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Text S1 

Figure S3 shows the analysis increments (assimilation minus control) of the 6 species 

averaged over all initializations. It could be found that the impact of 3DVAR is not only 

concentrated around the measurement sites, but also transported to downwind areas as 

discussed in Feng et al. (2018). The longer a species lives, the farther the assimilation 

benefits are transmitted (e.g., CO). The positive (negative) increments indicate 

underestimated (overestimated) emissions in local or upwind areas. Specifically, the 

positive increments of CO and PMC are generally distributed nationwide, especially in 

the northern part of China, indicating that the emissions of CO and PMC over the 

mainland China were estimated, which may be related to the underestimated residential 

sources (e.g., coal heating) (Zhi et al., 2017) and local dust caused by higher wind 

speeds, respectively. For SO2, NO2 and PM2.5, the negative increments are mainly 

located in the North China Plain (NCP), the Yangtze River Delta (YRD), and the 

Sichuan Basin (SCB), as well as Central China, and the significant positive increments 

mainly correspond with resource-abundant northern regions (e.g., Northeast China, 

Northwest China, etc.). The increments of PM2.5 are related not only to inaccurate 

emissions but also to the concentration biases of its precursor, which can affect the 

biases of PM2.5 in downwind areas to some extent. The increments of O3 are negatively 

correlated with those of NO2 in terms of their spatial distribution because of strong NO-

titration during the winter (Huang et al., 2020; Shi and Brasseur, 2020).  

 

 

 

 

 

 

 



Text S2 

In the EnKF-based inverse estimation scheme, the uncertainty is represented by the 

spread of the ensemble samples (Tang et al., 2013). The posterior and prior uncertainties 

are the standard deviations of the prior and posterior perturbations of ��
� and ��

�. ��� 

was perturbed from the prior emissions ��
� by adding a randomly perturbed item of 

���
� , which was drawn from Gaussian distributions with a mean of zero and the 

standard deviation of the prior emission uncertainty in each grid. After constrained 

using observations, the perturbed emissions of ��
� is changed to ��

� according to Eq. 

2 ~ 5. 
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Figure S1 Comparison of emissions of different species inferred by selecting different 

ensemble numbers. CO unit:10 Gg; others units: Gg. 

 

Figure S2. Hourly emission variabilities. 

 



 

Figure S3. Mean differences of the background and analysis fields of (a) CO, (b) 

SO2, (C) NO2, (d) O3, (e) PM2.5 and (f) PMC at the lowest model level (analysis fields 

minus background fields). All data are averaged using the fields at 0000, 0600, 1200, 

and 1800 UTC during the period of 27 to 01 December, 2016. 

 

 



 

Figure S4. Spatial distribution of the time-averaged prior emissions (left column, 

MEIC 2016), posterior emissions (middle column), and differences (right column, 

posterior minus prior) in July 2016. 

 



 

Figure S5. The prior and posterior emissions (kton/day) in July and December 2016 

over the mainland China. 

 

Figure S6. Time series of the daily PM2.5 concentrations (CONC, μg m-3) averaged 

over the whole domain obtained from the observations and simulations. CEP1 and 

VEP1 represent simulations using prior emissions taken from MEIC 2012 and posterior 

emissions inferred by EMS1 experiment, respectively. 



 

Figure S7. Spatial distribution of the time-averaged posterior emissions of EMDA and 

EMS6, and differences among prior emissions (MEIC) and posterior emissions of 

EMDA and EMS6.  

 

 

 

 

 

 



 

 

Figure S8. Time series of the daily concentrations (CONC, left, μg m-3) and root mean 

square error (RMSE, right, μg m-3) obtained from CEP, VEP, and VEP6. The 

simulations were verified against the independent sites. 

 

 

 



 

Figure S9. Changes of the (a) BIAS (μg m-3) and (b) RMSE (μg m-3) of the simulated 

NO2 between VEP and VEP6 experiments. 

 

Figure S10. Relative changes (a) in a posteriori emission estimates of CO, SO2, NOx, 

PPM2.5 and PMC, and χ2 statistics (b) of these state vectors in EMS6 experiment. 



 

Figure S11. Spatial distribution of (a-d) the prior, posterior, ‘true’ emissions, and their 

differences (kg/d), as well as (e) the changes in NOx emissions and simulated O3 

concentrations before and after assimilating O3 observation. The "true" emissions were 

reduced by 40% to represent the a priori emissions in the first OSSE experiment, and a 

representative grid with a negative NOx adjustment were selected to demonstrate the 

limitations of assimilating O3 in NOx adjustment in the second OSSE experiment. 

 

 

 



 

Figure S12. Spatial distribution of the time-averaged posterior NOx emissions (kg day-

1km-2) and differences between posterior and prior NOx emissions (posterior minus 

prior) at 36 and 12 km resolutions.  

 

 

Figure S13. Weekly variation in posterior NOx emission and NO2 observation.  



Table S1. Estimation of posterior emissions (kton/day) and relative changes (%) 

compared to prior emissions in each province and the mainland China. 

Region 
CO SO2 NOX PPM2.5 PMC 

Post. Diff. Post. Diff. Post. Diff. Post. Diff. Post. Diff. 

Mainland 1141.9 129.4 54.7 19.7 69.4 5.1 55.4 95.4 97.6 1044.8 

Shanghai 4.75 12.5 0.25 -59.5 0.74 -44.0 0.11 -40.8 0.22 249.1 

Jiangsu 37.27 30.9 1.10 -23.9 2.90 -38.6 0.96 -34.3 2.46 529.6 

Zhejiang 20.15 80.3 0.59 -30.0 2.68 1.9 0.86 77.9 2.15 876.9 

Anhui 32.88 69.6 0.79 21.3 2.79 1.5 1.28 -3.0 2.50 495.6 

Shandong 93.11 115.9 3.33 -17.5 4.26 -32.7 3.07 19.3 6.11 742.6 

Beijing 6.34 108.4 0.06 -15.7 0.35 22.0 0.23 80.7 0.19 544.3 

Tianjin 13.40 372.2 0.11 -33.6 0.59 53.3 0.23 73.7 0.35 933.0 

Hebei 125.45 158.4 3.47 10.9 5.49 1.1 6.00 176.3 8.23 1176.7 

Shanxi 82.17 210.9 9.93 86.9 2.88 -15.4 5.66 236.1 7.20 1274.8 

Neimenggu 59.12 231.2 5.48 135.8 3.92 29.0 2.73 163.7 7.11 2144.3 

Henan 69.99 120.2 1.14 -39.6 3.09 -22.7 3.05 66.6 6.26 1008.4 

Hunan 40.59 56.8 1.52 -40.3 2.36 -5.2 0.69 -52.9 2.98 481.5 

Hubei 38.80 73.1 0.57 -76.5 2.27 -1.9 1.17 -12.1 2.32 498.7 

Jiangxi 28.71 112.3 1.63 83.0 1.78 19.0 1.52 110.3 2.65 777.5 

Guangdong 52.97 175.3 1.19 -32.7 4.66 31.1 1.91 89.4 2.65 565.6 

Guangxi 24.81 120.8 1.18 -1.5 2.30 52.2 1.70 103.6 1.75 512.5 

Fujian 12.22 113.8 0.81 60.3 1.91 57.8 0.75 99.0 1.35 904.3 

Hainan 1.94 20.5 0.14 -10.0 0.31 6.6 0.09 -17.0 0.07 106.9 

Liaoning 49.69 175.2 4.04 178.8 2.71 -5.9 1.99 94.7 3.93 1377.3 

Heilongjiang 38.64 90.2 1.10 25.7 1.82 -2.6 1.40 25.6 0.99 345.6 

Jilin 35.61 176.2 3.36 376.2 2.46 69.2 1.72 132.1 0.87 437.8 

Shaanxi 49.30 212.9 1.62 -9.5 2.40 37.7 3.64 294.2 7.25 2750.2 

Gansu 49.41 423.7 1.51 118.6 1.97 100.1 3.27 521.4 9.64 8264.2 

Xinjiang 39.94 383.4 1.48 21.0 2.69 48.2 4.29 720.3 2.69 1523.5 

Qinghai 7.15 236.0 0.31 128.4 0.36 23.4 0.36 147.3 1.27 2948.9 

Ningxia 14.34 523.8 1.96 129.6 1.06 16.6 1.14 478.6 2.95 3603.5 

Sichuan 36.88 46.3 1.11 -43.2 3.20 7.4 1.66 8.1 4.54 1073.8 

Chongqing 9.75 24.2 0.48 -69.2 1.11 4.6 0.26 -51.4 0.77 385.1 

Guizhou 29.82 28.9 2.78 -8.6 2.13 68.9 1.99 60.3 3.26 739.0 

Yunnan 35.65 129.2 1.70 15.5 1.96 32.2 1.52 56.9 2.49 728.5 

Xizang 1.07 235.3 0.004 23.1 0.26 95.7 0.13 888.7 0.46 15960.2 



Table S2. Statistics comparing the pollution concentrations from the simulations with 

prior and posterior emissions against observations for July. CO unit: mg m-3; others 

units: μg m-3. 

Species 
Mean 

Obs. 

Mean Sim. BIAS RMSE CORR  

CEP* VEP* CEP* VEP* CEP* VEP* CEP* VEP*  

CO 0.79 0.33 0.63 -0.46 -0.16 0.58 0.35 0.25 0.65  

SO2 12.9 15.6 9.6 2.7 -3.3 19.7 7.2 0.12 0.71  

NO2 20.0 23.0 16.5 3.0 -3.5 22.0 6.8 0.47 0.81  

PM2.5 29.2 21.9 23.3 -7.3 -6.0 21.1 13.9 0.51 0.76  

PMC 53.6 27.6 42.3 -26.0 -11.3 42.3 30.9 0.38 0.61  

* BIAS, mean bias; RMSE, root mean square error; CORR, correlation coefficient 
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