Articles | Volume 16, issue 20
https://doi.org/10.5194/gmd-16-5949-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5949-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) for emission estimates: system development and application
Shuzhuang Feng
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
Zheng Wu
CMA Key Open Laboratory of Transforming Climate Resources to Economy, Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
Hengmao Wang
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Yang Shen
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Lingyu Zhang
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Yanhua Zheng
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Chenxi Lou
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Ziqiang Jiang
Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
Weimin Ju
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
Related authors
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Fei Jiang, Weimin Ju, Wei He, Mousong Wu, Hengmao Wang, Jun Wang, Mengwei Jia, Shuzhuang Feng, Lingyu Zhang, and Jing M. Chen
Earth Syst. Sci. Data, 14, 3013–3037, https://doi.org/10.5194/essd-14-3013-2022, https://doi.org/10.5194/essd-14-3013-2022, 2022
Short summary
Short summary
A 10-year (2010–2019) global monthly terrestrial NEE dataset (GCAS2021) was inferred from the GOSAT ACOS v9 XCO2 product. It shows strong carbon sinks over eastern N. America, the Amazon, the Congo Basin, Europe, boreal forests, southern China, and Southeast Asia. It has good quality and can reflect the impacts of extreme climates and large-scale climate anomalies on carbon fluxes well. We believe that this dataset can contribute to regional carbon budget assessment and carbon dynamics research.
Fei Jiang, Hengmao Wang, Jing M. Chen, Weimin Ju, Xiangjun Tian, Shuzhuang Feng, Guicai Li, Zhuoqi Chen, Shupeng Zhang, Xuehe Lu, Jane Liu, Haikun Wang, Jun Wang, Wei He, and Mousong Wu
Atmos. Chem. Phys., 21, 1963–1985, https://doi.org/10.5194/acp-21-1963-2021, https://doi.org/10.5194/acp-21-1963-2021, 2021
Short summary
Short summary
We present a 6-year inversion from 2010 to 2015 for the global and regional carbon fluxes using only the GOSAT XCO2 retrievals. We find that the XCO2 retrievals could significantly improve the modeling of atmospheric CO2 concentrations and that the inferred interannual variations in the terrestrial carbon fluxes in most land regions have a better relationship with the changes in severe drought area or leaf area index, or are more consistent with the previous estimates about drought impact.
Ran Yan, Jun Wang, Weimin Ju, Xiuli Xing, Miao Yu, Meirong Wang, Jingye Tan, Xunmei Wang, Hengmao Wang, and Fei Jiang
Biogeosciences, 21, 5027–5043, https://doi.org/10.5194/bg-21-5027-2024, https://doi.org/10.5194/bg-21-5027-2024, 2024
Short summary
Short summary
Our study reveals that the effects of the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China's gross primary production (GPP) are basically opposite, with obvious seasonal changes. Soil moisture primarily influences GPP during ENSO events (except spring) and temperature during IOD events (except fall). Quantitatively, China's annual GPP displays modest positive anomalies during La Niña and negative anomalies in El Niño years, driven by significant seasonal variations.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024, https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Short summary
Ecosystem carbonyl sulfide (COS) fluxes were employed to optimize GPP estimation across ecosystems with the Biosphere-atmosphere Exchange Process Simulator (BEPS), which was developed for simulating the canopy COS uptake under its state-of-the-art two-leaf modeling framework. Our results showcased the efficacy of COS in improving model prediction and reducing prediction uncertainty of GPP and enhanced insights into the sensitivity, identifiability, and interactions of parameters related to COS.
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024, https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Xingyu Wang, Fei Jiang, Hengmao Wang, Zhengqi Zhang, Mousong Wu, Jun Wang, Wei He, Weimin Ju, and Jingming Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1568, https://doi.org/10.5194/egusphere-2024-1568, 2024
Short summary
Short summary
The role of Orbital Carbon Observatory 3 (OCO-3) satellites in estimating the global terrestrial near-Earth environment is unclear. So we study it by assimilating OCO-3 XCO2 alone and with OCO-2 XCO2 inversion. We found that assimilation OCO-3 XCO2 underestimated land sinks at high latitudes by retrieval alone. Joint assimilation of OCO-2 and OCO-3 XCO2 needs to be retrieved to better estimate global terrestrial NEEs.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Lidou Huyan, Yudong Gao, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-72, https://doi.org/10.5194/amt-2023-72, 2023
Preprint withdrawn
Short summary
Short summary
In order to deal with this non-Gaussian problem, we describe the variation of reflectivity standard deviation as a function of the symmetric rainrate, which is the average of observed and simulated rainrates. The reflectivity error distribution normalized by the rainrate-dependent function becomes more Gaussian. The effects of the accuracy and linearization of symmetric rainrate on the reflectivity error structure are also discussed.
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Fei Jiang, Weimin Ju, Wei He, Mousong Wu, Hengmao Wang, Jun Wang, Mengwei Jia, Shuzhuang Feng, Lingyu Zhang, and Jing M. Chen
Earth Syst. Sci. Data, 14, 3013–3037, https://doi.org/10.5194/essd-14-3013-2022, https://doi.org/10.5194/essd-14-3013-2022, 2022
Short summary
Short summary
A 10-year (2010–2019) global monthly terrestrial NEE dataset (GCAS2021) was inferred from the GOSAT ACOS v9 XCO2 product. It shows strong carbon sinks over eastern N. America, the Amazon, the Congo Basin, Europe, boreal forests, southern China, and Southeast Asia. It has good quality and can reflect the impacts of extreme climates and large-scale climate anomalies on carbon fluxes well. We believe that this dataset can contribute to regional carbon budget assessment and carbon dynamics research.
Fei Jiang, Hengmao Wang, Jing M. Chen, Weimin Ju, Xiangjun Tian, Shuzhuang Feng, Guicai Li, Zhuoqi Chen, Shupeng Zhang, Xuehe Lu, Jane Liu, Haikun Wang, Jun Wang, Wei He, and Mousong Wu
Atmos. Chem. Phys., 21, 1963–1985, https://doi.org/10.5194/acp-21-1963-2021, https://doi.org/10.5194/acp-21-1963-2021, 2021
Short summary
Short summary
We present a 6-year inversion from 2010 to 2015 for the global and regional carbon fluxes using only the GOSAT XCO2 retrievals. We find that the XCO2 retrievals could significantly improve the modeling of atmospheric CO2 concentrations and that the inferred interannual variations in the terrestrial carbon fluxes in most land regions have a better relationship with the changes in severe drought area or leaf area index, or are more consistent with the previous estimates about drought impact.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Zhi-Zhen Ni, Kun Luo, Yang Gao, Xiang Gao, Fei Jiang, Cheng Huang, Jian-Ren Fan, Joshua S. Fu, and Chang-Hong Chen
Atmos. Chem. Phys., 20, 5963–5976, https://doi.org/10.5194/acp-20-5963-2020, https://doi.org/10.5194/acp-20-5963-2020, 2020
Short summary
Short summary
The Weather Research Forecast with Chemistry (WRF-Chem) model was used to simulate spatial and temporal O3 evolution in the Yangtze River Delta (YRD) region. Various atmospheric processes were analyzed to determine the influential factors of ozone formation through the integrated process rate method. This paper provides insight into urban O3 formation and dispersion during tropical cyclone events and supports the Model Intercomparison Study Asia Phase III (MICS-Asia Phase III).
Hengmao Wang, Fei Jiang, Jun Wang, Weimin Ju, and Jing M. Chen
Atmos. Chem. Phys., 19, 12067–12082, https://doi.org/10.5194/acp-19-12067-2019, https://doi.org/10.5194/acp-19-12067-2019, 2019
Short summary
Short summary
The differences in inverted global and regional carbon fluxes from GOSAT and OCO-2 XCO2 from 1 January to 31 December 2015 are studied. We find significant differences for inverted terrestrial carbon fluxes on both global and regional scales. Overall, GOSAT XCO2 has a better performance than OCO-2, and GOSAT data can effectively improve carbon flux estimates in the Northern Hemisphere, while OCO-2 data, with the specific version used in this study, show only slight improvement.
Xufei Liu, Xiaopu Lyu, Yu Wang, Fei Jiang, and Hai Guo
Atmos. Chem. Phys., 19, 5127–5145, https://doi.org/10.5194/acp-19-5127-2019, https://doi.org/10.5194/acp-19-5127-2019, 2019
Anna Katinka Petersen, Guy P. Brasseur, Idir Bouarar, Johannes Flemming, Michael Gauss, Fei Jiang, Rostislav Kouznetsov, Richard Kranenburg, Bas Mijling, Vincent-Henri Peuch, Matthieu Pommier, Arjo Segers, Mikhail Sofiev, Renske Timmermans, Ronald van der A, Stacy Walters, Ying Xie, Jianming Xu, and Guangqiang Zhou
Geosci. Model Dev., 12, 1241–1266, https://doi.org/10.5194/gmd-12-1241-2019, https://doi.org/10.5194/gmd-12-1241-2019, 2019
Short summary
Short summary
An operational multi-model forecasting system for air quality is providing daily forecasts of ozone, nitrogen oxides, and particulate matter for 37 urban areas of China. The paper presents the evaluation of the different forecasts performed during the first year of operation.
Xiaopu Lyu, Nan Wang, Hai Guo, Likun Xue, Fei Jiang, Yangzong Zeren, Hairong Cheng, Zhe Cai, Lihui Han, and Ying Zhou
Atmos. Chem. Phys., 19, 3025–3042, https://doi.org/10.5194/acp-19-3025-2019, https://doi.org/10.5194/acp-19-3025-2019, 2019
Short summary
Short summary
Through analyses on the synoptic systems, pollution characteristics of O3 precursors, and modeling of local O3 formation and processes influencing O3 level, we found that this O3 pollution event was induced by a uniform pressure field over the Shandong Peninsula and also aggravated by a low-pressure trough in the last few days. This finding indicated that the NCP might be an O3 source region, which exported photochemical pollution to the adjoining regions or even to the neighboring countries.
Guy P. Brasseur, Ying Xie, Anna Katinka Petersen, Idir Bouarar, Johannes Flemming, Michael Gauss, Fei Jiang, Rostislav Kouznetsov, Richard Kranenburg, Bas Mijling, Vincent-Henri Peuch, Matthieu Pommier, Arjo Segers, Mikhail Sofiev, Renske Timmermans, Ronald van der A, Stacy Walters, Jianming Xu, and Guangqiang Zhou
Geosci. Model Dev., 12, 33–67, https://doi.org/10.5194/gmd-12-33-2019, https://doi.org/10.5194/gmd-12-33-2019, 2019
Short summary
Short summary
An operational multi-model forecasting system for air quality provides daily forecasts of ozone, nitrogen oxides, and particulate matter for 37 urban areas in China. The paper presents an intercomparison of the different forecasts performed during a specific period of time and highlights recurrent differences between the model output. Pathways to improve the forecasts by the multi-model system are suggested.
Derong Zhou, Ke Ding, Xin Huang, Lixia Liu, Qiang Liu, Zhengning Xu, Fei Jiang, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 18, 16345–16361, https://doi.org/10.5194/acp-18-16345-2018, https://doi.org/10.5194/acp-18-16345-2018, 2018
Short summary
Short summary
We investigate the vertical distribution, transport characteristics, source contribution and meteorological feedback of dust, biomass burning and fossil fuel combustion aerosols for a unique pollution episode that occurred in late March 2015 in eastern Asia, based on various measurement data and modeling methods. We found that cold front played an important role in the long-range transport of different pollutants and caused a three-layer vertical structure of pollutants over eastern China.
Wei He, Ivar R. van der Velde, Arlyn E. Andrews, Colm Sweeney, John Miller, Pieter Tans, Ingrid T. van der Laan-Luijkx, Thomas Nehrkorn, Marikate Mountain, Weimin Ju, Wouter Peters, and Huilin Chen
Geosci. Model Dev., 11, 3515–3536, https://doi.org/10.5194/gmd-11-3515-2018, https://doi.org/10.5194/gmd-11-3515-2018, 2018
Short summary
Short summary
We have implemented a regional, high-resolution, and computationally attractive carbon dioxide data assimilation system. This system, named CTDAS-Lagrange, is capable of simultaneously optimizing terrestrial biosphere fluxes and the lateral boundary conditions. The CTDAS-Lagrange system can be easily extended to assimilate an additional tracer, e.g., carbonyl sulfide (COS or OCS), for regional estimates of both net and gross carbon fluxes.
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Jingming Chen, Pierre Friedlingstein, Atul K. Jain, Ziqiang Jiang, Weimin Ju, Sebastian Lienert, Julia Nabel, Stephen Sitch, Nicolas Viovy, Hengmao Wang, and Andrew J. Wiltshire
Atmos. Chem. Phys., 18, 10333–10345, https://doi.org/10.5194/acp-18-10333-2018, https://doi.org/10.5194/acp-18-10333-2018, 2018
Short summary
Short summary
Based on the Mauna Loa CO2 records and TRENDY multi-model historical simulations, we investigate the different impacts of EP and CP El Niños on interannual carbon cycle variability. Composite analysis indicates that the evolutions of CO2 growth rate anomalies have three clear differences in terms of precursors (negative and neutral), amplitudes (strong and weak), and durations of peak (Dec–Apr and Oct–Jan) during EP and CP El Niños, respectively. We further discuss their terrestrial mechanisms.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Zhi-zhen Ni, Kun Luo, Yang Gao, Fei Jiang, Xiang Gao, Jian-ren Fan, and Chang-hong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-76, https://doi.org/10.5194/acp-2018-76, 2018
Revised manuscript not accepted
Short summary
Short summary
A unique mechanism was found to modulate the high ozone episodes in Hangzhou during G20 summit: Driven by tropical cyclone convergence, prevailing north winds brought in emission sources; with invasion of tropical cycle, subsidence air and stagnant weather was induced, as well as the urban heat island effect, intensifying the ozone enhancement. Different atmospheric processes were further analyzed to elucidate the control factors of ozone formation through integrated process rate method.
Hao Wang, Xiaopu Lyu, Hai Guo, Yu Wang, Shichun Zou, Zhenhao Ling, Xinming Wang, Fei Jiang, Yangzong Zeren, Wenzhuo Pan, Xiaobo Huang, and Jin Shen
Atmos. Chem. Phys., 18, 4277–4295, https://doi.org/10.5194/acp-18-4277-2018, https://doi.org/10.5194/acp-18-4277-2018, 2018
Short summary
Short summary
While oceanic air is generally thought to be clean, the air pollution over waters in proximity to the coasts is not well recognized. This research indicated that ozone was higher over South China Sea (SCS) than that in the adjacent continental area, while continental anticyclone, tropical cyclone and land breeze favored O3 formation over SCS. In addition, weaker NO titration and stronger atmospheric oxidative capacity led to higher O3 production efficiency over SCS.
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Hengmao Wang, and Ziqiang Jiang
Earth Syst. Dynam., 9, 1–14, https://doi.org/10.5194/esd-9-1-2018, https://doi.org/10.5194/esd-9-1-2018, 2018
Short summary
Short summary
Behaviors of terrestrial ecosystems differ in different El Niños. We analyze terrestrial carbon cycle responses to two extreme El Niños (2015/16 and 1997/98), and find large differences. We find that global land–atmosphere carbon flux anomaly was about 2 times smaller in 2015/16 than in 1997/98 event, without the obvious lagged response. Then we illustrate the climatic and biological mechanisms of the different terrestrial carbon cycle responses in 2015/16 and 1997/98 El Niños regionally.
Ingrid T. van der Laan-Luijkx, Ivar R. van der Velde, Emma van der Veen, Aki Tsuruta, Karolina Stanislawska, Arne Babenhauserheide, Hui Fang Zhang, Yu Liu, Wei He, Huilin Chen, Kenneth A. Masarie, Maarten C. Krol, and Wouter Peters
Geosci. Model Dev., 10, 2785–2800, https://doi.org/10.5194/gmd-10-2785-2017, https://doi.org/10.5194/gmd-10-2785-2017, 2017
Short summary
Short summary
The CarbonTracker Data Assimilation Shell (CTDAS) is the new modular implementation of the CarbonTracker Europe (CTE) data assimilation system. We present and document CTDAS and demonstrate its ability to estimate global carbon sources and sinks. We present the latest CTE results including the distribution of the carbon sinks over the hemispheres and between the land biosphere and the oceans. We show the versatility of CTDAS with an overview of the wide range of other applications.
K. Ding, J. Liu, A. Ding, Q. Liu, T. L. Zhao, J. Shi, Y. Han, H. Wang, and F. Jiang
Atmos. Chem. Phys., 15, 2843–2866, https://doi.org/10.5194/acp-15-2843-2015, https://doi.org/10.5194/acp-15-2843-2015, 2015
Short summary
Short summary
1. High CO abundances of 300-550 ppbv is shown in aircraft MOZAIC data between 700 and 300 hPa over East Asia in three episodes. Correspondingly, elevated CO is observed in satellite MOPITT data at similar altitudes.
2. GEOS-Chem and FLEXPART simulations reveal distinct uplifting processes for CO from fires and anthropogenic sources in the cases.
3. Topography in East Asia affects uplifting of CO in different ways.
4. The new version 5 MOPITT data can help diagnose vertical transport of CO.
H. Zheng, Y. Li, J. M. Chen, T. Wang, Q. Huang, W. X. Huang, L. H. Wang, S. M. Li, W. P. Yuan, X. Zheng, S. P. Zhang, Z. Q. Chen, and F. Jiang
Biogeosciences, 12, 1131–1150, https://doi.org/10.5194/bg-12-1131-2015, https://doi.org/10.5194/bg-12-1131-2015, 2015
Short summary
Short summary
Ecological models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) for an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state on 1 degree grid cells simultaneously.
F. Jiang, H. M. Wang, J. M. Chen, T. Machida, L. X. Zhou, W. M. Ju, H. Matsueda, and Y. Sawa
Atmos. Chem. Phys., 14, 10133–10144, https://doi.org/10.5194/acp-14-10133-2014, https://doi.org/10.5194/acp-14-10133-2014, 2014
Y. Liu, Y. Zhou, W. Ju, S. Wang, X. Wu, M. He, and G. Zhu
Biogeosciences, 11, 2583–2599, https://doi.org/10.5194/bg-11-2583-2014, https://doi.org/10.5194/bg-11-2583-2014, 2014
Y. Liu, Y. Zhou, W. Ju, J. Chen, S. Wang, H. He, H. Wang, D. Guan, F. Zhao, Y. Li, and Y. Hao
Hydrol. Earth Syst. Sci., 17, 4957–4980, https://doi.org/10.5194/hess-17-4957-2013, https://doi.org/10.5194/hess-17-4957-2013, 2013
F. Jiang, H. W. Wang, J. M. Chen, L. X. Zhou, W. M. Ju, A. J. Ding, L. X. Liu, and W. Peters
Biogeosciences, 10, 5311–5324, https://doi.org/10.5194/bg-10-5311-2013, https://doi.org/10.5194/bg-10-5311-2013, 2013
Related subject area
Atmospheric sciences
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-145, https://doi.org/10.5194/gmd-2024-145, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements in 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Cited articles
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013.
Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.: Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, 2015.
Barbu, A. L., Segers, A. J., Schaap, M., Heemink, A. W., and Builtjes, P. J. H.: A multi-component data assimilation experiment directed to sulphur dioxide and sulphate over Europe, Atmos. Environ., 43, 1622–1631, 2009.
Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013.
Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., van Gent, J., Eskes, H., Levelt, P. F., van der A, R., Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations, Geophys. Res. Lett., 47, e2020GL087978, https://doi.org/10.1029/2020gl087978, 2020.
Bierman, G. J.: Factorization methods for Discrete Sequential estimation, Academic Press, ISBN 9780120973507, 1977.
Binkowski, F. S. and Roselle, S. J.: Models-3 community multiscale air quality (CMAQ) model aerosol component – 1. Model description, J. Geophys. Res.-Atmos., 108, 4183, https://doi.org/10.1029/2001jd001409, 2003.
Bocquet, M.: Parameter-field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var, Q. J. Roy. Meteor. Soc., 138, 664–681, 2012.
Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013.
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015.
Brandhorst, N., Erdal, D., and Neuweiler, I.: Soil moisture prediction with the ensemble Kalman filter: Handling uncertainty of soil hydraulic parameters, Adv. Water Resour., 110, 360–370, 2017.
Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F., and Tans, P.: An improved Kalman Smoother for atmospheric inversions, Atmos. Chem. Phys., 5, 2691–2702, https://doi.org/10.5194/acp-5-2691-2005, 2005.
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S. P., Mathur, R., Roselle, S. J., and Weber, R. J.: CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements, Environ. Sci. Technol., 42, 8798–8802, 2008.
Chen, D., Liu, Z., Fast, J., and Ban, J.: Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014, Atmos. Chem. Phys., 16, 10707–10724, https://doi.org/10.5194/acp-16-10707-2016, 2016.
Chen, D., Liu, Z., Ban, J., and Chen, M.: The 2015 and 2016 wintertime air pollution in China: SO2 emission changes derived from a WRF-Chem/EnKF coupled data assimilation system , Atmos. Chem. Phys., 19, 8619–8650, https://doi.org/10.5194/acp-19-8619-2019, 2019.
Chevallier, F., Bréon, F.-M., and Rayner, P. J.: Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework, J. Geophys. Res.-Atmos., 112, D09307, https://doi.org/10.1029/2006JD007375, 2007.
Clements, A. L., Fraser, M. P., Upadhyay, N., Herckes, P., Sundblom, M., Lantz, J., and Solomon, P. A.: Chemical characterization of coarse particulate matter in the Desert Southwest – Pinal County Arizona, USA, Atmos. Pollut. Res., 5, 52–61, https://doi.org/10.5094/apr.2014.007, 2014.
Clements, N., Hannigan, M. P., Miller, S. L., Peel, J. L., and Milford, J. B.: Comparisons of urban and rural PM10-−2.5 and PM2.5 mass concentrations and semi-volatile fractions in northeastern Colorado, Atmos. Chem. Phys., 16, 7469–7484, https://doi.org/10.5194/acp-16-7469-2016, 2016.
Daley, R.: Atmospheric Data Assimilation (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice), J. Meteorol. Soc. Jpn. Ser. II, 75, 319–329, 1997.
de Foy, B., Lu, Z., Streets, D. G., Lamsal, L. N., and Duncan, B. N.: Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals, Atmos. Environ., 116, 1–11, https://doi.org/10.1016/j.atmosenv.2015.05.056, 2015.
De Lannoy, G. J. M., Houser, P. R., Pauwels, V. R. N., and Verhoest, N. E. C.: State and bias estimation for soil moisture profiles by an ensemble Kalman filter: Effect of assimilation depth and frequency, Water Resour. Res., 43, W06401, https://doi.org/10.1029/2006WR005100, 2007.
Derber, J. C.: A Variational Continuous Assimilation Technique, Mon. Weather Rev., 117, 2437–2446, 1989.
Ding, J., van der A, R. J., Mijling, B., Levelt, P. F., and Hao, N.: NOx emission estimates during the 2014 Youth Olympic Games in Nanjing, Atmos. Chem. Phys., 15, 9399–9412, https://doi.org/10.5194/acp-15-9399-2015, 2015.
Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749–3769, https://doi.org/10.5194/acp-7-3749-2007, 2007.
Evensen, G.: The Ensemble Kalman Filter for Combined State and Parameter Estimation Monte Carlo Techniques for Data Assimilation in Large Systems, IEEE Contr. Syst. Mag., 29, 83–104, https://doi.org/10.1109/mcs.2009.932223, 2009.
Feng, S. and Jiang, F.: The code of Regional multi-Air Pollutant Assimilation System (RAPAS v1.0) for emission estimates (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5566225, 2021a.
Feng, S. and Jiang, F.: Anthropogenic air pollutant emissions over China inferred by Regional multi-Air Pollutant Assimilation System (RAPAS v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4718290, 2021b.
Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., and Zhang, L.: Impact of 3DVAR assimilation of surface PM2.5 observations on PM2.5 forecasts over China during wintertime, Atmos. Environ., 187, 34–49, https://doi.org/10.1016/j.atmosenv.2018.05.049, 2018.
Feng, S., Jiang, F., Wu, Z., Wang, H., Ju, W., and Wang, H.: CO Emissions Inferred From Surface CO Observations Over China in December 2013 and 2017, J. Geophys. Res.-Atmos., 125, e2019JD031808, https://doi.org/10.1029/2019jd031808, 2020a.
Feng, S., Jiang, F., Wang, H., Wang, H., Ju, W., Shen, Y., Zheng, Y., Wu, Z., and Ding, A.: NOx Emission Changes Over China During the COVID-19 Epidemic Inferred From Surface NO2 Observations, Geophys. Res. Lett., 47, e2020GL090080, https://doi.org/10.1029/2020gl090080, 2020b.
Feng, S., Jiang, F., Wang, H., Shen, Y., Zheng, Y., Zhang, L., Lou, C., and Ju, W.: Anthropogenic emissions estimated using surface observations and their impacts on PM2.5 source apportionment over the Yangtze River Delta, China, Sci. Total Environ., 828, 154522, https://doi.org/10.1016/j.scitotenv.2022.154522, 2022.
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757, https://doi.org/10.1256/smsqj.55416, 1999.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Pak, B. C., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fung, I. Y., Heimann, M., John, J., Maki, T., Maksyutov, S., Peylin, P., Prather, M., and Taguchi, S.: Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks, Global Biogeochem. Cy., 18, GB1010, https://doi.org/10.1029/2003gb002111, 2004.
He, W., van der Velde, I. R., Andrews, A. E., Sweeney, C., Miller, J., Tans, P., van der Laan-Luijkx, I. T., Nehrkorn, T., Mountain, M., Ju, W., Peters, W., and Chen, H.: CTDAS-Lagrange v1.0: a high-resolution data assimilation system for regional carbon dioxide observations, Geosci. Model Dev., 11, 3515–3536, https://doi.org/10.5194/gmd-11-3515-2018, 2018.
Hinds, W. C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley, New York, ISBN 9780471087267, 1982.
Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data assimilation, Mon. Weather Rev., 129, 123–137, https://doi.org/10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2, 2001.
Houtekamer, P. L. and Zhang, F.: Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation, Mon. Weather Rev., 144, 4489–4532, https://doi.org/10.1175/mwr-d-15-0440.1, 2016.
Inness, A., Blechschmidt, A.-M., Bouarar, I., Chabrillat, S., Crepulja, M., Engelen, R. J., Eskes, H., Flemming, J., Gaudel, A., Hendrick, F., Huijnen, V., Jones, L., Kapsomenakis, J., Katragkou, E., Keppens, A., Langerock, B., de Mazière, M., Melas, D., Parrington, M., Peuch, V. H., Razinger, M., Richter, A., Schultz, M. G., Suttie, M., Thouret, V., Vrekoussis, M., Wagner, A., and Zerefos, C.: Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS, Atmos. Chem. Phys., 15, 5275–5303, https://doi.org/10.5194/acp-15-5275-2015, 2015.
Jiang, F., Liu, Q., Huang, X., Wang, T., Zhuang, B., and Xie, M.: Regional modeling of secondary organic aerosol over China using WRF/Chem, J. Aerosol Sci., 43, 57–73, https://doi.org/10.1016/j.jaerosci.2011.09.003, 2012a.
Jiang, F., Zhou, P., Liu, Q., Wang, T., Zhuang, B., and Wang, X.: Modeling tropospheric ozone formation over East China in springtime, J. Atmos. Chem., 69, 303–319, https://doi.org/10.1007/s10874-012-9244-3, 2012b.
Jiang, F., Wang, H. M., Chen, J. M., Machida, T., Zhou, L. X., Ju, W. M., Matsueda, H., and Sawa, Y.: Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements, Atmos. Chem. Phys., 14, 10133–10144, https://doi.org/10.5194/acp-14-10133-2014, 2014.
Jiang, F., Wang, H., Chen, J. M., Ju, W., Tian, X., Feng, S., Li, G., Chen, Z., Zhang, S., Lu, X., Liu, J., Wang, H., Wang, J., He, W., and Wu, M.: Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assimilation System, Atmos. Chem. Phys., 21, 1963–1985, https://doi.org/10.5194/acp-21-1963-2021, 2021.
Jiang, W., Smyth, S., Giroux, E., Roth, H., and Yin, D.: Differences between CMAQ fine mode particle and PM2.5 concentrations and their impact on model performance evaluation in the lower Fraser valley, Atmos. Environ., 40, 4973–4985, https://doi.org/10.1016/j.atmosenv.2005.10.069, 2006.
Jiang, Z., Jones, D. B. A., Worden, H. M., Deeter, M. N., Henze, D. K., Worden, J., Bowman, K. W., Brenninkmeijer, C. A. M., and Schuck, T. J.: Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals, J. Geophys. Res.-Atmos., 118, 2073–2083, 2013a.
Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C., and Jiang, F.: Probing into the impact of 3DVAR assimilation of surface PM10 observations over China using process analysis, J. Geophys. Res.-Atmos., 118, 6738–6749, https://doi.org/10.1002/jgrd.50495, 2013b.
Jiang, Z., Worden, J. R., Worden, H., Deeter, M., Jones, D. B. A., Arellano, A. F., and Henze, D. K.: A 15-year record of CO emissions constrained by MOPITT CO observations, Atmos. Chem. Phys., 17, 4565–4583, https://doi.org/10.5194/acp-17-4565-2017, 2017.
Jin, J., Lin, H. X., Heemink, A., and Segers, A.: Spatially varying parameter estimation for dust emissions using reduced-tangent-linearization 4DVar, Atmos. Environ., 187, 358–373, https://doi.org/10.1016/j.atmosenv.2018.05.060, 2018.
Kahnert, M.: Variational data analysis of aerosol species in a regional CTM: background error covariance constraint and aerosol optical observation operators, Tellus B, 60, 753–770, https://doi.org/10.1111/j.1600-0889.2008.00377.x, 2008.
Kang, J.-S., Kalnay, E., Miyoshi, T., Liu, J., and Fung, I.: Estimation of surface carbon fluxes with an advanced data assimilation methodology, J. Geophys. Res.-Atmos., 117, D24101, https://doi.org/10.1029/2012JD018259, 2012.
Keppenne, C. L., Rienecker, M. M., Kurkowski, N. P., and Adamec, D. A.: Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction, Nonlin. Processes Geophys., 12, 491–503, https://doi.org/10.5194/npg-12-491-2005, 2005.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S., and Lord, S.: Introduction of the GSI into the NCEP Global Data Assimilation System, Weather Forecast., 24, 1691–1705, https://doi.org/10.1175/2009waf2222201.1, 2009.
Kong, L., Tang, X., Zhu, J., Wang, Z., Pan, Y., Wu, H., Wu, L., Wu, Q., He, Y., Tian, S., Xie, Y., Liu, Z., Sui, W., Han, L., and Carmichael, G.: Improved Inversion of Monthly Ammonia Emissions in China Based on the Chinese Ammonia Monitoring Network and Ensemble Kalman Filter, Environ. Sci. Technol., 53, 12529–12538, https://doi.org/10.1021/acs.est.9b02701, 2019.
Kong, L., Tang, X., Zhu, J., Wang, Z., Fu, J. S., Wang, X., Itahashi, S., Yamaji, K., Nagashima, T., Lee, H.-J., Kim, C.-H., Lin, C.-Y., Chen, L., Zhang, M., Tao, Z., Li, J., Kajino, M., Liao, H., Wang, Z., Sudo, K., Wang, Y., Pan, Y., Tang, G., Li, M., Wu, Q., Ge, B., and Carmichael, G. R.: Evaluation and uncertainty investigation of the NO2, CO and NH3 modeling over China under the framework of MICS-Asia III, Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, 2020.
Laloyaux, P., Bonavita, M., Chrust, M., and Gürol, S.: Exploring the potential and limitations of weak-constraint 4D-Var, Q. J. Roy. Meteor. Soc., 146, 4067–4082, 2020
Li, J.-D., Deng, Q.-H., Lu, C., and Huang, B.-L.: Chemical compositions and source apportionment of atmospheric PM10 in suburban area of Changsha, China, J. Cent. South Univ. T., 17, 509–515, 2010.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Liu, C. and Shi, K.: A review on methodology in O3-NOx-VOC sensitivity study, Environ. Pollut., 291, 118249, https://doi.org/10.1016/j.envpol.2021.118249, 2021.
Liu, Y., Kalnay, E., Zeng, N., Asrar, G., Chen, Z., and Jia, B.: Estimating surface carbon fluxes based on a local ensemble transform Kalman filter with a short assimilation window and a long observation window: an observing system simulation experiment test in GEOS-Chem 10.1, Geosci. Model Dev., 12, 2899–2914, https://doi.org/10.5194/gmd-12-2899-2019, 2019.
Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T.: Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia, J. Geophys. Res.-Atmos., 116, D23206, https://doi.org/10.1029/2011jd016159, 2011.
Lorenc, A. C.: Modelling of error covariances by 4D-Var data assimilation, Q. J. Roy. Meteor. Soc., 129, 3167–3182, 2003.
Hamer, P. D., Bowman, K. W., Henze, D. K., Attié, J.-L., and Marécal, V.: The impact of observing characteristics on the ability to predict ozone under varying polluted photochemical regimes, Atmos. Chem. Phys., 15, 10645–10667, https://doi.org/10.5194/acp-15-10645-2015, 2015.
Ma, C., Wang, T., Mizzi, A. P., Anderson, J. L., Zhuang, B., Xie, M., and Wu, R.: Multiconstituent Data Assimilation With WRF-Chem/DART: Potential for Adjusting Anthropogenic Emissions and Improving Air Quality Forecasts Over Eastern China, J. Geophys. Res.-Atmos., 124, 7393–7412, https://doi.org/10.1029/2019jd030421, 2019.
Maybeck, P. S.: Stochastic Models, Estimation and Control Academic Press, ISBN 9780124807013, 1979.
Meirink, J. F., Eskes, H. J., and Goede, A. P. H.: Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling, Atmos. Chem. Phys., 6, 1275–1292, https://doi.org/10.5194/acp-6-1275-2006, 2006.
Meirink, J. F., Bergamaschi, P., and Krol, M. C.: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion, Atmos. Chem. Phys., 8, 6341–6353, https://doi.org/10.5194/acp-8-6341-2008, 2008.
Miyazaki, K. and Eskes, H.: Constraints on surface NOx emissions by assimilating satellite observations of multiple species, Geophys. Res. Lett., 40, 4745–4750, https://doi.org/10.1002/grl.50894, 2013.
Miyazaki, K., Eskes, H. J., and Sudo, K.: Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns, Atmos. Chem. Phys., 12, 2263–2288, https://doi.org/10.5194/acp-12-2263-2012, 2012a.
Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. F.: Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions, Atmos. Chem. Phys., 12, 9545–9579, https://doi.org/10.5194/acp-12-9545-2012, 2012b.
Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation, Atmos. Chem. Phys., 17, 807–837, https://doi.org/10.5194/acp-17-807-2017, 2017.
Mizzi, A. P., Edwards, D. P., and Anderson, J. L.: Assimilating compact phase space retrievals (CPSRs): comparison with independent observations (MOZAIC in situ and IASI retrievals) and extension to assimilation of truncated retrieval profiles, Geosci. Model Dev., 11, 3727–3745, https://doi.org/10.5194/gmd-11-3727-2018, 2018.
Monteil, G., Houweling, S., Butz, A., Guerlet, S., Schepers, D., Hasekamp, O., Frankenberg, C., Scheepmaker, R., Aben, I., and Rockmann, T.: Comparison of CH4 inversions based on 15 months of GOSAT and SCIAMACHY observations, J. Geophys. Res.-Atmos., 118, 11807–11823, 2013.
Müller, J.-F. and Stavrakou, T.: Inversion of CO and NOx emissions using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5, 1157–1186, https://doi.org/10.5194/acp-5-1157-2005, 2005.
Mueller, S. F. and Mallard, J. W.: Contributions of Natural Emissions to Ozone and PM2.5 as Simulated by the Community Multiscale Air Quality (CMAQ) Model, Environ. Sci. Technol., 45, 4817–4823, https://doi.org/10.1021/es103645m, 2011.
Nassar, R., Jones, D. B. A., Kulawik, S. S., Worden, J. R., Bowman, K. W., Andres, R. J., Suntharalingam, P., Chen, J. M., Brenninkmeijer, C. A. M., Schuck, T. J., Conway, T. J., and Worthy, D. E.: Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements, Atmos. Chem. Phys., 11, 6029–6047, https://doi.org/10.5194/acp-11-6029-2011, 2011.
Navon, I. M.: Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynam. Atmos. Oceans, 27, 55–79, 1998.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's spectral statistical- interpolation analysis system, Mon. Weather Rev., 120, 1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:tnmcss>2.0.co;2, 1992.
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.: Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3), J. Geophys. Res.-Atmos., 119, 4343–4364, 2014.
Peng, Z., Liu, Z., Chen, D., and Ban, J.: Improving PM2.5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter, Atmos. Chem. Phys., 17, 4837–4855, https://doi.org/10.5194/acp-17-4837-2017, 2017.
Peng, Z., Lei, L., Liu, Z., Sun, J., Ding, A., Ban, J., Chen, D., Kou, X., and Chu, K.: The impact of multi-species surface chemical observation assimilation on air quality forecasts in China, Atmos. Chem. Phys., 18, 17387–17404, https://doi.org/10.5194/acp-18-17387-2018, 2018.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Petron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007.
Peylin, P., Rayner, P. J., Bousquet, P., Carouge, C., Hourdin, F., Heinrich, P., Ciais, P., and AEROCARB contributors: Daily CO2 flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology, Atmos. Chem. Phys., 5, 3173–3186, https://doi.org/10.5194/acp-5-3173-2005, 2005.
Purser, R. J., Wu, W. S., Parrish, D. F., and Roberts, N. M.: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances, Mon. Weather Rev., 131, 1524–1535, https://doi.org/10.1175//1520-0493(2003)131<1524:naotao>2.0.co;2, 2003.
Quan, J., Liu, Q., Li, X., Gao, Y., Jia, X., Sheng, J., and Liu, Y.: Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events, Atmos. Environ., 122, 306–312, 2015.
Rabier, F., McNally, A., Andersson, E., Courtier, P., Unden, P., Eyre, J., Hollingsworth, A., and Bouttier, F.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions, Q. J. Roy. Meteor. Soc., 124, 1809–1829, https://doi.org/10.1256/smsqj.55002, 1998.
Richardson, H., Basu, S., and Holtslag, A. A. M.: Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number, Bound.-Lay. Meteorol., 148, 93–109, 2013.
Sarwar, G., Simon, H., Bhave, P., and Yarwood, G.: Examining the impact of heterogeneous nitryl chloride production on air quality across the United States, Atmos. Chem. Phys., 12, 6455–6473, https://doi.org/10.5194/acp-12-6455-2012, 2012.
Sasaki, Y.: Some Basic Formalisms in Numerical Variational Analysis, Mon. Weather Rev., 98, 875–883, https://doi.org/10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2, 1970.
Schneising, O., Buchwitz, M., Burrows, J. P., Bovensmann, H., Bergamaschi, P., and Peters, W.: Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 2: Methane, Atmos. Chem. Phys., 9, 443–465, https://doi.org/10.5194/acp-9-443-2009, 2009.
Schwartz, C. S., Liu, Z., Lin, H.-C., and Cetola, J. D.: Assimilating aerosol observations with a “hybrid” variational-ensemble data assimilation system, J. Geophys. Res.-Atmos., 119, 4043–4069, https://doi.org/10.1002/2013jd020937, 2014.
Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., and Miyoshi, T.: Data assimilation of CALIPSO aerosol observations, Atmos. Chem. Phys., 10, 39–49, https://doi.org/10.5194/acp-10-39-2010, 2010.
Sharma, S., Chatani, S., Mahtta, R., Goel, A., and Kumar, A.: Sensitivity analysis of ground level ozone in India using WRF-CMAQ models, Atmos. Environ., 131, 29–40, https://doi.org/10.1016/j.atmosenv.2016.01.036, 2016.
Shen, Y., Jiang, F., Feng, S., Zheng, Y., Cai, Z., and Lyu, X.: Impact of weather and emission changes on NO2 concentrations in China during 2014–2019, Environ. Pollut., 269, 116163, https://doi.org/10.1016/j.envpol.2020.116163, 2021.
Shi, X. and Brasseur, G. P.: The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVID-19 Outbreak, Geophys. Res. Lett., 47, e2020GL088070, https://doi.org/10.1029/2020gl088070, 2020.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Stanevich, I., Jones, D. B. A., Strong, K., Keller, M., Henze, D. K., Parker, R. J., Boesch, H., Wunch, D., Notholt, J., Petri, C., Warneke, T., Sussmann, R., Schneider, M., Hase, F., Kivi, R., Deutscher, N. M., Velazco, V. A., Walker, K. A., and Deng, F.: Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH4 data with weak-constraint four-dimensional variational data assimilation, Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021, 2021.
Stavrakou, T., Müller, J.-F., Boersma, K. F., De Smedt, I., and van der A, R. J.: Assessing the distribution and growth rates of NOx emission sources by inverting a 10-year record of NO2 satellite columns, Geophys. Res. Lett., 35, L10801, https://doi.org/10.1029/2008gl033521, 2008.
Sun, A. Y., Morris, A., and Mohanty, S.: Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data, Adv. Water Resour., 32, 280–292, https://doi.org/10.1016/j.advwatres.2008.11.006, 2009.
Takagi, H., Saeki, T., Oda, T., Saito, M., Valsala, V., Belikov, D., Saito, R., Yoshida, Y., Morino, I., Uchino, O., Andres, R. J., Yokota, T., and Maksyutov, S.: On the Benefit of GOSAT Observations to the Estimation of Regional CO2 Fluxes, SOLA, 7, 161–164, https://doi.org/10.2151/sola.2011-041, 2011.
Tang, X., Zhu, J., Wang, Z. F., and Gbaguidi, A.: Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions, Atmos. Chem. Phys., 11, 12901–12916, https://doi.org/10.5194/acp-11-12901-2011, 2011.
Tang, X., Zhu, J., Wang, Z. F., Wang, M., Gbaguidi, A., Li, J., Shao, M., Tang, G. Q., and Ji, D. S.: Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter, Atmos. Environ., 81, 676–686, https://doi.org/10.1016/j.atmosenv.2013.08.051, 2013.
US EPA: CMAQ: The Community Multiscale Air Quality Modeling System, US EPA [code], https://www.epa.gov/cmaq, last access: 25 April 2021.
Wang, C., Lei, L., Tan, Z.-M., and Chu, K.: Adaptive Localization for Tropical Cyclones With Satellite Radiances in an Ensemble Kalman Filter, Front. Earth Sci., 8, 39, https://doi.org/10.3389/feart.2020.00039, 2020.
Wang, H., Jiang, F., Wang, J., Ju, W., and Chen, J. M.: Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals, Atmos. Chem. Phys., 19, 12067–12082, https://doi.org/10.5194/acp-19-12067-2019, 2019.
Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., and Ding, A.: Aggravating O3 pollution due to NOx emission control in eastern China, Sci. Total Environ., 677, 732–744, 2019.
Wang, Y. H., Hu, B., Ji, D. S., Liu, Z. R., Tang, G. Q., Xin, J. Y., Zhang, H. X., Song, T., Wang, L. L., Gao, W. K., Wang, X. K., and Wang, Y. S.: Ozone weekend effects in the Beijing–Tianjin–Hebei metropolitan area, China, Atmos. Chem. Phys., 14, 2419–2429, https://doi.org/10.5194/acp-14-2419-2014, 2014.
Wang, Z., Li, Y., Dong, X., Sun, R., Sun, N., and Pan, L.: Analysis on weekend effect of air pollutants in urban atmosphere of Beijing, Journal of University of Chinese Academy of Sciences, 32, 843–850, 2015.
Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., and Wang, T.: Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain, Atmos. Chem. Phys., 17, 12361–12378, https://doi.org/10.5194/acp-17-12361-2017, 2017.
Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy, S. C., Parker, R., Bösch, H., and Worden, J.: Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations, Atmos. Chem. Phys., 14, 8173–8184, https://doi.org/10.5194/acp-14-8173-2014, 2014.
WRF Users Page: WRF Model Users' Page, WRF Users Page [code], https://www2.mmm.ucar.edu/wrf/users, 2021.
Wu, H., Tang, X., Wang, Z., Wu, L., Li, J., Wang, W., Yang, W., and Zhu, J.: High-spatiotemporal-resolution inverse estimation of CO and NOx emission reductions during emission control periods with a modified ensemble Kalman filter, Atmos. Environ., 236, 117631, https://doi.org/10.1016/j.atmosenv.2020.117631, 2020.
Wu, W. S., Purser, R. J., and Parrish, D. F.: Three-dimensional variational analysis with spatially inhomogeneous covariances, Mon. Weather Rev., 130, 2905–2916, https://doi.org/10.1175/1520-0493(2002)130<2905:tdvaws>2.0.co;2, 2002.
Yang, W., Li, J., Wang, W., Li, J., Ge, M., Sun, Y., Chen, X., Ge, B., Tong, S., Wang, Q., and Wang, Z.: Investigating secondary organic aerosol formation pathways in China during 2014, Atmos. Environ., 213, 133–147, 2019.
Yumimoto, K., Uno, I., Sugimoto, N., Shimizu, A., Liu, Z., and Winker, D. M.: Adjoint inversion modeling of Asian dust emission using lidar observations, Atmos. Chem. Phys., 8, 2869–2884, https://doi.org/10.5194/acp-8-2869-2008, 2008.
Zhang, F., Weng, Y., Sippel, J. A., Meng, Z., and Bishop, C. H.: Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter, Mon. Weather Rev., 137, 2105–2125, https://doi.org/10.1175/2009mwr2645.1, 2009.
Zhang, L., Chen, Y., Zhao, Y., Henze, D. K., Zhu, L., Song, Y., Paulot, F., Liu, X., Pan, Y., Lin, Y., and Huang, B.: Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmos. Chem. Phys., 18, 339–355, https://doi.org/10.5194/acp-18-339-2018, 2018.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhang, S., Zheng, X., Chen, J. M., Chen, Z., Dan, B., Yi, X., Wang, L., and Wu, G.: A global carbon assimilation system using a modified ensemble Kalman filter, Geosci. Model Dev., 8, 805–816, https://doi.org/10.5194/gmd-8-805-2015, 2015.
Zhang, X., Liu, J., Han, H., Zhang, Y., Jiang, Z., Wang, H., Meng, L., Li, Y. C., and Liu, Y.: Satellite-Observed Variations and Trends in Carbon Monoxide over Asia and Their Sensitivities to Biomass Burning, Remote Sensing, 12, 830, https://doi.org/10.3390/rs12050830, 2020.
Zheng, B., Zhang, Q., Tong, D., Chen, C., Hong, C., Li, M., Geng, G., Lei, Y., Huo, H., and He, K.: Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China, Atmos. Chem. Phys., 17, 921–933, https://doi.org/10.5194/acp-17-921-2017, 2017.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Short summary
We document the system development and application of a Regional multi-Air Pollutant Assimilation System (RAPAS v1.0). This system is developed to optimize gridded source emissions of CO, SO2, NOx, primary PM2.5, and coarse PM10 on a regional scale via simultaneously assimilating surface measurements of CO, SO2, NO2, PM2.5, and PM10. A series of sensitivity experiments demonstrates the advantage of the “two-step” inversion strategy and the robustness of the system in estimating the emissions.
We document the system development and application of a Regional multi-Air Pollutant...