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Abstract. Top-down atmospheric inversion infers surface–
atmosphere fluxes from spatially distributed observations
of atmospheric composition in order to quantify anthro-
pogenic and natural emissions. In this study, we developed
a Regional multi-Air Pollutant Assimilation System (RA-
PAS v1.0) based on the Weather Research and Forecasting–
Community Multiscale Air Quality (WRF–CMAQ) model-
ing system model, the three-dimensional variational (3D-
Var) algorithm, and the ensemble square root filter (EnSRF)
algorithm. This system can simultaneously assimilate hourly
in situ CO, SO2, NO2, PM2.5, and PM10 observations to
infer gridded emissions of CO, SO2, NOx , primary PM2.5
(PPM2.5), and coarse PM10 (PMC) on a regional scale. In
each data assimilation window, we use a “two-step” scheme,
in which the emissions are inferred first and then input into
the CMAQ model to simulate initial conditions (ICs) of the
next window. The posterior emissions are then transferred to
the next window as prior emissions, and the original emis-
sion inventory is only used in the first window. Additionally,
a “super-observation” approach is implemented to decrease
the computational costs, observation error correlations, and
influence of representative errors. Using this system, we esti-
mated the emissions of CO, SO2, NOx , PPM2.5, and PMC
in December and July 2016 over China using nationwide
surface observations. The results show that compared to the
prior emissions (2016 Multi-resolution Emission Inventory

for China – MEIC 2016)), the posterior emissions of CO,
SO2, NOx , PPM2.5, and PMC in December 2016 increased
by 129 %, 20 %, 5 %, 95 %, and 1045 %, respectively, and
the emission uncertainties decreased by 44 %, 45 %, 34 %,
52 %, and 56 %, respectively. With the inverted emissions,
the RMSE of simulated concentrations decreased by 40 %–
56 %. Sensitivity tests were conducted with different prior
emissions, prior uncertainties, and observation errors. The
results showed that the two-step scheme employed in RA-
PAS is robust in estimating emissions using nationwide sur-
face observations over China. This study offers a useful tool
for accurately quantifying multi-species anthropogenic emis-
sions at large scales and in near-real time.

1 Introduction

Owing to rapid economic development and pollution con-
trol legislation, there is an increasing demand for providing
updated emission estimates, especially in areas where an-
thropogenic emissions are intensive. Accurately estimating
source emission quantities and spatiotemporal changes re-
sulting from various regulations is imperative and valuable
for understanding air quality responses and is crucial for pro-
viding timely instructions for the design of future emission
regulations. However, most inventories have been developed
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based on a bottom-up approach and are usually updated with
a delay of a few years owing to the complexity of gathering
statistical information on activity levels and sector-specific
emission factors (Ding et al., 2015). The large uncertainty
associated with the low temporal and spatial resolutions of
these datasets also greatly limits the assessment of emis-
sion changes. Some studies (Bauwens et al., 2020; Shi and
Brasseur, 2020) have evaluated emission changes indirectly
through concentration measurements; however, air pollution
changes are not only dominated by emission changes, but
also highly affected by meteorological conditions (Shen et
al., 2021).

Top-down atmospheric inversion infers surface–
atmosphere fluxes from spatially distributed observations of
atmospheric compositions. Recent efforts have been focused
on developing air pollution data assimilation (DA) systems
to conduct top-down inversions, which can integrate model
and multi-source observational information to constrain
emission sources. Two major methods are widely used
in those DA systems: four-dimensional variational data
assimilation (4D-Var) and ensemble Kalman filter (EnKF).
4D-Var provides a global optimal analysis by minimizing
a cost function. It shows an implicit flow-dependent back-
ground error covariance and can reflect complex nonlinear
constraint relationships (Lorenc, 2003). Additionally, a weak
constraint 4D-Var method can partly account for the model
error by defining a systematic error term in a cost function
(Derber, 1989). For example, the GEOS-Chem and TM5
4D-Var frameworks have been used to estimate CH4 (Alexe
et al., 2015; Monteil et al., 2013; Schneising et al., 2009;
Stanevich et al., 2021; Wecht et al., 2014) and CO2 fluxes
(Basu et al., 2013; Nassar et al., 2011; H. Wang et al., 2019)
from different satellite retrieval products. Additionally,
Jiang et al. (2017) and Stavrakou et al. (2008) also used the
4D-Var algorithm to estimate global CO and NOx emission
trends using MOPITT and GOME/SCIAMACHY retrievals,
respectively. Using NIES lidar observations, Yumimoto et
al. (2008) applied the 4D-Var DA to infer dust emissions
over eastern Asia, and the results agreed well with various
satellite data and surface observations. Based on surface
observations, Meirink et al. (2008) developed a 4D-Var sys-
tem to optimize monthly methane emissions, which showed
a high degree of consistency in posterior emissions and
uncertainties when compared with an analogous inversion
based on the traditional synthesis approach.

Although considerable progress has been made to reduce
large uncertainties in emission inventories, the drawback of
the 4D-Var method is the additional development of ad-
joint models, which are technically difficult and cumbersome
for complex chemical transport models (Bocquet and Sakov,
2013). Instead, EnKF uses flow-dependent background error
covariance generated by ensemble simulations to map devia-
tions in concentrations to increments of emissions, which is
more flexible and easier to implement. Many previous stud-
ies have used EnKF techniques to assimilate single- or dual-

species observations to optimize the corresponding emission
species (Chen et al., 2019; Peng et al., 2017; Schwartz et
al., 2014; Sekiyama et al., 2010). Miyazaki et al. (2017)
improved NOx emission estimates using multi-constituent
satellite observations and further estimated global surface
NOx emissions from 2005 to 2014. Feng et al. (2020b)
used surface observations of NO2 to infer the NOx emis-
sion changes in China during the COVID-19 epidemic and
to quantitatively evaluate the impact of the epidemic on eco-
nomic activities from the perspective of emission change.
Tang et al. (2011) adjusted the emissions of NOx and volatile
organic compounds (VOCs) through assimilating surface O3
observations and achieved a better performance in O3 fore-
casts. However, such a revision may encounter the prob-
lem of model error compensation rather than a retrieval of
physically meaningful quantities, which should be avoided
from overfitting for emission inversion purposes (Bocquet,
2012; Navon, 1998; Tang et al., 2011). The EnKF has also
been widely applied to optimize emissions of carbon dioxide
(Jiang et al., 2021; Liu et al., 2019), carbon monoxide (Feng
et al., 2020a; Mizzi et al., 2018), sulfur dioxide (Chen et al.,
2019), ammonia (Kong et al., 2019), etc.

Multi-species data assimilation can efficiently reduce the
uncertainty in emission inventories and has led to improve-
ments in air quality forecasting (Ma et al., 2019; Miyazaki
et al., 2012b) as it offers additional constraints on emis-
sion estimates through improvements in related atmospheric
fields, chemical reactions, and gas–particle transformations
(Miyazaki and Eskes, 2013). Barbu et al. (2009) updated sul-
fur oxide (SOx) emissions with SO2 and sulfate aerosol ob-
servations and found that the simultaneous assimilation of
both species performed better than assimilating them sepa-
rately. Müller and Stavrakou (2005) also found that the si-
multaneous optimization of the sources of CO and NOx led
to better agreement between simulations and observations
compared to the case where only CO observations are used.

The deviation in the chemical initial conditions (ICs) is an
important source of error that affects the accuracy of emis-
sion inversion because atmospheric inversion fully attributes
the biases in simulated and observed concentrations to de-
viations in emissions (Meirink et al., 2006; Peylin et al.,
2005). The biases of concentrations would be compensated
for through the unreasonable adjustment of pollution emis-
sions without the optimization of ICs (Tang et al., 2013).
Simultaneously optimizing chemical ICs and emissions has
been applied in many previous studies to constrain emis-
sions (Ma et al., 2019; Miyazaki et al., 2012a; Peng et al.,
2018). For example, Elbern et al. (2007) jointly adjusted O3,
NOx , and VOC ICs as well as NOx and VOCs emissions
through assimilating surface O3 and NOx observations. Al-
though the forecast skills of O3 were improved, due to the
coarse model resolution and the strong nonlinear relationship
between O3 and NOx , the assimilation of O3 observations
worsened the emission inversion and forecast of NOx . Peng
et al. (2018) assimilated near-surface observations to simul-
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taneously optimize the ICs and emissions. In the 72 h fore-
cast evaluation, their resultant emission succeeded in improv-
ing the SO2 forecast while having little influence on CO and
aerosol forecasts and even degrading the forecast of NO2.
Ma et al. (2019) also found that the DA benefits for fore-
cast almost disappeared after 72 h using optimized ICs and
emissions. Although a large improvement has been achieved,
this method has significant limitations with respect to emis-
sion inversion as the contributions from the emissions and
chemical ICs to the model’s biases are difficult to distinguish
(Jiang et al., 2017). In addition, the constraints of the chemi-
cal ICs with observations in each assimilation window make
the emission inversions between the windows independent.
This means that if the emission in one window is overesti-
mated or underestimated, it cannot be transferred to the next
window for further correction and compensation. Consider-
ing the importance of emissions in chemical field prediction
(Bocquet et al., 2015), the rapid disappearance of the DA
benefits seems unrealistic, indicating that simultaneously op-
timizing chemical ICs and emissions may result in a system-
atic bias in the inverted emissions (Jiang et al., 2021).

Since 2013, China has deployed an air pollution monitor-
ing network that publishes nationwide and real-time hourly
surface observations. This dataset provides an opportunity to
improve emission estimates using DA. In this study, a re-
gional multi-air pollutant assimilation system using 3D-Var
and EnKF DA techniques was constructed to simultaneously
assimilate various surface observations (e.g., CO, SO2, NO2,
O3, PM2.5, and PM10). We adopted a two-step method in this
system, in which the ICs of each DA window were simu-
lated using the posterior emissions of the previous DA win-
dow. The capabilities of RAPAS for reanalysis field genera-
tion and emission inversion estimation were also evaluated.
The robustness of the system was investigated with different
prior inventories, uncertainty settings of prior emissions, and
observation errors. The remainder of the paper is organized
as follows: Sect. 2 introduces the DA system and observa-
tion data, Sect. 3 describes the experimental design, Sect. 4
presents and discusses the results of the system performance
and sensitivity tests, and Sect. 5 concludes the paper.

2 Method and data

2.1 System description

2.1.1 Procedure of the assimilation system

A regional air pollutant assimilation system has been pre-
liminarily constructed and successfully applied in our pre-
vious studies to optimize the gridded CO and NOx emis-
sions (Feng et al., 2020a, b). Herein, the system was fur-
ther extended to simultaneously assimilate multiple species
(e.g., CO, SO2, NO2, O3, PM2.5, and PM10) and was of-
ficially named the Regional multi-Air Pollutant Assimila-

tion System (RAPAS v1.0). RAPAS has three components:
a regional chemical transport model (CTM), which is cou-
pled offline and used to simulate the meteorological fields
and atmospheric compositions, and the 3D-Var and ensem-
ble square root filter (EnSRF) modules, which are used to
optimize chemical ICs (Feng et al., 2018; Jiang et al., 2013b)
and anthropogenic emissions (Feng et al., 2020a, b), respec-
tively. 3D-Var was introduced considering its excellent per-
formance in our previous study and the lower computational
cost during the spin-up period in optimizing ICs. Addition-
ally, the 3D-Var method can obtain a better IC than the EnKF
method (Schwartz et al., 2014).

Based on the above three components, RAPAS was di-
vided into two subsystems: the IC assimilation (IA) sub-
system (CTM plus 3D-Var) and the emission inversion (EI)
subsystem (CTM plus EnSRF). As shown in Fig. 1, the
IA subsystem was first run to optimize the chemical ICs
(Kleist et al., 2009; Wu et al., 2002) for the subsequent EI
subsystem. Distinguishing the source type of the model–
observation mismatch error was not required for the IA sub-
system. The EI subsystem runs cyclically with a two-step
scheme. In the first step, the prior emissions (Xb) are per-
turbed and input into the CTM model to simulate chemi-
cal concentration ensembles. The simulated concentrations
of the lowest model level were then interpolated to the obser-
vation space according to the locations and times of the ob-
servations using the nearest-neighbor interpolation method.
Prior emissions (Xb), simulated observations, and real ob-
servations were entered into the EnSRF module to gener-
ate optimized emissions (Xa). In the second step, the op-
timized emissions were re-entered into the CTM model to
generate the ICs of the next DA window. Meanwhile, the
optimized emissions were transferred to the next window as
prior emissions. Unlike the joint adjustment of ICs and emis-
sions (“one-step” scheme) in emission inversion (Chen et al.,
2019), the two-step scheme needs to run the CTM model
twice, which is time-consuming, but can transfer the poten-
tial errors of the inverted emissions in one DA window to the
next for further correction.

2.1.2 Atmospheric transport model

The regional chemical transport model of the Weather Re-
search and Forecasting–Community Multiscale Air Quality
(WRF–CMAQ) modeling system was adopted in this study
(Skamarock and Klemp, 2008; Byun and Schere, 2006).
CMAQ is a regional 3D Eulerian atmospheric chemistry and
transport model with a “one-atmosphere” design developed
by the US Environmental Protection Agency (EPA). It can
simultaneously address the complex interactions among mul-
tiple pollutants as well as air quality issues. The CMAQ
model was driven by the WRF model, which is a state-of-the-
art mesoscale numerical weather prediction system designed
for both atmospheric research and meteorological field fore-
casting. In this study, WRF version 4.0 and CMAQ version
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Figure 1. Composition and flowchart of RAPAS. Xa and Xb rep-
resent the prior and posterior emissions. The 3D-Var assimilation
stage lasts 5 d with a data input frequency of 6 h, and the DA win-
dow in the EI subsystem is set to 1 d.

5.0.2 were used. The WRF simulations were performed with
a 36 km horizontal resolution on 169× 129 grids, covering
all of mainland China (Fig. 2). This spatial resolution has
been widely adopted in regional simulations as it can provide
good simulations of spatiotemporal variations in air pollu-
tants (Mueller and Mallard, 2011; Sharma et al. 2016). In the
vertical direction, there were 51 sigma levels on the sigma–
pressure coordinates extending from the surface to 100 hPa.
The underlying surface of the urban and built-up land was re-
placed by the MODIS land cover retrieval of 2016 to adapt to
the rapid expansion of urbanization. The CMAQ model was
run with the same domain but with three grid cells removed
from each side of the WRF domain. There were 15 layers
in the CMAQ vertical coordinates, which were interpolated
from 51 WRF layers.

The meteorological initial and lateral boundary conditions
were both provided by the final operational global analy-
sis data of the National Centers for Environmental Predic-
tion (NCEP) with a 1◦× 1◦ resolution at 6 h intervals. The
chemical lateral boundary conditions and chemical ICs in
the IA subsystem originate from background profiles. As
mentioned above, in the EI subsystem, the chemical IC in
the first window is provided by the IA subsystem, and in
the following windows, it is forward simulated using opti-
mized emissions from the previous window. Carbon Bond
05 with updated toluene chemistry (CB05tucl) and the sixth-
generation aerosol module (AERO6) were chosen as the gas-
phase and aerosol chemical mechanisms, respectively (Appel
et al., 2013; Sarwar et al., 2012). The detailed physical and
chemical configurations are listed in Table 1.

2.1.3 3D-Var assimilation algorithm

The Gridpoint Statistical Interpolation (GSI) system devel-
oped by the US NCEP was utilized in this study. Building on
the work of Liu et al. (2011), Jiang et al. (2013b), and Feng et
al. (2018), we extended the GSI to simultaneously assimilate
multiple species (including CO, SO2, NO2, O3, PM2.5, and
PM10) and first used individual aerosol species of PM2.5 as
analysis variables within the GSI–WRF–CMAQ framework.
Additional work includes the construction of surface air pol-
lutant observation operators, the updating of observation er-
rors, and the statistics of background error covariance for the
analysis variables. Moreover, the data interface was modified
to read/write the CMAQ output/input file directly, which was
easy to implement.

In the sense of minimum analysis error variance, the 3D-
Var algorithm optimizes the analysis fields with observations
through an iterative process to minimize the cost function
J (x) defined below:

J (x)=
1
2
(xa− xb)

TB−1(xa− xb)

+
1
2
[H(xa)− y]TR−1

[H(xa)− y], (1)

where xa is a vector of the analysis field; xb is the back-
ground field; y is the vector of observations; B and R are the
background and observation error covariance matrices, re-
spectively, representing the relative contributions to the anal-
ysis; and H is the observation operator that maps the model
variables to the observation space.

The analysis variables were the 3D mass concentrations of
the pollution components (e.g., CO and sulfate) at each grid
point. Hourly mean surface pollution observations within a
1 h window of the analysis were assimilated. To assimilate
the surface pollution observations, model-simulated compo-
sitions were first diagnosed at observation locations. For gas
concentrations to be directly used as analysis variables, the
units need to be converted from parts per million (ppm)
and parts per billion (ppb) to milligrams per cubic meter
(mg m−3) and micrograms per cubic meter (µg m−3), re-
spectively, to match the observations. The model-simulated
PM2.5 and PM10 concentrations at the ground level were di-
agnosed as follows:

PM2.5 = fi ×PMi + fj ×PMj + fk ×PMk = OC

+EC+SO2−
4 +NO−3 +NH+4 +SEAS+AP2.5, (2)

PM10 = PMi +PMj +PMk = PM2.5+PMC, (3)

where fi , fj , and fk are the PM2.5 fractions of the Aitken,
accumulation, and coarse modes, respectively. These ratios
are recommended as the concentrations of PM2.5 and fine-
mode aerosols (i.e., Aitken plus accumulation) can differ
because PM2.5 particles include small tails from the coarse
mode in the CMAQ model (Binkowski and Roselle, 2003;
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Figure 2. Model domain and observation network. The dashed red frame depicts the CMAQ computational domain, the black squares
represent the surface meteorological measurement sites, the navy blue triangles represent the sounding sites, and the red and blue dots
represent the air pollution measurement sites. Observations from all sites were assimilated in the 3D-Var subsystem, while observations of
city sites where red dots were averaged are used for assimilation and where blue dots were averaged are used for independent evaluation in
the EI subsystem; the boxed subregions are the North China Plain (NCP) and Yangtze River Delta (YRD), and the shaded area depicts the
topography.

Table 1. Configuration options of Weather Research and Forecasting–Community Multiscale Air Quality model (WRF–CMAQ).

WRF CMAQ

Parameter Scheme Parameter Scheme

Microphysics WSM6 Horizontal/vertical advection yamo/wrf
Longwave radiation RRTM Horizontal/vertical diffusion multiscale/acm2
Shortwave radiation Goddard Deposition m3dry
Boundary layer ACM Chemistry solver EBI
Cumulus parameterization Kain–Fritsch Photolysis phot_inline
Land-surface model Noah Aerosol module AERO6
Surface layer Revised MM5 Cloud module cloud_acm_ae6
Urban canopy model No Gas-phase chemistry CB05tucl

Jiang et al., 2006). PMi , PMj , and PMk are the mass con-
centrations of the Aitken, accumulation, and coarse modes
in the CMAQ model, respectively. Seven aerosol species of
PM2.5 (organic carbon (OC), elemental carbon (EC), sulfate
(SO2−

4 ), nitrate (NO−3 ), ammonium (NH+4 ), sea salt (SEAS),
and fine-mode unspeciated aerosols (AP2.5)) and additional
coarse PM10 (PMC) were extracted as analysis variables and
were updated using the PM2.5 and PMC observations. Be-
fore calculating Eq. (1) within the GSI, the analysis variables
were bilinearly interpolated in the horizontal direction to the
observation locations.

Calculating background error covariance (B) is gener-
ally costly and difficult when a high-dimensional numeri-
cal model is used. For simplification, B was represented as
a product of spatial correlation matrices and standard devia-
tions (SDs):

B= DCDT (4)
C= Cx ⊗Cy ⊗Cz, (5)

where D is the background error SD matrix; C is the back-
ground error correlation matrix; ⊗ is the Kronecker product;
and Cx , Cy , and Cz denote three 1D correlation submatri-
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ces in the longitude, latitude, and vertical coordinate direc-
tions, respectively. Cx and Cy are assumed to be horizontally
isotropic such that they can be represented using a Gaussian
function. The correlation between any two points xi and xj
in the horizontal direction is expressed as follows:

c
(
xi, xj

)
= e
−
(xi−xj )

2

2L2 , (6)

where L is the horizontal correlation scale estimated using
the proxy of the background error (Fig. 3). The vertical cor-
relation matrix Cz is directly estimated from the model back-
ground field as Cz is only an nz× nz (here, nz = 15) matrix.

To estimate these matrices, the National Meteorological
Center (NMC) method was used to compute B for each vari-
able by taking the differences between forecasts of different
lengths valid at the same time (Parrish and Derber, 1992; Ra-
bier et al., 1998). Differences between the 24 and 12 h WRF–
CMAQ forecasts of 60 pairs (2 pairs per day) of analysis
variables valid at either 00:00 or 12:00 UTC during Novem-
ber 2016 were used. The horizontal and vertical length scales
of the correlation matrices were estimated using recursive
filters (Purser et al., 2003). The vertical distribution of the
background error SDs, which varies with height and species,
is shown in Fig. 3. The vertical profile of the background
error SDs corresponds to the vertical concentration distri-
bution. This means that higher concentrations tend to have
larger background error SDs (e.g., CO and nitrate). These
SDs exhibit a common reduction as the height increases,
especially at the top of the boundary layer. The horizontal
correlation of the background error determines the propa-
gation of observation information in this direction, whereas
the vertical correlation determines the vertical extension of
such increments. For gaseous pollutants and most individual
aerosol components, the horizontal length scales increased
with height, whereas for the total particulate matter (i.e.,
PM2.5, PM10), the scales increased with height in the bound-
ary layer and decreased with height in the free troposphere.
The ground-level scale generally spreads across 40–45 km
for all control variables. The vertical length scale of most
species first increased and then decreased with height, which
may be related to vertical mixing (Kahnert, 2008) and stack
emissions at approximately 200 m height.

2.1.4 EnKF assimilation algorithm

In EnKF, the time-dependent uncertainties of the state vari-
ables are estimated using a Monte Carlo approach through
an ensemble. Uncertainty can be propagated using linear or
nonlinear dynamic models (flow-dependent background er-
ror covariance) by simply implementing ensemble simula-
tions. The EnSRF algorithm introduced by Bierman (1977)
and Maybeck (1979) was used to constrain pollution emis-
sions in this study. EnSRF is a deterministic EnKF that ob-
viates the need to perturb observations, which has a higher

computational efficiency and a better performance (Sun et
al., 2009).

The perturbation of the prior emissions represents the
uncertainty. We implemented additive emission adjustment
methods, which were calculated using the following func-
tion:

Xb
i = Xb

0+ δX
b
i , i = 1,2, . . .,N, (7)

where b is the background (prior) state; i is the identifier of
the perturbed samples; and N is the ensemble size, which
was set to 40 considering the trade-off between computa-
tional cost and inversion accuracy (Fig. S1). In contrast to the
estimation of parameters based on the augmentation of the
conventional state vector (e.g., concentrations) with the pa-
rameter variables, X only comprises emissions in this study
(similarly hereafter). δXb

i is the randomly perturbed samples
added to the prior emissions Xb

0 to produce ensemble samples
of the inputs Xb

i . δX
b
i is drawn from Gaussian distributions

with a mean of 0 and standard deviation of the prior emis-
sion uncertainty in each grid. The state variables of the emis-
sions include CO, SO2, NOx , primary PM2.5 (PPM2.5), and
PMC. We used variable localization to update the analysis,
which means that the covariance among different state vari-
ables was not considered, and the emission of one species
was constrained only by its corresponding air pollutant ob-
servation. This method has been widely used in chemical
data assimilation systems to avoid spurious correlations be-
tween species (Ma et al., 2019; Miyazaki et al., 2012b).

After obtaining an ensemble of state vectors (prior emis-
sions), ensemble runs of the CMAQ model were conducted to
propagate the errors in the model with each ensemble sample
of state vectors. Combined with the observational vector y,
the state vector Xb was updated by minimizing the analysis
variance.

Xa = Xb+K(y−HXb), (8)

K= PbHT(HPbHT
+R)−1, (9)

Pb
=

1
N − 1

∑N

i=1
(Xb

i −Xb)(Xb
i −Xb)T, (10)

δXa
i = δX

b
i − K̃HδXb

i (11)

While employing sequential assimilation and independent
observations, K̃ is calculated as follows:

K̃=
(

1+
√

R/
(
HPbHT+R

))−1

K, (12)

where Xb is the mean of the ensemble samples Xb
i ; H is the

observation operator that maps the model space to the obser-
vation space, consisting of the model integration process con-
verting emissions into concentrations and spatial interpola-
tion matching the model concentration to the locations of the
observations; y−HXb reflects the differences between the
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Figure 3. Vertical profiles of standard deviations (a, ppm; b and c, µg m−3) and horizontal (d–f, km) and vertical (g–i, sigma units) length
scales for CO, SO2, NO2, O3, sulfate, nitrate, ammonium, EC, OC, sea salt, unspeciated aerosols (AP2.5), PMC, PM2.5, and PM10.

simulated and observed concentrations; Pb is the ensemble-
estimated background (a priori) error covariance; K is the
Kalman gain matrix of the ensemble mean depending on the
background error covariance Pb and the observation error co-
variance R, representing the relative contributions to analy-
sis; and K̃ is the Kalman gain matrix of the ensemble per-
turbation, which is used to calculate emission perturbations
after inversions δXa

i . The ensemble mean Xa of the analyzed
state was considered the best estimate of the emissions.

When large volumes of site observations are at a much
higher resolution than the model grid spacing, many corre-
lated or fully consistent model–data mismatch errors can ap-

pear in one cluster, resulting in excessive adjustments and
deteriorated model performance (Houtekamer and Mitchell,
2001). To reduce the horizontal observation error correla-
tions and influence of representativeness errors, a super-
observation approach combining multiple noisy observations
located within the same grid and assimilation window was
developed based on optimal estimation theory (Miyazaki et
al., 2012a). Previous studies have demonstrated the necessity
for data-thinning and dealiasing errors (Feng et al., 2020b;
Zhang et al., 2009a). The super-observation ynew, super-
observation error rnew, and corresponding simulation xnew,i
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of the ith sample are calculated as follows:

1/r2
new =

∑m

j=1
1/r2

j , (13)

ynew =
∑m

j=1
wjyj/

∑m

j=1
wj , (14)

xnew,i =
∑m

j=1
wjxij/

∑m

j=1
wj , (15)

where j is the identifier of m observations within a super-
observation grid, rj is the observational error of the actual
j th observation yj , xij is the simulated concentration using
the ith prior emission sample corresponding to the j th ob-
servation, and wj = 1/r2

j is the weighting factor. The super-
observation error decreased as the number of observations
used within a super-observation increased. This method was
used in our previous inversions using surface-based (Feng et
al., 2020b) and satellite-based (Jiang et al., 2021) observa-
tions.

In this study, the DA window was set to 1 d because the
model requires a longer time to integrate the emission infor-
mation into the concentration ensembles (Ma et al., 2019).
Due to the super-observation approach, only one assimila-
tion is needed per grid cell in one assimilation window. In
addition, owing to the complexity of hourly emissions, it is
difficult to simulate hourly concentrations that match the ob-
servations well. Although a longer DA window would allow
more observations to constrain the emission change of one
grid, the spurious correlation signals of EnKF would attenu-
ate the observation information over time (Bruhwiler et al.,
2005; Jiang et al., 2021). Kang et al. (2012) conducted ob-
serving system simulation experiments (OSSEs) and demon-
strated that owing to the transport errors and increased spu-
rious correlation, a longer DA window (e.g., 3 weeks) would
cause the analysis system to blur essential emission informa-
tion away from the observation. Therefore, daily mean simu-
lations and observations were used in the EnSRF algorithm,
and daily emissions were optimized in this system.

EnKF is subject to spurious correlations because of the
limited number of ensembles when it is applied in high-
dimensional atmospheric models, which can cause rank de-
ficiencies in the estimated background error covariance and
filter divergence as well as further degrade analyses and fore-
casts (Wang et al., 2020). Covariance localization is per-
formed to reduce spurious correlations caused by a finite en-
semble size (Houtekamer and Mitchell, 2001). Covariance
localization preserves the meaningful impact of observations
on state variables within a certain distance (cutoff radius) but
limits the detrimental impact of observations on remote state
variables. The localization function of Gaspari and Cohn
(Gaspari and Cohn, 1999) is used in this system, which is a
piecewise continuous fifth-order polynomial approximation
of a normal distribution. The optimal localization scale is
related to the ensemble size, assimilation window, dynamic
system, and lifetime of the chemical species in the atmo-
sphere. CO, SO2, and PM2.5 are rather stable in the atmo-
sphere, with a lifetime of more than 1 d. According to the av-

erage wind speed (3.3 m s−1, Table 4) and length of the DA
window, the localization scales of CO, SO2, and PM2.5 were
set to 300 km. In addition, the localization scales of NO2,
which is rather reactive and has a lifetime of approximately
10 h in winter (de Foy et al., 2015), and PMC, which mainly
comes from local sources and has a short residence time in
the atmosphere owing to the rapid deposition rate (Clements
et al., 2014, 2016; Hinds, 1982), were set to 150 and 250 km,
respectively.

2.2 Prior emissions and uncertainties

Anthropogenic emissions over China were obtained from the
2016 Multi-resolution Emission Inventory for China (MEIC
2016) (Zheng et al., 2018), while those over the other regions
of eastern Asia were obtained from the mosaic Asian anthro-
pogenic emission inventory (MIX) (Li et al., 2017). The spa-
tial resolutions of the MEIC and MIX inventories were both
0.25◦× 0.25◦, and they are downscaled to match the model
grid spacing of 36 km. The spatial distributions of CO, SO2,
NOx , PPM2.5, and PMC emissions are shown in Fig. 12.
The daily emission inventory, which was arithmetically av-
eraged from the combined monthly emission inventory, was
directly used in the EI subsystem and was employed as the
prior emission of the first DA window in the EI subsystem
(Fig. 1). During the simulations, daily emissions were fur-
ther converted to hourly emissions. All species emitted from
area sources were converted to hourly emissions using the
same diurnal profile (Fig. S2), and for the point source, we
assumed that there was no diurnal change. MEIC 2012 was
used as an alternative a priori over China to investigate the
impact of different prior emissions on optimized emissions.
The Model of Emissions of Gases and Aerosols from Na-
ture (MEGAN) (Guenther et al., 2012) was used to calculate
time-dependent biogenic emissions, which was driven by the
WRF model. Biomass burning emissions were not included
because they have little impact across China during the study
period (Zhang et al., 2020).

During the inversion cycles, inverted emissions of dif-
ferent members converge gradually, and the ensemble-
estimated error covariance matrix is likely to be underesti-
mated. To avoid this, considering the compensation of model
errors and comparable emission uncertainties from one day
to the next, we imposed the same uncertainty on emissions at
each DA window. As mentioned above, the optimized emis-
sions of the current DA window were transferred to the next
DA window as prior emissions. The technology-based emis-
sion inventory developed by Zhang et al. (2009b), using the
same method as MEIC, showed that the emissions of PMC
and PPM2.5 had the largest uncertainties, followed by CO
and finally SO2 and NOx . Therefore, the uncertainties in
PMC, PPM2.5, CO, SO2, and NOx in this study were set as
40 %, 40 %, 30 %, 25 %, and 25 %, respectively. However,
previous studies have shown that inversely estimated CO and
PMC emissions can exceed 100 % higher than the bottom-up
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emissions (MEIC) in certain areas (Feng et al., 2020b; Ma et
al., 2019). Therefore, according to the extent of underestima-
tion, we set an uncertainty of 100 % for both the CO and the
PMC emissions at the beginning of the three DA windows
to quickly converge the emissions. Mean emission analysis
is generally minimally sensitive to the uncertainty setting in
the assimilation cycle method (Feng et al., 2020a; Gurney et
al., 2004; Miyazaki et al., 2012a) as the inversion errors of
the current window can be transferred to the next window for
further optimization (Sect. 4.3).

2.3 Observation data and errors

Hourly-averaged surface CO, SO2, NO2, O3, PM2.5, and
PM10 observations from 1504 national air quality monitor-
ing stations were assimilated into this system, which were
obtained from the Ministry of Ecology and Environment of
the People’s Republic of China (https://air.cnemc.cn:18007/,
last access: 25 June 2020). These sites are distributed over
most of central and eastern China and become denser near
metropolitan areas (see Fig. 2). To ensure data quality, value-
range checks were performed to eliminate unrealistic or un-
representative observations, and only the observations within
the subjectively selected threshold range were assimilated
(Table 2). In addition, a time-continuity check was performed
to eliminate gross outliers and sudden anomalies using the
function max(|O (t)−O (t ± 1)|)≤ f (t), where O (t) and
O(t ± 1) represent observations at time t and t ± 1, respec-
tively, and f (t)= Ta+Tb×Ot . This means that the concen-
tration difference between time t and time t + 1 and time
t − 1 should be less than f (t). Tb was fixed at 0.15, and
the section of Ta is given in Table 2, which was determined
empirically according to the time series change in the con-
centration at each site. To avoid potential cross-correlations,
we assimilated PM2.5 and PMC. Additionally, in the EI sub-
system, the observations within each city were averaged to
reduce the data density, reduce the error correlation, and
increase spatial representation (Houtekamer and Mitchell,
2001; Houtekamer and Zhang, 2016). Finally, 336 city sites
were available across mainland China, in which data from
311 cities were selected for assimilation, and the remaining
25 were selected for independent validation (Fig. 2). In the
IA subsystem, owing to the small horizontal correlation scale
(Fig. 3), all site observations were assimilated to provide a
good IC for the next emission inversion in order to obtain
more extensive observation constraints.

The observation error covariance matrix (R) includes both
the measurement and the representation errors. The measure-
ment error ε0 is defined as follows:

ε0 = ermax+ ermin×50, (16)

where ermax is the base error, and 50 denotes the observed
concentration. These parameters for different species are
listed in Table 2 and were determined according to Chen et
al. (2019), Feng et al. (2018), and Jiang et al. (2013b).

The representative error depends on the model resolution
and characteristics of the observation locations, which were
calculated using the equations of Elbern et al. (2007), defined
as follows:

εr = γ ε0
√
1l/L, (17)

where γ is a tunable parameter (here, γ = 0.5),1l is the grid
spacing (36 km), and L is the radius (3 km for simplification)
of the influence area of the observation. The total observation
error (r) was defined as follows:

r =

√
ε2

0 + ε
2
r . (18)

3 Experimental design

RAPAS inversions were conducted according to the proce-
dure and settings described in Sect. 2. December is one of
the months with the most severe air pollution, whereas July
is one of the least polluted months in China. Therefore, this
study mainly tested the performance of the RAPAS system
over these 2 months. For December, the IA subsystem was
run from 26 to 30 November 2016, with a 6 h interval cy-
cling assimilation to optimize ICs (ICDA). A better IC at
00:00 UTC on 1 December could be obtained by a 5 d high-
frequency cycling assimilation and atmospheric mixing. The
EI subsystem was then run for December 2016 with a 1 d as-
similation window to optimize emissions (EMDA). In July,
the system operated identically to that of December. It should
be noted that owing to the stronger atmospheric oxidation,
the lifetime of NO2 in July was significantly shorter than that
in December; thus, we adopted a smaller localization scale
for NO2 (80 km). Both assimilation experiments used the
combined prior emission inventories of 2016, as described
in Sect. 2.2, and the emission base year coincided with the
research stage. An observing system simulation experiment
(OSSE) was conducted to evaluate the performance of the
RAPAS system, which has been widely used in previous as-
similation system developments (Daley, 1997). In the OSSE
experiment, we used the MEIC 2016 inventory as a “true”
emission and the true emission, reduced by 30 % over main-
land China, as a prior emission. The simulations were per-
formed using the true emission and sampled according to
the locations and times of the real observations used as ar-
tificial observations. The observation errors were the same
as those in EMDA. To evaluate the IC improvements from
the IA subsystem, an experiment without 3D-Var (NODA)
was conducted with the same meteorological fields and phys-
ical and chemistry parameterization settings as those of the
ICDA. To evaluate the posterior emissions of the EI subsys-
tem, two parallel forward-modeling experiments were per-
formed for December 2016: a control experiment (CEP) with
prior (MEIC 2016) emissions and a validation experiment
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Table 2. Parameters of quality control and measurement error.

Parameter CO SO2 NO2 O3 PM2.5 PMC
(mg m−3) (µg m−3) (µg m−3) (µg m−3) (µg m−3) (µg m−3)

Value range 0.1–12 1–800 1–250 1–250 1–800 1–900
Time continuity (Ta) 2.5 160 70 80 180 180
ermax 0.05 1 1 1 1.5 1.5
ermin 0.5 % 0.5 % 0.5 % 0.5 % 0.75 % 0.75 %

(VEP) with posterior emissions. Both experiments used the
same IC at 00:00 UTC on 1 December generated through the
IA subsystem. The only difference between CEP and VEP
were emissions. Table 3 summarizes the different emission
inversion experiments conducted in this study.

To investigate the robustness of our system, seven sensi-
tivity tests (from EMS1 to EMS7; see Table 3) were per-
formed. These experiments were all based on EMDA. EMS1
used MEIC 2012 as the original prior emission in China,
aiming to investigate the impact of different prior invento-
ries on the estimates of emissions. The other experiments
(EMS2–5) aimed to test the impact of different prior uncer-
tainty settings, in which the prior uncertainties were reduced
by −50 % and −25 % and increased by 25 % and 50 %, re-
spectively. EMS6 aimed to evaluate the impact of observa-
tion errors on emission estimates, in which all observation
errors are magnified twice. EMS7 aimed to evaluate the im-
pact of IC optimization of the first window on emission esti-
mates, in which the ICs were taken from a 5 d spin-up sim-
ulation. Eight forward-modeling experiments (VEP1, VEP2,
. . . , VEP7) were also performed with the posterior emissions
of EMS1 to EMS7 to evaluate their performance.

4 Results

4.1 Evaluations

4.1.1 Simulated meteorological fields

In the RAPAS system, the inversion approach attributes all
biases between the simulated and observed concentrations
to emissions. Meteorological fields dominate the physical
and chemical processes of air pollutants in the atmosphere,
and thus their simulation accuracy would significantly af-
fect the estimates of emissions in this study. To quantita-
tively evaluate the performance of the WRF simulations, the
mean bias (BIAS), root mean square error (RMSE), and cor-
relation coefficient (CORR) were calculated against the sur-
face meteorological observations measured at 400 stations,
and the planetary boundary layer height (PBLH) was calcu-
lated using the sounding data at 92 sites. Surface observa-
tions were obtained from the National Climatic Data Cen-
ter integrated surface database (http://www.ncdc.noaa.gov/
oa/ncdc.html, last access: 25 October 2021), and sounding

data were obtained from the website of the University of
Wyoming (http://weather.uwyo.edu/upperair/sounding.html,
last access: 10 March 2022). The sounding data had a 12 h in-
terval. The observed PBLH was calculated using sound data
via the bulk Richardson number method (Richardson et al.,
2013). The spatial distribution of meteorological stations is
shown in Fig. 2. The simulated temperature at 2 m (T 2), rela-
tive humidity at 2 m (RH2), wind speed at 10 m (WS10), and
PBLH from 26 November to 31 December 2016 were evalu-
ated against the observations. Table 4 summarizes the statis-
tical results of the evaluation of the simulated meteorological
parameters. Overall, T2, RH2, and PBLH were slightly un-
derestimated, with biases of −0.1 ◦C, −3.8 %, and −41.1 m,
respectively. CORRs were approximately 0.98 for T2, 0.94
for RH2, and 0.90 for PBLH, showing good consistency be-
tween the observations and simulations. WS10 was overes-
timated, with a bias of 0.7 m s−1 and an RMSE of 0.8 m s−1

but was better than the simulations from many previous stud-
ies (Chen et al., 2016; Jiang et al., 2012a, b). Therefore, the
WRF can generally reproduce meteorological conditions suf-
ficiently in terms of their temporal variation and magnitude
over China, which is adequate for our inversion estimation.

4.1.2 Initial conditions

Figure 4 shows an evaluation of the analyzed concentrations
of the six species against surface observations. For com-
parison, the evaluations of the simulations without 3D-Var
(NODA) are also shown in Fig. 4. The simulations of the
NODA experiment (red dots) are scattered on both sides
of the central line, as large systematic biases remain across
many measurement sites. Conversely, the ICDA experiment
(blue dots) showed a much better agreement with the ob-
servations than those from NODA. The statistics show that
there are large systematic biases in the NODA simulations,
with large RMSEs and small CORRs for all species, partic-
ularly for CO and PMC. After the assimilation of surface
observations, the RMSE of CO decreased to 0.7 mg m−3,
and the RMSEs of SO2, NO2, O3, PM2.5, and PMC de-
creased to 22.0, 12.0, 9.6, 20.5, and 19.6 µg m−3, respec-
tively, with respective reductions of 50.0 %, 73.1 %, 61.0 %,
64.7 %, 69.5 %, and 60.8 % compared to those of NODA (Ta-
ble 5). The CORRs of ICDA increased by 290.0 %, 291.3 %,
55.4 %, 87.2 %, 130.0 %, and 214.8 % to 0.78, 0.90, 0.87,
0.88, 0.92, and 0.85, respectively. These statistics indicate
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Table 3. Emission inversion and sensitivity experiments conducted in this study.

Exp. type Exp. name Period ICs of the first DA
window

ICs of the subsequent DA
window

Emission

Assimilation EMDA 1–31 December 00:00 UTC on
1 December,
taken from ICDA

Forecast with posterior
emissions in the previous
window

MEIC 2016 for December (the first DA win-
dow), optimized emissions of the previous win-
dow (other DA windows)

OSSE 1–31 December Same as EMDA Same as EMDA Same as EMDA but with a decrease of 30 % for
CO, SO2, NOx , PPM2.5, and PMC

Sensitivity EMS1 1–31 December Same as EMDA Same as EMDA Same as EMDA but for EMIC 2012

EMS2–5 1–31 December Same as EMDA Same as EMDA Same as EMDA but with a ±25 % or ±50 %
default uncertainty

EMS6 1–31 December Same as EMDA Same as EMDA Same as EMDA but with a +100 % default ob-
servation errors

EMS7 1–31 December 00:00 UTC on
1 December,
taken from ICNO

Same as EMDA Same as EMDA

Table 4. Statistics comparing the simulated and observed 10 m wind speed (WS10), 2 m temperature (T2), and 2 m relative humidity (RH2),
as well as the planetary boundary layer height (PBLH). BIAS: mean bias; RMSE: root mean square error; CORR: correlation coefficient.

Variable met. No. of sites Mean obs. Mean sim. BIAS RMSE CORR

WS10 (m s−1) 400 2.6 3.3 0.7 0.8 0.72
T2 (◦C) 400 2.9 2.8 −0.1 0.7 0.98
RH2 (%) 400 66.3 62.6 −3.8 5.2 0.94
PBLH (m) 92 267.5 226.4 −41.1 50.4 0.90

that the ICs of the ground level improved significantly. How-
ever, owing to the lack of observations, we still do not know
the simulation bias in the upper–middle boundary layer. Al-
though concentrations at high altitudes can be constrained by
ground-based observations through vertical correlations, the
effect is limited; therefore, the bias remains non-negligible.

4.1.3 Posterior emissions

Owing to the mismatched spatial scales, it is difficult to
directly evaluate the optimized emissions against observa-
tions. Generally, we indirectly validated the optimized emis-
sions by comparing the forward-simulated concentrations us-
ing the posterior emissions against atmospheric measure-
ments (e.g., Jiang et al., 2014; Jin et al., 2018; Peters et al.,
2007). Figure 5 shows the spatial distributions of the mean
biases between the gaseous pollutants simulated using prior
and posterior emissions and assimilated observations. In the
CEPs, for each species, the distribution of biases was similar
to the increments in background fields constrained through
3D-Var, as shown in Fig. S3. For example, almost all sites
had large negative biases for CO, while for SO2 and NO2,
positive biases were mainly distributed over the North China
Plain (NCP), the Yangtze River Delta (YRD), the Sichuan
Basin (SCB), and central China, and negative biases were
distributed over the remaining areas. After constraining with
observations, the biases of all three gaseous air pollutants
were significantly reduced at most sites. For CO, the biases

at 62 % of the sites decreased to absolute values less than
0.2 mg m−3, and for SO2 and NO2, the biases at 52 % and
47 % of the sites were within ±4 µg m−3. However, large
negative biases were still observed in western China, indi-
cating that the uncertainties of the posterior emissions are
still large in western China, which may be attributed to the
large biases in prior emissions and the relatively limited ob-
servations. Overall, the statistics show that there are differ-
ent levels of improvement at the 311 assimilation sites of
92 %, 85 %, and 85 % for CO, SO2, and NO2, respectively.
The small number of sites with a worse performance may
be related to over-adjusted emissions by EI or contradictory
adjustments caused by opposite biases in adjacent areas.

Table 6 lists the statistical results of the evaluations av-
eraged over the whole mainland of China. For CO, the
mean bias was −0.8 mg m−3 with the prior emissions, while
it substantially reduced to −0.1 mg m−3 (reduction rate of
89.6 %) when simulating with the posterior emissions. Ad-
ditionally, the RMSE decreased by 48.1 % from 1.08 to
0.56 mg m−3, and the CORR increased by 76.1 % from 0.46
to 0.81. For SO2 and NO2, the regional mean biases in-
creased slightly as the positive/negative biases among differ-
ent sites might be offset. However, the RMSEs decreased to
17.7 and 12.3 µg m−3, respectively, which were 58.3 % and
50.8 % lower than those of CEPs, and the CORRs increased
by 125.6 % and 35.4 %, both reaching up to 0.88, indicating
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Table 5. Comparisons of the surface CO, SO2, NO2, O3, PM2.5, and PMC mass concentrations from the control and assimilation experiment
against observations aggregated over all analysis times. CO unit: mg m−3; other units: µg m−3. BIAS: mean bias; RMSE: root mean square
error; CORR: correlation coefficient.

Species Exp. name Mean obs. Mean sim. BIAS RMSE CORR

CO NODA
1.5

0.8 −0.7 1.4 0.20
ICDA 1.5 −0.1 0.7 0.78

SO2 NODA
36.3

56.0 19.7 81.7 0.23
ICDA 37.8 1.5 22.0 0.90

NO2 NODA
45.8

51.1 5.3 30.8 0.56
ICDA 47.0 1.1 12.0 0.87

O3 NODA
20.5

30.8 10.4 27.2 0.47
ICDA 23.3 2.8 9.6 0.88

PM2.5 NODA
70.9

82.2 11.3 67.3 0.40
ICDA 71.8 0.9 20.5 0.92

PMC NODA
43.5

8.5 −35.0 50.0 0.27
ICDA 41.6 −1.9 19.6 0.85

that EI significantly improved the NOx and SO2 emission es-
timates.

Figure 6 shows the spatial distributions of the mean biases
of simulated PM2.5 and PMC evaluated against assimilated
observations. Similarly, the CEP simulations did not perform
well. There were widespread underestimations across the
country, with mean biases of −24.0 and −32.4 µg m−3. Af-
ter data assimilation, the performance of the VEP simulations
significantly improved. The biases decreased by 72.1 % and
90.4 % to −6.7 and −3.1 µg m−3; the RMSEs decreased by
41.2 % and 40.7 % to 29.6 and 24.6 µg m−3; and the CORRs
increased by 35.9 % and 176.0 % to 0.87 and 0.69 for PM2.5
and PMC, respectively. Overall, 89.6 % and 97.2 % of the
assimilation sites were improved for PM2.5 and PMC, re-
spectively. However, compared with the results for the three
gaseous pollutants, there were sites with large biases scat-
tered throughout the entire domain. In addition to the po-
tential over-adjusted or contradictory adjustments of emis-
sions as in the three gas species, the sites with large biases
may be related to the complex precursors and complex ho-
mogeneous and heterogeneous chemical reactions and trans-
formation processes of secondary PM2.5 and the fact that we
did not simulate the time variation in dust blowing caused by
wind speed for PMC owing to the lack of land cover data that
are compatible with the CMAQ dust module and agricultural
activity data to identify dust source regions.

Figures 7 and 8 show the spatial distributions of the bi-
ases calculated against independent observations for the five
species. With posterior emissions, the decreasing ratios of
RMSEs ranged from 26.7 %–42.0 %, and the CORRs in-
creased by 13.7 %–59.0 % to 0.62–0.87. Overall, the biases at
the independent sites are similar or slightly worse than those
at the assimilated sites, which is reasonable as the closer

the independent sites are to the assimilated site, the more
constraints of observation information can be obtained and
the more significant the improvements in the optimized state
variables of the model. For example, generally, the transmis-
sion distance of NO2 is relatively short, and remote cities
with small emission correlations to the cities with assimi-
lated observations are relatively less constrained, resulting in
only a 26.7 % decrease in the RMSE.

Comparing our results with those of previous studies, Tang
et al. (2013) inverted CO emissions over Beijing and the sur-
rounding areas and obtained comparable improvements (Ta-
ble 6) in the RMSE (37 %–48 % vs. 30 %–51 %) and CORR
(both studies ∼ 0.81); however, we decreased the biases by
90 %–97 %, which is much greater than their 48 %–64 % re-
ductions. Additionally, Chen et al. (2019) showed that the
RMSE of simulated SO2 with updated SO2 emissions de-
creased by 4.2 %–52.2 % for different regions, and the CORR
only increased to 0.69 at most. These improvements are
smaller than those obtained in this study, which may be due
to the insufficient adjustment of emissions caused by the un-
derestimated ensemble spread through the inflation method.
The better performance in this study may be related to our
inversion process, which causes the optimized emissions of
the current DA window to propagate to the next DA window
for further correction.

4.1.4 Uncertainty reduction

The uncertainty reduction rate (UR) is an important quantity
to evaluate the performance of RAPAS and the effectiveness
of in situ observations (Chevallier et al., 2007; Jiang et al.,
2021; Takagi et al., 2011). Following Jiang et al. (2021), the
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Table 6. Statistics comparing the pollution concentrations from the simulations with prior (CEP) and posterior (VEP) emissions against
assimilated and independent observations, respectively. CO unit: mg m−3; other units: µg m−3. BIAS: mean bias; RMSE: root mean square
error; CORR: correlation coefficient.

Species Mean obs. Mean sim. BIAS RMSE CORR

CEP VEP CEP VEP CEP VEP CEP VEP

Against assimilated observations

CO 1.43 0.66 1.36 −0.77 −0.08 1.08 0.56 0.46 0.81
SO2 32.5 34.4 28.4 1.9 −4.1 42.4 17.7 0.39 0.88
NO2 43.8 40.8 39.0 −2.9 −4.8 25.0 12.3 0.65 0.88
PM2.5 77.0 53.1 70.3 −24.0 −6.7 50.3 29.6 0.64 0.87
PMC 40.5 8.1 37.5 −32.4 −3.1 41.5 24.6 0.25 0.69

Against independent observations

CO 1.54 0.79 1.52 −0.75 −0.02 1.15 0.72 0.59 0.82
SO2 40.6 39.2 37.3 −1.3 −3.2 44.3 27.2 0.57 0.87
NO2 50.2 50.0 47.5 −0.3 −2.7 21.7 15.9 0.73 0.83
PM2.5 91.5 64.6 84.1 −26.9 −7.4 64.1 37.2 0.62 0.87
PMC 42.0 9.2 40.4 −32.8 −1.6 39.3 26.6 0.39 0.62

UR was calculated as

UR=
(

1−
σposterior

σprior

)
× 100, (19)

where σposterior and σprior are the posterior and prior uncer-
tainties, respectively, calculated using the standard deviations
of the prior and posterior perturbations. Figure 9 shows the
URs averaged in each province and mainland China. URs
varied with species as they are closely related to the magni-
tude settings of prior uncertainties (Jiang et al., 2021). The
URs of PPM2.5 and PMC were the most effective, while
the UR of NOx emissions was the lowest. For mainland
China overall, uncertainties were reduced by 44.4 %, 45.0 %,
34.3 %, 51.8 %, and 56.1 % for CO, SO2, NOx , PPM2.5,
and PMC, respectively. For one species, URs varied across
provinces. URs are usually related to observation coverage,
which means that the more observation constraints there are,
the more URs decrease. Additionally, URs may also be re-
lated to emission distributions. Generally, URs were more
significant in the provinces where observations and emis-
sions were both relatively concentrated (e.g., Tibet), while
they were much lower where the emissions were scattered
or relatively uniform, but the observations were only in large
cities, even if there were many more observations in other
provinces.

4.1.5 Evaluation using chi-squared statistics

To diagnose the performance of the EnKF analysis, chi-
squared (χ2) statistics were calculated, which are generally
used to test whether the prior ensemble mean RMSE with
respect to the observations is consistent with the prior “total
spread” (square root of the sum of ensemble variance and ob-
servation error variance). Following Zhang et al. (2015), for

the t th window, χ2 is defined as

χ2
t = (y−HXb)T(HPbHT

+R)−1(y−HXb). (20)

Figure 10 shows the time series of the relative changes be-
tween the prior and posterior emissions and the χ2 statistics.
There were relatively large adjustments in emissions in the
first three windows, especially for the PMC. Subsequently,
the five species reached a more optimal state with successive
emission inversion cycles. The χ2 statistics showed similar
variation characteristics to the daily changes in emissions.
The χ2 value was slightly greater than 1, indicating that the
uncertainties from the error covariance statistics did not fully
account for the error in the ensemble simulations. A similar
result was reported by Chen et al. (2019). Further investiga-
tions should be conducted to generate larger spreads by ac-
counting for the influence of model errors. As we imposed
the same uncertainty in prior emissions at each DA window
to partially compensate for the influence of model errors, χ2

statistics showed small fluctuations, indicating that the sys-
tem updated emissions consistently and stably.

4.1.6 Evaluation using OSSE

Figure 11 shows the spatial distribution of the error reduc-
tion in the posterior emissions of the five species. After in-
version, in most areas, the emission errors were reduced by
more than 80 %, especially in the central and eastern regions
with dense observation sites, while in remote areas far away
from cities, due to the sparse observation sites, the emission
errors were still not well adjusted. Overall, the error reduc-
tion rates of CO, SO2, NOx , PPM2.5, and PMC were 78.4 %,
86.1 %, 78.8 %, 77.6 %, and 72.0 %, respectively, indicating
that with the in situ observations in China, RAPAS can sig-
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Figure 4. Scatterplots of simulated versus observed (a) CO, (b)
SO2, (c) NO2, (d) O3, (e) PM2.5, and (f) PMC mass concentration
initializations from the background (red) and analysis (blue) fields
at 00:00 UTC on 1 December.

nificantly reduce emission errors and thus showed good per-
formance in emission estimates.

4.2 Inverted emissions

Figure 12 shows the spatial distribution of temporally av-
eraged prior and posterior emissions and their differences
in emissions in December 2016. It should be noted that
emissions outside China were masked; as the observation
sites were limited to China in this study, there was a slight
change in the emissions outside China. Higher emissions
were mainly concentrated in central and eastern China, es-
pecially in the NCP, YRD, and Pearl River Delta, and lower
emissions occurred across northwestern and southern China.
Compared with the prior emissions, posterior CO emissions
were considerably increased across most areas of mainland
China, especially in northern China, with an overall in-
crease of 129 %. A notable underestimation of prior emis-
sions was also confirmed by inversion estimations (Feng et
al., 2020b; Tang et al., 2013; Wu et al., 2020) and model eval-

uations (Kong et al., 2020) in previous studies. For SO2, the
emissions increased mainly in northeastern China, Shanxi,
Ningxia, Gansu, Fujian, Jiangxi, and Yunnan provinces. In
the SCB, central China, the YRD, and part of the NCP,
emissions were significantly reduced. The national total SO2
emissions increased by 20 %. For NOx , although the incre-
ment of the national total emissions was small (approxi-
mately 5 %), there were large deviations. The emissions in
the NCP and YRD were reduced, whereas the emissions in
most cities in other regions increased. The changes in the
emission of PPM2.5 were similar to those of SO2. Compared
with the prior emissions, the posterior PPM2.5 emissions de-
creased over central China, the SCB, and the YRD, whereas
those in southern and northern China increased, especially
in Shanxi, Shaanxi, Gansu, and southern Hebei provinces.
Overall, the relative increase was 95 %. For PMC, the poste-
rior emissions were increased over all of mainland China,
with a national mean relative increase of 1045 %. Larger
emission increments mainly occurred in areas with signifi-
cant anthropogenic emissions of CO and PPM2.5, indicating
that the large underestimation of PMC emissions in the prior
inventory may mainly be attributed to the underestimations
of anthropogenic activities. The absence of natural dust is an-
other reason, as the wind-blown dust scheme was not applied
in this study. Overall, PM10 emissions (PPM2.5+PMC) in-
creased by 318 %. If we assume that all the increments in
PM10 emissions are from natural dust, it means the contribu-
tion of natural dust accounted for 75 % of total PM10 emis-
sions, which is consistent with the source apportionment of
PM10 of 75 % in Changsha in central China (Li et al., 2010).
Large PMC emission increments were also reported by Ma
et al. (2019).

Detailed estimations of posterior emissions and relative
changes compared to prior emissions in each province and
mainland China are given in Table S1. The evaluation results
for July showed that the emission uncertainty could still be
significantly reduced, and the performance of the system in
July was comparable to that in December (Table S2). Ad-
ditionally, the seasonal variation in emissions was well re-
flected (Figs. S4 and S5), which means that our system per-
formed well at different times of the year. Note that the differ-
ences, excluding PMC, between the prior and posterior emis-
sions mainly reflect the deficiencies of the prior emissions as
the times of the prior emissions and observations were con-
sistent in this study.

4.3 Sensitivity tests

4.3.1 Impact of prior inventories

Various prior inventories have shown considerable differ-
ences in space allocation and emission magnitudes. Inversion
results can be sensitive to a priori emissions if the observa-
tions are insufficient (Gurney et al., 2004; He et al., 2018).
MEIC 2012 was used as an alternative a priori in EMS1 to
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Figure 5. Spatial distribution of the BIAS of the simulated (a, b) CO, (c, d) SO2, and (e, f) NO2 with prior (a, c, e, CEP) and posterior (b,
d, f, VEP) emissions. CO unit: mg m−3; SO2 and NO2 units: µg m−3.

investigate the impact of different prior emissions on poste-
rior emissions. Figure 13 shows the time series of the relative
differences in the daily posterior emissions of the five species
between the EMDA (base) and EMS1 experiments. Overall,
the differences between the two posterior emissions gradu-
ally decreased over time. At the beginning, the differences
in the CO, SO2, NOx , PPM2.5, and PMC between the two
inventories (i.e., MEIC 2012 vs. MEIC 2016) were 17.5 %,
114.5 %, 30.8 %, 46.0 %, and 72.0 %, respectively, compared
to 2.5 %, 4.5 %, 4.5 %, −8.9 %, and 3.0 % in the last 10 d.
In addition, the species with larger emission differences at
the beginning took a longer time (i.e., more DA steps) to
achieve convergence. The quick convergence of PMC emis-
sions was attributed to the large prior uncertainty of 100 %
used in the first three DA windows. In contrast to the other

species, there were significant negative deviations in PPM2.5
emissions between the two experiments. This may be due to
the positive deviations in the precursors of PM2.5 (i.e., SO2
and NOx), which lead to a larger amount of secondary pro-
duction. The PPM2.5 emissions will be reduced to balance
the total PM2.5. We compared the PM2.5 concentrations sim-
ulated by the two optimized inventories and found that they
were almost the same (Fig. S6). Overall, this indicates that
observations in China were sufficient to infer emissions and
that our system was robust. Meanwhile, the monthly poste-
rior emissions shown in Sect. 4.2 were still underestimated
to a certain extent.
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Figure 6. The same as in Fig. 5 but for PM2.5 and PMC.

4.3.2 Impact of prior uncertainty settings

The uncertainty of prior emissions determines how closely
the analysis is weighted towards the background and ob-
servations; however, information about prior uncertainties is
generally not readily available. To evaluate the possible in-
fluence of prior uncertainties on the optimized emissions,
we increased and reduced the uncertainties after 3 d of cy-
cling, starting at 00:00 UTC, 3 December, by 25 % and 50 %
in EMS2 (−50 %), EMS3 (−25 %), EMS4 (+25 %), and
EMS5 (+50 %), respectively. Table 7 summarizes the emis-
sion changes with different prior uncertainty settings in the
EMS2–5 experiments. To better understand the response of
the system to the emission uncertainty settings, Fig. 14 illus-
trates the time series of SO2 emission changes, chi-squared
statistics, and RMSEs of simulated SO2 with emissions up-
dated in the EMDA and EMS2–5 experiments over the YRD
and NCP (Fig. 2). Compared with EMDA, when the un-
certainties decreased (increased), the emissions of the five
species decreased (increased) accordingly. This is because
the posterior emissions of the five species were larger than
the prior emissions, and, as shown in Fig. 14a–d, larger un-
certainty will lead to faster convergence, resulting in larger
posterior emissions. It can also be seen from Fig. 14 that a
faster convergence will reduce the RMSE of the simulated
concentration with the posterior emissions in the early stage
of the experiment; however, in the later stage of the experi-
ment, there were no significant differences in the RMSE and

chi-squared statistics among the different experiments. How-
ever, day-to-day changes in emissions also cause slight fluc-
tuations. In addition, when greater uncertainties are set, the
day-to-day changes in emissions are more drastic, resulting
in a larger RMSE, as shown in the NCP. Moreover, the sig-
nificant day-to-day variations in the estimated emissions may
not be in line with the actual situation. Owing to the spatial–
temporal inhomogeneity of emissions, the differences in chi-
squared statistics between the YRD and NCP show that it
may be necessary to apply different a priori uncertainties ac-
cording to different regions (Chen et al., 2019). Therefore,
when using an EnKF system for emission estimation, error
settings must be carefully executed. Overall, the uncertain-
ties chosen in EMDA aim to minimize the deviation of the
concentration fields and maintain the stability of the inver-
sion.

4.3.3 Impact of observation error settings

Observation errors are another factor that determine the rela-
tive weights of the observations and background in the anal-
ysis. A proper estimate of the observation error is important
for filter performance; however, observation errors are gen-
erally not provided with datasets. The observation error is
usually set to a fixed value (Ma et al., 2019), specific pro-
portion of the observation value (Tang et al., 2013), or value
calculated by combining measurement error with represen-
tative error as used in this study. Generally, the performance
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Figure 7. As in Fig. 5 but for the independent validation.

of data assimilation is sensitive to the specification of the ob-
servation error (Tang et al., 2013). A sensitivity experiment
(EMS6) with a doubled observation error was conducted to
evaluate the influence of observation error on the optimized
emissions. Overall, the spatial distribution of emissions af-
ter optimization was almost the same as that of the EMDA
experiment but with a lower increment (Fig. S7), resulting
in a weaker estimate of the national total emissions for each

species. This is because the observation error inflates, and the
system becomes more certain of the prior emission and re-
duces the effect of observation information. Figure 15 shows
the time series of simulated and observed daily concentra-
tions and their RMSEs verified against the assimilated sites.
The simulations in VEP6 usually performed worse, with
larger biases and RMSEs than those of VEP (Figs. S8 and
S9), especially in western and southern China, where poste-
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Figure 8. As in Fig. 6 but for the independent validation.

Table 7. Relative differences in CO, SO2, NOx , PPM2.5 and PMC
emissions ( %, the ratio of the absolute difference to EMDA) be-
tween the EMDA and EMS2–5 experiments.

Species EMS2 EMS3 EMS4 EMS5

CO −8.6 −4 3 5.2
SO2 −14 −5.7 3.6 6.8
NOx −6.5 −3 2.8 4.5
PPM2.5 −16.5 −7.8 4.6 8.7
PMC −18.5 −8.2 7.3 13.1

rior emissions were significantly underestimated. These re-
sults generally corresponded to sluggish emission changes
and large chi-squared statistics (Fig. S10), suggesting that an
observation error that is too large may substantially impact
the estimated emissions.

4.3.4 Impact of the IC optimization of the first window

Several studies indicate large emission discrepancies result-
ing from IC errors (Jiang et al., 2013a; Miyazaki et al., 2017;

Tang et al., 2013), which means that if the IC is not opti-
mized, the errors in concentrations would be compensated
for through the adjustment of emissions. To evaluate the im-
pact of IC optimization of the first window on the emis-
sion inversions, an EMS7 experiment without the IA step
was conducted. Figure 16 shows the time series of the rel-
ative differences in the daily posterior emissions of the five
species between the EMDA and EMS7 experiments. It can
be observed that IC optimization had a significant impact
on the emission inversions of long-lived species (i.e., CO).
The overall difference in the inverted CO emissions between
the two experiments was approximately 5.3 % but can reach
26.1 % in the first few windows. For the short-lived species,
IC optimization had little impact on the emissions; for ex-
ample, the average emission differences of SO2, NOx , and
PMC in the two experiments were 0.3 %, 0.3 %, and 0.9 %,
respectively. For PPM2.5, the average emission difference is
affected not only by primary emissions, but also by the com-
plex chemistry of its precursors. Therefore, the difference be-
tween the two experiments fluctuated, with an overall differ-
ence of 2 %. Notably, with the gradual disappearance of the
benefit of IC assimilation, the two experiments reached a uni-
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Figure 9. Time-averaged posterior emission uncertainty reduction
(%) indicated by the standard deviation reduction in the total emis-
sions per province calculated by prior and posterior ensembles.

fied state after several windows. For CO, the impact of IA on
emission inversion lasted approximately half a month. These
results indicate that removing the bias of the IC of the first
DA window is essential for the subsequent inverse analysis
(Jiang et al., 2017).

4.4 Discussion

Optimal state estimation using an EnKF relies on the as-
sumption of an unbiased Gaussian prior error, which is not
guaranteed in such highly nonlinear and large-bias systems.
In this study, some pollutants (e.g., CO, PMC) have very
large simulated biases; thus, if a small uncertainty is adopted,
the emission bias cannot be fully reduced. If a very large
uncertainty is adopted, then the degree of freedom of ad-
justment is too large, and the inverted daily emissions will
fluctuate abnormally. Therefore, we only set a larger prior
uncertainty in the first three windows, adopting a moderate
uncertainty in the following windows, and used a two-step
inversion scheme and cyclic iteration to gradually correct the
emission errors. Figure 10a shows the time series of the rel-
ative differences between prior and posterior emissions in
each window. There were relatively large adjustments for the
emissions in the first three windows, especially for PMC, but
the adjustment ranges of the five species after the first three

Figure 10. Relative changes (a) in posterior emission estimates of
CO, SO2, NOx , PPM2.5, and PMC and χ2 statistics (b) of these
state vectors in each window.

windows were within the uncertainty range (e.g.,±25 %), in-
dicating that with this scheme, the EnKF method used in this
system performed well in emission inversion.

Model–data mismatch errors are from both the emissions
and the inherent model errors arising from the model struc-
ture, discretization, parameterizations, and biases in the sim-
ulated meteorological fields. Neglecting model errors would
attribute all uncertainties to emissions and lead to consider-
able bias in the estimated emissions. In the version of the
CMAQ model used in this study, there are no heterogeneous
reactions (Quan et al., 2015; Wang et al., 2017), the param-
eterization scheme for the formation of secondary organic
aerosols (SOAs) is imperfect (Carlton et al., 2008; Jiang et
al., 2012a; Yang et al., 2019), no feedback between chemistry
and meteorology was considered, and we used an idea profile
for chemical lateral boundary conditions. All the above prob-
lems can lead to underestimated concentrations of pollutants,
which in turn require more emissions to compensate for this,
leading to overestimation of emissions. In addition, previous
studies have shown that ammonia emissions in the MEIC in-
ventory are underestimated (Kong et al., 2019; Paulot et al.,
2014; Zhang et al., 2018). Owing to the lack of ammonia ob-
servations, our system does not include emission estimates of
ammonia, which means that the concentration of ammonium
aerosol was underestimated in this system, also resulting in
an overestimation of the PPM2.5 emission. Wind-blown dust
was also not simulated; thus, the PMC emission inverted in
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Figure 11. Spatial distribution of the error reduction (%) of posterior emissions in the OSSE.

this system comes from anthropogenic activities and natural
sources. Although some of these shortcomings can be solved
by updating the CTM model, there will still be errors in each
parameterization and process. In general, a parameter esti-
mation method was used to reduce the model errors, in which
some uncertain parameters were included in the augmented
state vector and optimized synchronously based on the avail-
able observations (Brandhorst et al., 2017; Evensen, 2009).
However, it is difficult to identify the key uncertain param-
eters of different species in different models, which gener-
ally comes not only from the complex atmospheric chemical
model but also from hundreds of model inputs (Tang et al.,
2013). Another method is bias correction, which treats the
model error as a bias term and includes it in an augmented
state vector (Brandhorst et al., 2017; De Lannoy et al., 2007;
Keppenne et al., 2005). In addition, the weak-constraint 4D-
Var method can be used to reduce model errors, which adds
a correction term in the model integration to account for the
different sources of model error (Sasaki, 1970). Although the
reliable diagnosis of model error remains a challenge (Laloy-
aux et al., 2020), it should be considered in an assimilation
system. In the future, we will consider model errors in our
system to obtain better emission estimates.

Independent variable localization was adopted to avoid po-
tential spurious correlations across different species in this
study. However, the transmission scales for different species
in different regions differ, and a more accurate localization
range can be obtained through backward trajectory analy-
sis. In addition, O3 observations were not assimilated to im-
prove NOx and VOC emissions using cross-species informa-
tion. O3 concentrations and NOx (VOC) emissions were pos-

itively correlated in the NOx (VOC)-limited region and neg-
atively correlated in the VOC (NOx)-limited region (Tang et
al., 2011; N. Wang et al., 2019). Hamer et al. (2015) success-
fully used O3 observations to estimate NOx and VOC emis-
sions within the 4D-Var framework within an ideal model.
However, the NOx emissions are often point or line sources,
which are all small compared to the model resolution. With a
coarse spatial resolution, the model cannot accurately simu-
late the relationships between O3 and its precursors. When
assimilating O3 observations to infer NOx or VOC emis-
sions, the inaccurate relationships simulated by the model
would worsen the inversion of NOx emissions (Inness et al.,
2015). In general, improving the model resolution can im-
prove the detailed simulation and provide better prior infor-
mation on O3–NOx–VOC, but it is still difficult to determine
whether the condition is NOx-limited or VOC-limited in the
real atmosphere using prior emissions (Liu and Shi, 2021).
Elbern et al. (2007) emphasized that assimilating O3 to cor-
rect NOx or VOC emissions must follow the EKMA frame-
work derived based on observations, otherwise, even if the
resolution is improved to sufficiently solve point and line
sources, precursor emissions may still be adjusted in an op-
posite direction. This can be demonstrated in our OSSE ex-
periment at a high resolution of 3 km (Fig. S11). In this study,
the spatial resolutions of the prior emission inventory (i.e.,
MEIC) is 0.25◦× 0.25◦, which is appropriate for modeling
at regional scales (Zheng et al., 2017). With this emission
inventory, it is unable to accurately simulate the O3–NOx–
VOC relationships. Therefore, to avoid the impact of inaccu-
rate O3–NOx relationships on emission inversion, in our sys-
tem, we did not assimilate O3 but directly assimilated NO2
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Figure 12. Spatial distribution of the time-averaged prior emissions (left column, MEIC 2016), posterior emissions (middle column), and
differences (right column, posterior minus prior).
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Figure 13. Relative differences in CO, SO2, NOx , PPM2.5, and
PMC emissions (%, the ratio of the absolute difference to EMDA)
between the EMDA and EMS1 experiments.

Figure 14. Time series of the SO2 emission changes, chi-squared
statistics, and RMSE of simulated SO2 with updated SO2 emissions
in the EMDA and EMS2–5 experiments over the YRD and NCP.

to optimize the NOx emissions. This work will be followed
by an ongoing study using the available VOC observations.

Although we do not assimilate O3 observations, model res-
olution still has some influence on inversion results. In our
previous study (Feng et al., 2022), we inferred the NOx emis-
sions over the YRD in China using NO2 observations, which
has a spatial resolution of 12 km. The study period, assim-
ilated observations, and inversion settings are the same as
in this study. We compared the posterior emissions of the
YRD between this study and Feng et al. (2022). The results
showed that there was a similar spatial distribution of poste-
rior emissions inferred using the two resolutions (36 km vs.

Figure 15. Time series of the daily concentrations (CONC, left) and
root mean square error (RMSE, right) obtained from CEP, VEP, and
VEP6. The simulations were verified against the assimilated sites.

Figure 16. Relative differences in CO, SO2, NOx , PPM2.5, and
PMC emissions (%, the ratio of the absolute difference to EMDA)
between the EMDA and EMS7 experiments.

12 km) (Fig. S12), but the total NOx emission in the YRD
inferred using the 36 km resolution was about 8.8 % higher
than that inferred using the 12 km resolution. The differences
are mainly caused by meteorological differences at differ-
ent resolutions. This indicates that coarse model resolution
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may lead to some overestimation of the inverted emissions.
In addition, as shown previously, the concentrations after DA
were evidently underestimated in western China, indicating
that the inverted emissions over these regions still have large
uncertainties because of the sparsity of observations, which
are spatially insufficient for sampling the inhomogeneity in
emissions. Therefore, further investigations with the joint as-
similation of multi-source observations (e.g., satellite) are
underway.

NOx is mainly emitted by transportation (Li et al., 2017),
which can reflect the level of economic activity to a certain
extent. Weekly emission changes were explored to verify the
performance of the system in depicting emission changes
(Fig. S13). Although the “weekend effect” of emissions in
China is not significant (Wang et al., 2014, 2015), the poste-
rior NOx emission changes are in good agreement with the
observations. In our previous studies (Feng et al., 2020a, b),
this system was successfully applied to optimize NOx and
CO emissions. The inverted emission changes were also in
line with the epidemic control time points. Additionally, the
emission changes can reflect the emission migration from de-
veloped or urban areas to developing or surrounding areas
in recent years, which is consistent with the emission con-
trol strategies in China. Although the system did not consider
the model error, resulting in a certain difference between the
posterior and actual emissions, the spatiotemporal changes
in posterior emissions were relatively reasonable and can be
used to monitor emission changes and inform emission reg-
ulations.

5 Summary and conclusions

In this study, we developed a Regional multi-Air Pollutant
Assimilation System (RAPAS v1.0) based on the WRF–
CMAQ model, 3D-Var algorithm, and EnKF algorithm. RA-
PAS can quantitatively optimize gridded emissions of CO,
SO2, NOx , PPM2.5, and PMC on a regional scale by simul-
taneously assimilating hourly in situ measurements of CO,
SO2, NO2, PM2.5, and PM10. This system includes two sub-
systems: the IA subsystem and the EI subsystem, which op-
timize chemical ICs and infer anthropogenic emissions.

Taking the 2016 MEIC in December as a priori, the
emissions of CO, SO2, NOx , PPM2.5, and PMC in De-
cember 2016 were inferred by assimilating the correspond-
ing nationwide observations over China. The optimized
ICs and posterior emissions were examined against assimi-
lated and independent observations through parallel forward-
simulation experiments with and without DA. Sensitivity
tests were performed to investigate the impact of different
inversion processes, prior emissions, prior uncertainties, and
observation errors on emission estimates.

RAPAS showed a good performance in assimilating sur-
face in situ observations, with the calculated emission un-
certainties reduced by 44.4 %, 45.0 %, 34.3 %, 51.8 %, and

56.1 % for CO, SO2, NOx , PPM2.5, and PMC, respectively.
It can also significantly improve the simulations; the RM-
SEs of the simulated concentrations with posterior emis-
sions decreased by 40.1 %–56.3 %, and the CORRs increased
from 0.26–0.66 to 0.69–0.87 for different species. The OSSE
experiment showed that the errors of posterior CO, SO2,
NOx , PPM2.5, and PMC could be reduced by 78.4 %, 86.1 %,
78.8 %, 77.6 %, and 72.0 %, respectively. Overall, compared
with the prior emissions (MEIC 2016), the posterior emis-
sions increased by 129 %, 20 %, 5 %, and 95 % for CO, SO2,
NOx , and PPM2.5, respectively. The posterior PMC emis-
sions, which included anthropogenic and natural dust con-
tributions, increased by 1045 %. Sensitivity tests with differ-
ent prior inventories showed that the observations in China
were sufficient to infer emission and that our system was
less dependent on prior inventories. Additionally, sensitivity
tests with different prior uncertainties indicated that when the
posterior emissions were larger than the prior emissions, the
emissions decreased (increased) with decreases (increases)
in uncertainties because of the different convergence rates.
These results demonstrate the advantage of the two-step
method in emission inversion in that the inversion errors of
the last window can be transferred to the current window for
further optimization, thus enhancing the robustness of emis-
sions estimation using nationwide observations over China
with RAPAS. It should be noted that the system usually re-
sponds slowly to too small a priori uncertainties or too large
observation errors, which may result in large errors in the
estimated emissions.

In summary, the comprehensive evaluation and sensitiv-
ity tests revealed that RAPAS could serve as a useful tool
for accurately quantifying the spatial and temporal changes
in multi-species emissions at regional scales and in near-real
time, which will be helpful for air pollution control in China
and other regions around the world with dense ground obser-
vation networks.

Code and data availability. The codes of RAPAS v1.0 are avail-
able at https://doi.org/10.5281/zenodo.5566225 (Feng and Jiang,
2021a). The WRF model code is open-source code and can be ob-
tained from the WRF model’s user page (https://www2.mmm.ucar.
edu/wrf/users, WRF Users Page, 2021). The CMAQ model is avail-
able through an open license as well (https://www.epa.gov/cmaq,
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