Articles | Volume 16, issue 20
https://doi.org/10.5194/gmd-16-5703-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-5703-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
URock 2023a: an open-source GIS-based wind model for complex urban settings
Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
CNRS, University of Savoie Mont-Blanc, LOCIE, UMR 5271, Le Bourget du Lac, France
CNRS, Lab-STICC, UMR 6285, Vannes, France
Fredrik Lindberg
Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Sandro Oswald
Institute of Meteorology, University of Natural Resources and Life Science (BOKU), Vienna, Austria
Related authors
Jérémy Bernard, Tim Nagel, Valéry Masson, Aude Lemonsu, Jean Wurtz, Pierre Tulet, and Quentin Rodier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4829, https://doi.org/10.5194/egusphere-2025-4829, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cities are particularly vulnerable to heat-waves because of their dense population combined with an amplification of the heat hazard caused by the urban heat island phenomenon. Heat event are sometimes associated with aerosol plume in the atmosphere, which affect the thermal comfort. This study shows that it can result in a thermal comfort improvement of up to 1 °C in sunny areas in cities while no difference in the shade of suburban areas.
Jérémy Bernard, Erwan Bocher, Matthieu Gousseff, François Leconte, and Elisabeth Le Saux Wiederhold
Geosci. Model Dev., 17, 2077–2116, https://doi.org/10.5194/gmd-17-2077-2024, https://doi.org/10.5194/gmd-17-2077-2024, 2024
Short summary
Short summary
Geographical features may have a considerable effect on local climate. The local climate zone (LCZ) system proposed by Stewart and Oke (2012) is seen as a standard approach for classifying any zone according to a set of geographic indicators. While many methods already exist to map the LCZ, only a few tools are openly and freely available. We present the algorithm implemented in GeoClimate software to identify the LCZ of any place in the world using OpenStreetMap data.
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Jérémy Bernard, Tim Nagel, Valéry Masson, Aude Lemonsu, Jean Wurtz, Pierre Tulet, and Quentin Rodier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4829, https://doi.org/10.5194/egusphere-2025-4829, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cities are particularly vulnerable to heat-waves because of their dense population combined with an amplification of the heat hazard caused by the urban heat island phenomenon. Heat event are sometimes associated with aerosol plume in the atmosphere, which affect the thermal comfort. This study shows that it can result in a thermal comfort improvement of up to 1 °C in sunny areas in cities while no difference in the shade of suburban areas.
Jérémy Bernard, Erwan Bocher, Matthieu Gousseff, François Leconte, and Elisabeth Le Saux Wiederhold
Geosci. Model Dev., 17, 2077–2116, https://doi.org/10.5194/gmd-17-2077-2024, https://doi.org/10.5194/gmd-17-2077-2024, 2024
Short summary
Short summary
Geographical features may have a considerable effect on local climate. The local climate zone (LCZ) system proposed by Stewart and Oke (2012) is seen as a standard approach for classifying any zone according to a set of geographic indicators. While many methods already exist to map the LCZ, only a few tools are openly and freely available. We present the algorithm implemented in GeoClimate software to identify the LCZ of any place in the world using OpenStreetMap data.
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Cited articles
Bernard, J.: URock 2023a: Data and Code to use to reproduce the evaluation of the model (pre_submission), Zenodo [code, data set], https://doi.org/10.5281/zenodo.7681245, 2023. a, b, c
Bocher, E., Petit, G., Fortin, N., and Palominos, S.: H2GIS a spatial database
to feed urban climate issues, in: 9th International Conference on Urban
Climate (ICUC9), Toulouse, France,
20–24 July 2015, https://shs.hal.science/halshs-01179756/, 2015. a
Bozorgmehr, B., Willemsen, P., Gibbs, J. A., Stoll, R., Kim, J.-J., and
Pardyjak, E. R.: Utilizing dynamic parallelism in CUDA to accelerate a 3D
red-black successive over relaxation wind-field solver, Environ. Modell.
Softw., 137, 104958, https://doi.org/10.1016/j.envsoft.2021.104958,
2021. a
Brown, M. J., Gowardhan, A., and Pardyjak, E. R.: Evaluation of a fast-response
pressure solver for a variety of building shapes and layouts, The Seventh Conference on Coastal Atmospheric and Oceanic Prediction and Processes joint with the Seventh Symposium on the Urban Environment
San Diego, CA, USA,
10–13 September 2007,
2009b. a
Brown, M. J., Gowardhan, A. A., Nelson, M. A., Williams, M. D., and Pardyjak,
E. R.: QUIC transport and dispersion modelling of two releases from the Joint
Urban 2003 field experiment, Int. J. Environ. Pollut., 52, 263–287,
https://doi.org/10.1504/IJEP.2013.058458, 2013. a
Bruse, M.: ENVI-met 3.0: updated model overview, University of Bochum,
https://www.envi-met.com (last access: 2 October 2023), 2004. a
Calzolari, G. and Liu, W.: Deep learning to replace, improve, or aid CFD
analysis in built environment applications: A review, Build. Environ., 206,
108315, https://doi.org/10.1016/j.buildenv.2021.108315, 2021. a
Cionco, R. M.: A wind-profile index for canopy flow, Bound.-Lay. Meteorol., 3,
255–263, https://doi.org/10.1007/BF02033923, 1972. a
Fröhlich, D.: Development of a microscale model for the thermal environment
in complex areas, PhD thesis, Dissertation, Albert-Ludwigs-Universität
Freiburg, https://doi.org/10.6094/UNIFR/11614, 2016. a
Fröhlich, D. and Matzarakis, A.: Spatial estimation of thermal indices in
urban areas-basics of the SkyHelios model, Atmosphere-Basel, 9, 209,
https://doi.org/10.3390/atmos9060209, 2018. a
Girard, P., Nadeau, D. F., Pardyjak, E. R., Overby, M., Willemsen, P., Stoll,
R., Bailey, B. N., and Parlange, M. B.: Evaluation of the QUIC-URB wind
solver and QESRadiant radiation-transfer model using a dense array of urban
meteorological observations, Urban climate, 24, 657–674,
https://doi.org/10.1016/j.uclim.2017.08.006, 2018. a, b
Hanna, S. and Britter, R.: Wind flow and vapor cloud dispersion at industrial
sites, Am. Inst, Chem. Eng-New York,
https://doi.org/10.1002/9780470935613, 2002. a, b
Huttner, S. and Bruse, M.: Numerical modeling of the urban climate–a preview
on ENVI-met 4.0, in: 7th international conference on urban climate ICUC-7,
Yokohama, Japan, vol. 29, 29 June–3 July 2009. a
Johansson, L., Onomura, S., Lindberg, F., and Seaquist, J.: Towards the
modelling of pedestrian wind speed using high-resolution digital surface
models and statistical methods, Theor. Appl. climatol., 124, 189–203,
https://doi.org/10.1007/s00704-015-1405-2, 2016. a, b
Kastner, P. and Dogan, T.: Eddy3D: A toolkit for decoupled outdoor thermal
comfort simulations in urban areas, Build. Environ., 212, 108639,
https://doi.org/10.1016/j.buildenv.2021.108639, 2022. a
Li, R., Zeng, F., Zhao, Y., Wu, Y., Niu, J., Wang, L. L., Gao, N., and Shi, X.:
CFD simulations of the tree effect on the outdoor microclimate by coupling
the canopy energy balance model, Build. Environ., 230, 109995,
https://doi.org/10.1016/j.buildenv.2023.109995, 2023. a
Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T.,
Theeuwes, N. E., Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y., Jonsson, P., Krave, N., Liu, D., Meyer, D., Olofson, K. F. G., Tan, J., Wästberg, D., Xue, L., and Zhang, Z.: Urban
Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based
climate services, Environ. Modell. Softw., 99, 70–87,
https://doi.org/10.1016/j.envsoft.2017.09.020, 2018. a
Macdonald, R.: Modelling the mean velocity profile in the urban canopy layer,
Bound.-Lay. Meteorol., 97, 25–45,
https://doi.org/10.1023/A:1002785830512, 2000. a
Margairaz, F., Eshagh, H., Hayati, A. N., Pardyjak, E. R., and Stoll, R.:
Development and evaluation of an isolated-tree flow model for
neutral-stability conditions, Urban Climate, 42, 101083,
https://doi.org/10.1016/j.uclim.2022.101083, 2022. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Matzarakis, A. and Endler, C.: Physiologically equivalent temperature and
climate change in Freiburg, Eighth Symposium on the Urban
Environment, American Meteorological Society, Phoenix, AZ,
10–15 January 2009, 4.2, 1–8, 2009. a
Matzarakis, A., Gangwisch, M., and Fröhlich, D.: RayMan and SkyHelios
Model, in: Urban Microclimate Modelling for Comfort and Energy Studies,
339–361, Springer, https://doi.org/10.1007/978-3-030-65421-4_16, 2021. a
Meng, Y. and Hibi, K.: Turbulent measurments of the flow field around a
high-rise building, Wind Engineers, JAWE, 1998, 55–64,
https://doi.org/10.5359/jawe.1998.76_55, 1998. a
Morille, B., Lauzet, N., and Musy, M.: SOLENE-microclimate: a tool to evaluate
envelopes efficiency on energy consumption at district scale, Enrgy. Proced.,
78, 1165–1170, https://doi.org/10.1016/j.egypro.2015.11.088, 2015.
a
Musy, M., Azam, M.-H., Guernouti, S., Morille, B., and Rodler, A.: The
SOLENE-Microclimat Model: Potentiality for Comfort and Energy Studies, in:
Urban Microclimate Modelling for Comfort and Energy Studies, 265–291,
Springer, https://doi.org/10.1007/978-3-030-65421-4_13, 2021. a
Ratto, C., Festa, R., Romeo, C., Frumento, O., and Galluzzi, M.:
Mass-consistent models for wind fields over complex terrain: the state of the
art, Environ. Softw., 9, 247–268,
https://doi.org/10.1016/0266-9838(94)90023-X, 1994. a
Robinson, D., Brambilla, S., Brown, M. J., Conry, P., Quaife, B., and Linn,
R. R.: QUIC-URB and QUIC-fire extension to complex terrain: Development of a
terrain-following coordinate system, Environ. Modell. Softw., 159, 105579,
https://doi.org/10.1016/j.envsoft.2022.105579, 2023. a
Sherman, C. A.: A mass-consistent model for wind fields over complex terrain,
J. Appl. Meteorol. Clim., 17, 312–319, 1978. a
Singh, B., Hansen, B. S., Brown, M. J., and Pardyjak, E. R.: Evaluation of the
QUIC-URB fast response urban wind model for a cubical building array and wide
building street canyon, Environ. Fluid Mech., 8, 281–312,
https://doi.org/10.1007/s10652-008-9084-5, 2008. a
Tominaga, Y., Mochida, A., Shirasawa, T., Yoshie, R., Kataoka, H., Harimoto, K., and Nozu, T.: Cross Comparisons of CFD Results of Wind Environment at Pedestrian Level around a High-rise Building and within a Building Complex,
J. Asian Archit. Build., 3, 63–70, https://doi.org/10.3130/jaabe.3.63, 2004. a
Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M.,
and Shirasawa, T.: AIJ guidelines for practical applications of CFD to
pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerod., 96,
1749–1761, https://doi.org/10.1016/j.jweia.2008.02.058, 2008. a
Wellens, A., Moussiopoulous, N., and Sahm, P.: Comparison of a diagnostic model
and the MEMO prognostic model to calculate wind fields in Mexico City, WIT
Trans. Ecol. Envir., 3, 15–22, 1970. a
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This paper shows that the new wind model, URock, generally fits observations well and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students, and practitioners).
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of...