fig. 10 with an individual panel for each KDE.
The error of the Epanechnikov KDE is overall the largest and
also increases to the largest. The Gaussian KDE produces the
second largest error, but this even decreases with increased
noise. The Botev KDE produces the smallest errors, but for
increased noise this increases and approaches the magnitude
of the one from the diffKDE. The error of the diffKDE only
minimally responds to increased noise in the data. Visually,
all four KDEs follow a similar pattern of a shift to the left of
the graph. The Botev KDE additionally resolves more struc-
ture of the noised data as the noise increases.

7 Results on marine biogeochemical data and outlook
to model calibration

The performance of the diffKDE is now illustrated with real
data of (a) measurements of carbon isotopes (Verwega et al.,
2021b; Verwega et al., 2021a), (b) of plankton size (equiva-
lent spherical diameter) (Lampe et al., 2021), and (c) remote
sensing data (Sathyendranath et al., 2019, 2021). We chose
these data because we propose to apply the diffKDE for the
analysis of field data for assessment and optimization of ma-
rine biogeochemical- as well as size-based ecosystem mod-
els. The carbon isotope data have been collected to constrain
model parameter values of a marine biogeochemical model
that incorporates this tracer as a prognostic variable (Schmit-
tner and Somes, 2016).

Both data sets were already analyzed using KDEs in their
original publications (Verwega et al., 2021a; Lampe et al.,
2021). Here we expand these analyses by a comparison of the
KDEs used in the respective publications to the new imple-
mentation of the diffKDE. For the δ13CPOC data, the Gaus-
sian KDE was the one used in the data description publica-
tion. Since we have already done this in Sect. 6.2, we further-
more added the Epanechnikov and the Botev KDEs to these
graphics. For the plankton size spectra data, we only com-
pared the diffKDE to the two Gaussian KDEs used in the
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Figure 9. The evolution of the errors of the diffKDE, the Gaus-
sian KDE, the Epanechnikov KDE, and the Botev KDE are drawn
on a log scale against the increasing sample size on the x axis.
Panel (a) shows the error calculated with the Wasserstein distance
and (b) with the MISE. The MISE is calculated after Eq. (4) from
100 different random samples.

respective publication to preserve the clarity of the resulting
figures.

7.1 Performance analyses on organic carbon-13 isotope
data

The δ13CPOC data (Verwega et al., 2021b) were collected to
serve for direct data analyses as well as for future model as-
sessments (Verwega et al., 2021a). We show here the Gaus-
sian KDE as it was used in the data publication in a direct
comparison with the diffKDE. Furthermore, we added the
Epanechnikov and the Botev KDEs. Since in this case no true
known PDF is available, we have to compare the four esti-
mates and subjectively judge their usefulness. In Fig. 11 we
show the KDEs on four different subsets of the δ12CPOC data:
(a) the full data set, (b) a restriction to the core data interval of
[−35,−15], where 98.65 % of the data are located, and then

even further restricted to (c) the euphotic zone and (d) only
data sampled in the 1990s. The euphotic zone describes the
upper ocean layer with sufficient light to enable photosynthe-
sis that produces organic matter (Kirk, 2011). While its depth
can vary in nature (Urtizberea et al., 2013), here we pragmat-
ically selected included data in the upper 130 m consistent
with the analysis in the data set description (Verwega et al.
2021). In all three cases that involve deep ocean measure-
ments, the Botev KDE produces strong oscillations while the
Gaussian KDE strongly smoothes the dip between the modes
at around δ13CPOC =−24 and δ13CPOC =−22 and mostly
the one between around δ13CPOC =−28 and δ13CPOC =

−24. The Epanechnikov KDE resolves more structure than
the Gaussian, but is less pronounced than the diffKDE. Espe-
cially in the full data analysis, the diffKDE reveals the most
structure while not resolving smaller data features of indi-
vidual data points. The KDEs from the euphotic zone data
are all reasonably smooth. The Gaussian KDE is again the
smoothest and missing the mode at δ13CPOC =−22 com-
pletely. The other three KDEs resolve a similar amount of
data structure. The Botev KDE reveals a better distinction be-
tween the modes at around δ13CPOC =−24 and δ12CPOC =

−22 while the diffKDE shows the first one more pronounced.
These observations are consistent with those from the exper-
iments from Figs. 7 and 10, where especially the Gaussian
and the Botev KDEs struggle with the resolution of data with
increasing variances or noise. Of the four observed δ12CPOC
data sets here, the euphotic zone data shown in Fig. 11c have
the smallest standard deviation, 7.78. The other shown data
have variances of 13.91, 10.96, and 9.61 in Fig. 11a, b, and d,
respectively.

7.2 Performance analyses on plankton size spectra data

Another example demonstrates the performance of the dif-
fKDE if applied to plankton size data (Lampe et al., 2021).
The data of size and abundance of protist plankton was origi-
nally collected for resolving changes in plankton community
size structure, providing complementary insight for investi-
gations of plankton dynamics and organic matter flux (e.g.,
Nöthig et al., 2015). In the study of Lampe et al. (2021) a
KDE was applied for the derivation of continuous size spec-
tra of phytoplankton and microzooplankton that can poten-
tially be used for the calibration and assessment of size-based
plankton ecosystem models. In their study they used a Gaus-
sian KDE, as proposed in Schartau et al. (2010), but with two
different approaches for generating plankton size spectra.
Uncertainties, also with respect to optimal bandwidth selec-
tion, were accounted for in both approaches by analyzing en-
sembles of pseudo-data resampled from original microscopic
measurements. Smooth plankton spectra were obtained using
the combined approach, where all phytoplankton and all zoo-
plankton data were lumped together, respectively, and sin-
gle bandwidths were calculated for every ensemble member
(set of resampled data). This procedure avoided overfitting
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Figure 10. Noised data experiments. A random sample of 1000 data points of the trimodal distribution is artificially noised by differing
amounts of the standard deviation. Panel (a) shows the resulting diffKDEs of the differently noised data, (b) the Gaussian KDE, (c) the Botev
KDE, and (d) the Epanechnikov KDE. In all four panels the original true distribution is drawn in gray in the background. The values of the
error between the KDEs and the original true distribution are also part of the respective labels.

but was also prone to oversmoothing, which can mask de-
tails such as troughs in specific size ranges. More details in
the size spectra were resolved with a composite approach,
where individual size spectra, calculated for each species or
genus, were assembled. Since the variance within species or
genus groups is smaller than within the large groups “phyto-
plankton” or “zooplankton”, the individual bandwidths, and
therefore the degree of smoothing, were considerably smaller
than obtained in the combined approach. This computation-
ally expensive method revealed many details in the spectra
but at the same time tended to resolve narrow peaks that were
either clearly insignificant or remained difficult to interpret
(see supplemental material in Lampe et al., 2021). The here
proposed diffKDE was tested with resampled data used for
the simpler combined approach. The objective was to iden-
tify details in the size spectra that remained previously un-
resolved while insignificant peaks, as found in the composite
approach, became smoothed out. Figure 12 shows the perfor-
mance of the diffKDE in comparison with the original com-
bined and composite spectra that were derived as ensemble
means of estimates obtained with a Gaussian KDE. The spa-
tial discretization of the diffKDE was set to n= 1000 to be
comparable to the other already published KDEs in this case.
The diffKDE seems to meaningfully combine the advantages
of the two Gaussian KDE approaches in both spectra, of the

phytoplankton and microzooplankton, respectively. With the
diffKDE it is possible to generate estimates that display more
detailed structure of the composite KDE. This becomes ob-
vious in some size ranges, such as between 5 and 50 µm, in
particular in the microzooplankton spectrum. Concurrently,
detailed variations, as caused by overfitting in the composite
spectra, become suppressed for cell sizes larger than 10 µm.
Thus, with the diffKDE it is possible to generate a single ro-
bust estimate that otherwise is only achieved by analyzing a
composite of a series of individual estimates of a Gaussian
KDE. The application of the diffKDE for analyzing details
in plankton size spectra, or generally in particle size spectra,
reduces computational efforts considerably.

7.3 Performance analyses on remote sensing data

Our last example refers to PDFs that reflect temporal
changes (monthly means) of surface chlorophyll a con-
centration within an off-shore ocean region (approximately
350× 330 km) that exhibits substantial mesoscale and sub-
mesoscale variability. The selected area is part of the of
the Mauritanian upwelling system, located at the Moroc-
can coast of North Africa. This eastern boundary upwelling
is known for the formation and spread of filaments, with
some distinct characteristics in terms of the spatial variabil-
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Figure 11. Comparison of KDE performance on marine biogeochemical field data. The δ13CPOC data (Verwega et al., 2021b) are described
in detail in Verwega et al. (2021a) and cover all major world oceans, the 1960s–2010s, and reaches down into the deep ocean. In all four
panels the diffKDE is plotted together with the Gaussian, Epanechnikov, and Botev KDEs. Panel (a) shows KDEs from all available data,
(b) shows the KDEs of the data restricted to the core data values of [−35,−15], (c) shows the KDEs from only euphotic zone data with
values in [−35,−15], and (d) shows the KDEs from all 1990s data with values in t[−35,−15].

Figure 12. Comparison of KDE performance on (a) phytoplankton and (b) microzooplankton size spectra. The construction of composite
and combined size spectra is described in Lampe et al. (2021) and based on Gaussian KDEs. Smoother combined spectra are the result of one
KDE with a common bandwidth for all data. More structured composite spectra were assembled from taxon-specific spectra with individual,
hence smaller, bandwidths.
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Figure 13. Comparison of KDE performance using monthly means (February, March, and April) of chlorophyll a concentration derived
from remote sensing data of the year 2019. The PDFs (a)–(c) represent the temporal development of spatial variability seen in a subregion
of the Mauritanian upwelling system (d)–(f).

ity in temperature and the distribution of plankton (e.g., Sylla
et al., 2019; Romero et al., 2020; Versteegh et al., 2022).
For this example we use remote sensing (satellite) data of
monthly mean chlorophyll a concentration from the year
2019, as processed and made available through the Ocean-
Colour Climate Change Initiative (OC-CCI) (Sathyendranath
et al., 2019, 2021). We deliberately chose 3 months in which
an eddy-like filamentous structure of elevated chlorophyll a
concentration developed after February and then evolved
during a 2-month period (March and April). Such develop-
ment reveals specific spatial patterns, of low and increased
chlorophyll a, which leave a clear imprint in the correspond-
ing PDFs, as depicted in Fig. 13. In Fig. 13 we find multi-
ple modes, as well as a shift towards low chlorophyll a con-
centrations that are much better resolved when the diffKDE
is applied. Such details derived with the diffKDE could be
compared to complementary PDFs, for example, as obtained
from remote sensing sea surface temperature data within the
same time period, and we might gain further insight into the
underlying processes involved in generating distinctive spa-
tial and temporal patterns. Also, in cases of simulations of
mesoscale and submesoscale processes, we should not ex-

pect to obtain a model solution with filamentous structures
at identical times at the same places. However, we may re-
gard a model’s performance as credible if the model’s solu-
tion yields similar spatial structures visually within the same
region, perhaps at some different time, and the associated
PDFs may then be directly assessed against the PDFs ob-
tained from the remote sensing data.

7.4 Future application to model assessment and
calibration

In geoscientific research, the derivation and comparison of
well-resolved PDFs can be useful, as demonstrated in our se-
lected examples. Yet, the significance of resolving details in
non-parametric PDFs remains unclear. However, having high
resolution PDFs available, as obtained with the diffKDE, is
readily of value and will likely guide further research. An
obvious benefit of the diffKDE is its lesser dependence on
the specification of a single, albeit optimal, bandwidth. Its
application is likely more robust for the assessment of sim-
ulation results, either against data or results of other models
(e.g., multimodel ensembles), which is particularly relevant
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for evaluations of future climate projections obtained with
earth system models (e.g., Oliver et al., 2022).

Comparison of model and field data requires additional
processing to account for spatial–temporal differences be-
tween collected samples and model resolution. Typically,
simulation results are available at every single spatial grid
point and in every time step. In comparison, field data are
usually sparsely available only. Interpolating such sparse
field data can introduce high uncertainty (e.g., Oliver et al.,
2022). PDFs provide a useful approach to investigate data in-
dependent of the number of data points available (Thorarins-
dottir et al., 2013). A comparison of two such functions can
easily resolve the issue of non-equal field observations and
simulation results. Histograms are commonly used as an ap-
proach to compare and ultimately constrain the distribution
of model data to observations. However, many issues arise
including the subjective selection of intervals and histograms
not being proper PDFs themselves.

The presented diffKDE provides a non-parametric ap-
proach to estimate PDFs with typical features of geoscientific
data. Being able to resolve typical patterns, such as multiple
or boundary-close modes, while being insensitive to noise
and individual outliers makes the diffKDE a suitable tool for
future work in the calibration and optimization of earth sys-
tem models.

8 Summary and conclusions

In this study we constructed and tested an estimator (KDE)
of probability density functions (PDFs) that can be applied
for analyzing geoscientifc and ecological data. KDEs allow
the investigation of data with respect to their probability dis-
tribution, and PDFs can be derived even for sparse data. To
be well suited for geoscientific data, the KDE must work
fast and reliably on differently sized data sets while revealing
multimodal details as well as features near data boundaries.
A KDE should not be overly sensitive to noise introduced by
measurement errors or by numerical uncertainties. Such an
estimator can be applied for direct data analyses or can be
used to construct a target function for model assessment and
calibration.

We presented a novel implementation of a KDE based on
the diffusion heat process (diffKDE). This idea was origi-
nally proposed by Chaudhuri and Marron (2000) and its ben-
efits in comparison with traditional KDE approaches were
widely investigated by Botev et al. (2010). We chose this ap-
proach to KDE because it offers three main benefits: (1) con-
sistency at the boundaries, (2) better resolution of multi-
modal data, and (3) a family of KDEs with different smooth-
ing intensities. We provide our algorithm in an open source
Python package. Our approach includes a new approximation
of the bandwidth, which equals the square root of the final it-
eration time. We directly approximate the analytical solution
of the optimal bandwidth with two pilot estimation steps and

finite differences. We calculate the pilot estimates as solu-
tions of a simplified diffusion equation up until final iteration
times derived from literature-based bandwidths called rule
of thumb by Silverman (1986). Our new approach results in
three subsequent estimations of the PDF, each of them cho-
sen with a finer bandwidth approximation.

Finite differences build the fundamentals of our discretiza-
tion. The spatial discretization comprises equidistant finite
differences. The δ distribution in the initial value is dis-
cretized by piecewise linear functions along the spatial dis-
cretization points constructing a Dirac sequence. For the time
stepping we applied an implicit Eulerian algorithm on an
ordinary differential equation set up by a tridiagonal ma-
trix corresponding to the diffusion equation on the spatial
equidistant grid.

Our diffKDE implementation includes pre-implemented
default output options. The first option is the visualization
of the diffusion time evolution showing the sequence of all
solution steps from the initial values to the final diffKDE.
This lets a user view the influence of individual data points
and outlier accumulations on the final diffKDE and how this
decreases over time. The second option is the visualization
of the pilot estimate that is also included in the partial differ-
ential equation to introduce adaptive smoothing properties.
This provides the user with easy insight into the adaptive
smoothing as well as the lower boundary of structure reso-
lution given by this parameter function. Finally, an interac-
tive plot provides a simple opportunity to explore all of these
time iterations and look even beyond the optimal bandwidth
and see smoother estimates.

Our implementation is fast and reliable on differently sized
and multimodal data sets. We tested the implementation for
up to 10 million data points and obtained acceptably fast re-
sults. A comparison of the diffKDE on known distributions
together with classically employed KDEs showed reliable
and often superior performance. For comparison we chose
a SciPy implementation (Gommers et al., 2022) of the most
classical Gaussian KDE (Sheather, 2004), an Scikit imple-
mentation (Pedregosa et al., 2012) of an Epanechnikov KDE
(Scott, 1992) and a Python implementation (Hennig, 2021)
of the improved Gaussian KDE developed by Botev et al.
(2010). We designed multimodal and different boundary-
close distributions and found our implementation to gener-
ate the most reliable estimates across a wide range of sample
sizes (Fig. 9). The diffKDE was neither prone to oversmooth-
ing nor overfitting of the data, which we could observe in
the other tested KDEs. A noise sensitivity test in compari-
son with the other KDEs also showed a good stability of the
diffKDE against noise in the data.

An assessment of the diffKDE on real marine biogeo-
chemical field data in comparison with usually employed
KDEs reveals superior performance of the diffKDE. We used
carbon isotope and plankton size spectra data and compared
the diffKDE to the KDEs that were used to explore the data
in the respective original data publications. On the carbon
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isotope data, we furthermore applied all previous KDEs for
comparison. In both cases we were able to show that the dif-
fKDE resolves relevant features of the data while not being
sensitive to individual outliers or uncertainties (noise) in the
data. We were able to obtain a best possible and reliable rep-
resentation of the true data distribution, better than those de-
rived with other KDEs.

In future studies the diffKDE may potentially be used
for the assessment, calibration, and optimization of marine
biogeochemical- and earth system models. A plot compris-
ing PDFs of field data and simulation results already may
provide visual insight into some shortcomings of the applied
model. A target function can be constructed by adding a dis-
tance like the Wasserstein distance (Panaretos and Zemel,
2019) or other useful metrics for the calibration of climate
models that can be investigated (Thorarinsdottir et al., 2013).
Thus, KDE applications, such as our diffKDE, can greatly
simplify comparisons of differently sized field and simula-
tion data sets.

Appendix A: Optimal bandwidth choice for the general
KDE

The derivation of the optimal bandwidth choice for a KDE
was already described in Parzen (1962) and can be found in
more detail in Silverman (1986). The additional conditions
stated in Eq. (7) to the kernel function∫
R

yK(y)dy = 0 and
∫
R

y2K(y)dy = k2 ∈ Rr {0} (A1)

correspond to the order of the kernel being equal to 2
(Berlinet, 1993). For such kernels Silverman (1986) showed
the minimizer of the asymptotic mean integrated squared er-
ror to be

h=

( ∫
∞

−∞
K(y)2dy

Nk2
2
∫
∞

−∞
f ′′(x)2dx

) 1
5

=

(
||K||2

L2

Nk2
2 ||f

′′||
2
L2

) 1
5

. (A2)

In our context of working with the squared bandwidth t =
h2 this optimal bandwidth choice becomes

t =

(
||K||2

L2

Nk2
2 ||f

′′||
2
L2

) 2
5

, (A3)

which equals Eq. (13).

Appendix B: Integral property of the Dirac sequence

Here, we briefly give the proof of the integral property of the
used Dirac sequence 8h defined in Eq. (36). Let h ∈ R>0.
Then we obtain

∫
8h(x)dx =

xi−1∫
xi−2

8h(x)dx+

xi∫
xi−1
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Appendix C: Error convergence of observed KDEs

Table C1 shows the error values calculated by the Wasser-
stein distance and the MISE between the true distribution and
the respective KDEs. The used distribution is the trimodal
from Eq. (39) and the values plotted in Fig. 9.

Table C1. Error convergence of the observed KDEs in Fig. 9. The first column lists the sample sizes used for the calculation in each row.
The following four lines show the error between the four observed KDEs and the true distribution calculated by the Wasserstein distance.
The final four columns contain the equivalent errors, but calculated by the MISE.

Sample size WdiffKDE WBKDE WGKDE WEKDE MISEdiffKDE MISEBKDE MISEGKDE MISEEKDE

10 0.0235 0.0362 0.0266 0.0273 0.0313 0.0544 0.04 0.0327
50 0.0181 0.0248 0.0218 0.0202 0.012 0.0133 0.0246 0.0098
100 0.0042 0.0072 0.0137 0.007 0.0074 0.0075 0.019 0.0068
150 0.0066 0.0094 0.0153 0.0093 0.0057 0.0059 0.016 0.0062
200 0.0078 0.0089 0.0152 0.0097 0.0045 0.0046 0.0141 0.0057
300 0.0053 0.0062 0.0139 0.0085 0.003 0.0032 0.0116 0.0051
400 0.0036 0.0048 0.0115 0.0081 0.0024 0.0025 0.0098 0.0047
500 0.0027 0.0032 0.0106 0.0076 0.0021 0.0024 0.009 0.0049
750 0.0036 0.0034 0.01 0.0081 0.0015 0.0016 0.007 0.0045
1000 0.0032 0.0024 0.0093 0.0079 0.0011 0.0013 0.006 0.0044
2000 0.0024 0.0017 0.0074 0.0077 0.0006 0.0008 0.0039 0.0043
5000 0.0015 0.0019 0.0058 0.008 0.0003 0.0004 0.0022 0.0042
10 000 0.002 0.0019 0.0044 0.0079 0.0002 0.0002 0.0013 0.0041
50 000 0.0011 0.0009 0.0024 0.0081 0.00006 0.00007 0.0004 0.0041
100 000 0.0007 0.0006 0.0018 0.0082 0.00004 0.00004 0.0002 0.0041
500 000 0.0005 0.0004 0.0011 0.0084 0.00002 0.00001 0.00007 0.0041
1 000 000 0.0005 0.0003 0.00081 0.0084 0.00001 0.000007 0.00004 0.0041
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Code and data availability. The exact version of the dif-
fKDE implementation (Pelz and Slawig, 2023) used to pro-
duce the results used in this paper is archived on Zenodo:
https://doi.org/10.5281/zenodo.7594915. The underlying research
data are carbon isotope data (Verwega et al., 2021b) accessible at
https://doi.org/10.1594/PANGAEA.929931, plankton size spectra
data (Lampe et al., 2021), which will be made available via institu-
tional (GEOMAR) repository and can be requested from Vanessa
Lampe, vlampe@geomar.de, and remote sensing data (Sathyen-
dranath et al., 2019). The monthly means version 5 data (chla_a)
were downloaded from and are available at: https://rsg.pml.ac.
uk/thredds/ncss/grid/CCI_ALL-v5.0-MONTHLY/dataset.html
(Sathyendranath et al., 2021).
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