Articles | Volume 16, issue 16
https://doi.org/10.5194/gmd-16-4811-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4811-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Institute of Marine Sciences (ISMAR), National Research Council
(CNR), Rome, Italy
National Research Center for High Performance Computing,
Big Data and Quantum Computing, ICSC, Italy
Yassmin Hesham Essa
Institute of Marine Sciences (ISMAR), National Research Council
(CNR), Rome, Italy
Central Laboratory for Agricultural Climate (CLAC), Agricultural
Research Center (ARC), Cairo, Egypt
Vincenzo de Toma
Institute of Marine Sciences (ISMAR), National Research Council
(CNR), Rome, Italy
Alessandro Anav
National Research Center for High Performance Computing,
Big Data and Quantum Computing, ICSC, Italy
Italian National Agency for New Technologies, Energy and
Sustainable Economic Development (ENEA), Rome, Italy
Gianmaria Sannino
National Research Center for High Performance Computing,
Big Data and Quantum Computing, ICSC, Italy
Italian National Agency for New Technologies, Energy and
Sustainable Economic Development (ENEA), Rome, Italy
Rosalia Santoleri
Institute of Marine Sciences (ISMAR), National Research Council
(CNR), Rome, Italy
Chunxue Yang
Institute of Marine Sciences (ISMAR), National Research Council
(CNR), Rome, Italy
National Research Center for High Performance Computing,
Big Data and Quantum Computing, ICSC, Italy
Related authors
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet Discuss., https://doi.org/10.5194/sp-2023-28, https://doi.org/10.5194/sp-2023-28, 2023
Preprint under review for SP
Short summary
Short summary
The variability of the manometric sea level (i.e., the sea level mass component) in three ocean basins is investigated in this study using three different techniques (reanalyses, gravimetry, and altimetry in combination with in-situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both subannual and interannual time scales.
Eric Jansen, Sam Pimentel, Wang-Hung Tse, Dimitra Denaxa, Gerasimos Korres, Isabelle Mirouze, and Andrea Storto
Ocean Sci., 15, 1023–1032, https://doi.org/10.5194/os-15-1023-2019, https://doi.org/10.5194/os-15-1023-2019, 2019
Short summary
Short summary
The assimilation of satellite SST data into ocean models is complex. The temperature of the thin uppermost layer that is measured by satellites may differ from the much thicker upper layer used in numerical models, leading to biased results. This paper shows how canonical correlation analysis can be used to generate observation operators from existing datasets of model states and corresponding observation values. This type of operator can correct for near-surface effects when assimilating SST.
Gerasimos Korres, Dimitra Denaxa, Eric Jansen, Isabelle Mirouze, Sam Pimentel, Wang-Hung Tse, and Andrea Storto
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-158, https://doi.org/10.5194/os-2018-158, 2019
Preprint withdrawn
Short summary
Short summary
A statistical-dynamical observation operator (SOSSTA) for satellite SST data assimilation able to account for SST diurnal variability, is formulated and implemented into the POSEIDON forecasting system (Aegean Sea). Model experiments where daytime SST retrievals from the SEVIRI infrared radiometer are introduced into the data assimilation procedure through the application of the observation operator, showed an improvement of the POSEIDON modelling system performance.
Marianne Pietschnig, Michael Mayer, Takamasa Tsubouchi, Andrea Storto, Sebastian Stichelberger, and Leopold Haimberger
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-98, https://doi.org/10.5194/os-2017-98, 2017
Revised manuscript not accepted
Short summary
Short summary
New estimates of volume and temperature transports into the Arctic Ocean through the four major gateways (Davis, Fram and Bering Strait and the Barents Sea Opening) have recently become available. These estimates are derived from moored observations. In this study, the same transports derived from a recent ocean reanalysis are compared to the observation-based estimates in the straits. In addition, cross-section plots of velocity, temperature and temperature flux density are investigated.
Zhaoyi Wang, Andrea Storto, Nadia Pinardi, Guimei Liu, and Hui Wang
Nat. Hazards Earth Syst. Sci., 17, 17–30, https://doi.org/10.5194/nhess-17-17-2017, https://doi.org/10.5194/nhess-17-17-2017, 2017
Andrea Storto and Simona Masina
Earth Syst. Sci. Data, 8, 679–696, https://doi.org/10.5194/essd-8-679-2016, https://doi.org/10.5194/essd-8-679-2016, 2016
Short summary
Short summary
A large number of applications related to the study of ocean climate require reliable datasets of the main physical variables of the ocean. Ocean reanalyses are a methodology based on the synthesis of information from ocean observations and models, and near-surface atmospheric observations into a dataset in a way as consistent in time as possible. In this paper, we describe and validate an upgraded version of the CMCC global ocean physical reanalysis (1980–present) at 1 / 4° resolution.
Paolo Oddo, Andrea Storto, Srdjan Dobricic, Aniello Russo, Craig Lewis, Reiner Onken, and Emanuel Coelho
Ocean Sci., 12, 1137–1153, https://doi.org/10.5194/os-12-1137-2016, https://doi.org/10.5194/os-12-1137-2016, 2016
Doroteaciro Iovino, Simona Masina, Andrea Storto, Andrea Cipollone, and Vladimir N. Stepanov
Geosci. Model Dev., 9, 2665–2684, https://doi.org/10.5194/gmd-9-2665-2016, https://doi.org/10.5194/gmd-9-2665-2016, 2016
Short summary
Short summary
An 11-year simulation of a global eddying ocean (1/16) configuration is presented. Model performance is evaluated against observations and a twin 1/4 configuration. The model realistically represents the variability at upper and intermediate depths, the position and strength of the surface circulation, and exchanges of mass through key passages. Sea ice properties are close to satellite observations. This simulation constitutes the groundwork for future applications to short range ocean forecasting.
L. Visinelli, S. Masina, M. Vichi, and A. Storto
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-5399-2014, https://doi.org/10.5194/bgd-11-5399-2014, 2014
Revised manuscript not accepted
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet Discuss., https://doi.org/10.5194/sp-2023-28, https://doi.org/10.5194/sp-2023-28, 2023
Preprint under review for SP
Short summary
Short summary
The variability of the manometric sea level (i.e., the sea level mass component) in three ocean basins is investigated in this study using three different techniques (reanalyses, gravimetry, and altimetry in combination with in-situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both subannual and interannual time scales.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Alessandro Anav, Adriana Carillo, Massimiliano Palma, Maria Vittoria Struglia, Ufuk Utku Turuncoglu, and Gianmaria Sannino
Geosci. Model Dev., 14, 4159–4185, https://doi.org/10.5194/gmd-14-4159-2021, https://doi.org/10.5194/gmd-14-4159-2021, 2021
Short summary
Short summary
The Mediterranean Basin is a complex region, characterized by the presence of pronounced topography and a complex land–sea distribution including a considerable number of islands and straits; these features generate strong local atmosphere–sea interactions.
Regional Earth system models have been developed and used to study both present and future Mediterranean climate systems. The main aims of this paper are to present and evaluate the newly developed regional Earth system model ENEA-REG.
Jasdeep Singh Anand, Alessandro Anav, Marcello Vitale, Daniele Peano, Nadine Unger, Xu Yue, Robert J. Parker, and Hartmut Boesch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-125, https://doi.org/10.5194/bg-2021-125, 2021
Publication in BG not foreseen
Short summary
Short summary
Ozone damages plants, which prevents them from absorbing CO2 from the atmosphere. This poses a potential threat to preventing dangerous climate change. In this work, satellite observations of forest cover, ozone, climate, and growing season are combined with an empirical model to estimate the carbon lost due to ozone exposure over Europe. The estimated carbon losses agree well with prior modelled estimates, showing for the first time that satellites can be used to better understand this effect.
Eric Jansen, Sam Pimentel, Wang-Hung Tse, Dimitra Denaxa, Gerasimos Korres, Isabelle Mirouze, and Andrea Storto
Ocean Sci., 15, 1023–1032, https://doi.org/10.5194/os-15-1023-2019, https://doi.org/10.5194/os-15-1023-2019, 2019
Short summary
Short summary
The assimilation of satellite SST data into ocean models is complex. The temperature of the thin uppermost layer that is measured by satellites may differ from the much thicker upper layer used in numerical models, leading to biased results. This paper shows how canonical correlation analysis can be used to generate observation operators from existing datasets of model states and corresponding observation values. This type of operator can correct for near-surface effects when assimilating SST.
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019, https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
Gerasimos Korres, Dimitra Denaxa, Eric Jansen, Isabelle Mirouze, Sam Pimentel, Wang-Hung Tse, and Andrea Storto
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-158, https://doi.org/10.5194/os-2018-158, 2019
Preprint withdrawn
Short summary
Short summary
A statistical-dynamical observation operator (SOSSTA) for satellite SST data assimilation able to account for SST diurnal variability, is formulated and implemented into the POSEIDON forecasting system (Aegean Sea). Model experiments where daytime SST retrievals from the SEVIRI infrared radiometer are introduced into the data assimilation procedure through the application of the observation operator, showed an improvement of the POSEIDON modelling system performance.
Antonio Sanchez-Roman, Gabriel Jorda, Gianmaria Sannino, and Damia Gomis
Ocean Sci., 14, 1547–1566, https://doi.org/10.5194/os-14-1547-2018, https://doi.org/10.5194/os-14-1547-2018, 2018
Short summary
Short summary
We explore the vertical transfers of heat, salt and mass between the inflowing and outflowing layers at the Strait of Gibraltar by using a 3-D model with very high spatial resolution that allows for a realistic representation of the exchange. Results show a significant transformation of the water mass properties along their path through the strait, mainly induced by the recirculation of water between layers, while mixing seems to have little influence on the heat and salt exchanged.
Alessandro Anav, Chiara Proietti, Laurent Menut, Stefano Carnicelli, Alessandra De Marco, and Elena Paoletti
Atmos. Chem. Phys., 18, 5747–5763, https://doi.org/10.5194/acp-18-5747-2018, https://doi.org/10.5194/acp-18-5747-2018, 2018
Short summary
Short summary
Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, the role of water availability is often neglected in atmospheric chemistry modelling studies.
We show how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in semi-arid environments. Despite the fact that dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere.
Marianne Pietschnig, Michael Mayer, Takamasa Tsubouchi, Andrea Storto, Sebastian Stichelberger, and Leopold Haimberger
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-98, https://doi.org/10.5194/os-2017-98, 2017
Revised manuscript not accepted
Short summary
Short summary
New estimates of volume and temperature transports into the Arctic Ocean through the four major gateways (Davis, Fram and Bering Strait and the Barents Sea Opening) have recently become available. These estimates are derived from moored observations. In this study, the same transports derived from a recent ocean reanalysis are compared to the observation-based estimates in the straits. In addition, cross-section plots of velocity, temperature and temperature flux density are investigated.
Pierre Sicard, Alessandro Anav, Alessandra De Marco, and Elena Paoletti
Atmos. Chem. Phys., 17, 12177–12196, https://doi.org/10.5194/acp-17-12177-2017, https://doi.org/10.5194/acp-17-12177-2017, 2017
Short summary
Short summary
A few issues about surface ozone, e.g. a better understanding of spatial changes and a better assessment of ozone impacts worldwide, are still challenging. To overcome these issues, this study assessed, for the first time, the spatial and temporal changes in the projected potential ozone impacts on carbon assimilation of vegetation at global scale, by comparing the ozone potential injury at present with that expected at the end of the 21st century from different global chemistry models.
Gianpiero Cossarini, Stefano Querin, Cosimo Solidoro, Gianmaria Sannino, Paolo Lazzari, Valeria Di Biagio, and Giorgio Bolzon
Geosci. Model Dev., 10, 1423–1445, https://doi.org/10.5194/gmd-10-1423-2017, https://doi.org/10.5194/gmd-10-1423-2017, 2017
Short summary
Short summary
The BFMCOUPLER (v1.0) is a coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations. The online coupling is based on an open-source code characterizd by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. The BFMCOUPLER code is released along with an idealized problem (a cyclonic gyre in a mid-latitude closed basin).
Zhaoyi Wang, Andrea Storto, Nadia Pinardi, Guimei Liu, and Hui Wang
Nat. Hazards Earth Syst. Sci., 17, 17–30, https://doi.org/10.5194/nhess-17-17-2017, https://doi.org/10.5194/nhess-17-17-2017, 2017
Andrea Storto and Simona Masina
Earth Syst. Sci. Data, 8, 679–696, https://doi.org/10.5194/essd-8-679-2016, https://doi.org/10.5194/essd-8-679-2016, 2016
Short summary
Short summary
A large number of applications related to the study of ocean climate require reliable datasets of the main physical variables of the ocean. Ocean reanalyses are a methodology based on the synthesis of information from ocean observations and models, and near-surface atmospheric observations into a dataset in a way as consistent in time as possible. In this paper, we describe and validate an upgraded version of the CMCC global ocean physical reanalysis (1980–present) at 1 / 4° resolution.
Paolo Oddo, Andrea Storto, Srdjan Dobricic, Aniello Russo, Craig Lewis, Reiner Onken, and Emanuel Coelho
Ocean Sci., 12, 1137–1153, https://doi.org/10.5194/os-12-1137-2016, https://doi.org/10.5194/os-12-1137-2016, 2016
Doroteaciro Iovino, Simona Masina, Andrea Storto, Andrea Cipollone, and Vladimir N. Stepanov
Geosci. Model Dev., 9, 2665–2684, https://doi.org/10.5194/gmd-9-2665-2016, https://doi.org/10.5194/gmd-9-2665-2016, 2016
Short summary
Short summary
An 11-year simulation of a global eddying ocean (1/16) configuration is presented. Model performance is evaluated against observations and a twin 1/4 configuration. The model realistically represents the variability at upper and intermediate depths, the position and strength of the surface circulation, and exchanges of mass through key passages. Sea ice properties are close to satellite observations. This simulation constitutes the groundwork for future applications to short range ocean forecasting.
W. J. McKiver, G. Sannino, F. Braga, and D. Bellafiore
Ocean Sci., 12, 51–69, https://doi.org/10.5194/os-12-51-2016, https://doi.org/10.5194/os-12-51-2016, 2016
Short summary
Short summary
First modeling work comparing SHYFEM and MITgcm performance in the north Adriatic Sea; the treatment of heat/mass fluxes at the surface affects the models skill to reproduce coastal processes; high resolution is needed close to the coast, while lower resolution in the offshore is adequate to capture the dense water event; correct river discharges and temperature are vital for the reproduction of estuarine dynamics; non-hydrostatic processes do not influence the dense water formation.
L. Visinelli, S. Masina, M. Vichi, and A. Storto
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-5399-2014, https://doi.org/10.5194/bgd-11-5399-2014, 2014
Revised manuscript not accepted
Related subject area
Climate and Earth system modeling
Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation over the Pantanal wetlands
URock 2023a: an open-source GIS-based wind model for complex urban settings
DASH: a MATLAB toolbox for paleoclimate data assimilation
Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1)
All aboard! Earth system investigations with the CH2O-CHOO TRAIN v1.0
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
The Regional Aerosol Model Intercomparison Project (RAMIP)
DSCIM-Coastal v1.1: an open-source modeling platform for global impacts of sea level rise
TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change
Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1.0.0): how much improvement will be achieved with a wider hydrological variability?
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
Modeling and evaluating the effects of irrigation on land-atmosphere interaction in South-West Europe with the regional climate model REMO2020-iMOVE using a newly developed parameterization
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
A new simplified parameterization of secondary organic aerosol in the Community Earth System Model Version 2 (CESM2; CAM6.3)
Deep learning for stochastic precipitation generation – deep SPG v1.0
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea
Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0
Differentiable programming for Earth system modeling
Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning
An improved method of the Globally Resolved Energy Balance model by the Bayesian networks
Assessing predicted cirrus ice properties between two deterministic ice formation parameterizations
Various ways of using empirical orthogonal functions for climate model evaluation
C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling
FEOTS v0.0.0: a new offline code for the fast equilibration of tracers in the ocean
Pace v0.2: a Python-based performance-portable atmospheric model
Earth System Model Aerosol-Cloud Diagnostics Package (ESMAC Diags) Version 2: Assessments of Aerosols, Clouds and Aerosol-Cloud Interactions Through Field Campaign and Long-Term Observations
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023, https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
Short summary
The present paper introduces a floodplain scheme for a high-resolution land surface model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land–atmosphere fluxes and highlights the potential impact of floodplains on land–atmosphere interactions and the importance of integrating this module in coupled simulations.
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023, https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This paper shows that the new wind model, URock, generally fits observations well and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students, and practitioners).
Jonathan King, Jessica Tierney, Matthew Osman, Emily J. Judd, and Kevin J. Anchukaitis
Geosci. Model Dev., 16, 5653–5683, https://doi.org/10.5194/gmd-16-5653-2023, https://doi.org/10.5194/gmd-16-5653-2023, 2023
Short summary
Short summary
Paleoclimate data assimilation is a useful method that allows researchers to combine climate models with natural archives of past climates. However, it can be difficult to implement in practice. To facilitate this method, we present DASH, a MATLAB toolbox. The toolbox provides routines that implement common steps of paleoclimate data assimilation, and it can be used to implement assimilations for a wide variety of time periods, spatial regions, data networks, and analytical algorithms.
Siddhartha Bishnu, Robert R. Strauss, and Mark R. Petersen
Geosci. Model Dev., 16, 5539–5559, https://doi.org/10.5194/gmd-16-5539-2023, https://doi.org/10.5194/gmd-16-5539-2023, 2023
Short summary
Short summary
Here we test Julia, a relatively new programming language, which is designed to be simple to write, but also fast on advanced computer architectures. We found that Julia is both convenient and fast, but there is no free lunch. Our first attempt to develop an ocean model in Julia was relatively easy, but the code was slow. After several months of further development, we created a Julia code that is as fast on supercomputers as a Fortran ocean model.
Tyler Kukla, Daniel E. Ibarra, Kimberly V. Lau, and Jeremy K. C. Rugenstein
Geosci. Model Dev., 16, 5515–5538, https://doi.org/10.5194/gmd-16-5515-2023, https://doi.org/10.5194/gmd-16-5515-2023, 2023
Short summary
Short summary
The CH2O-CHOO TRAIN model can simulate how climate and the long-term carbon cycle interact across millions of years on a standard PC. While efficient, the model accounts for many factors including the location of land masses, the spatial pattern of the water cycle, and fundamental climate feedbacks. The model is a powerful tool for investigating how short-term climate processes can affect long-term changes in the Earth system.
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023, https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Short summary
The Canadian Atmospheric Model version 5 (CanAM5) is used to simulate on a global scale the climate of Earth's atmosphere, land, and lakes. We document changes to the physics in CanAM5 since the last major version of the model (CanAM4) and evaluate the climate simulated relative to observations and CanAM4. The climate simulated by CanAM5 is similar to CanAM4, but there are improvements, including better simulation of temperature and precipitation over the Amazon and better simulation of cloud.
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023, https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Short summary
Today, most climate model data are provided at daily time steps. However, more and more models from different sectors, such as energy, water, agriculture, and health, require climate information at a sub-daily temporal resolution for a more robust and reliable climate impact assessment. Here we describe and validate the Teddy tool, a new model for the temporal disaggregation of daily climate model data for climate impact analysis.
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023, https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023, https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
Short summary
A representation of rainbows is developed for a climate model. The diagnostic raises many common issues. Simulated rainbows are evaluated against limited observations. The pattern of rainbows in the model matches observations and theory about when and where rainbows are most common. The diagnostic is used to assess the past and future state of rainbows. Changes to clouds from climate change are expected to increase rainbows as cloud cover decreases in a warmer world.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023, https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023, https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to the existing approach for capturing key temporal trends in climate models. We combine probability, allowing us to represent uncertainty, with machine learning, a technique to learn relationships from data which are undiscoverable to humans. Our model is often superior to existing baselines when tested in a simple atmospheric simulation.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Nicholas Depsky, Ian Bolliger, Daniel Allen, Jun Ho Choi, Michael Delgado, Michael Greenstone, Ali Hamidi, Trevor Houser, Robert E. Kopp, and Solomon Hsiang
Geosci. Model Dev., 16, 4331–4366, https://doi.org/10.5194/gmd-16-4331-2023, https://doi.org/10.5194/gmd-16-4331-2023, 2023
Short summary
Short summary
This work presents a novel open-source modeling platform for evaluating future sea level rise (SLR) impacts. Using nearly 10 000 discrete coastline segments around the world, we estimate 21st-century costs for 230 SLR and socioeconomic scenarios. We find that annual end-of-century costs range from USD 100 billion under a 2 °C warming scenario with proactive adaptation to 7 trillion under a 4 °C warming scenario with minimal adaptation, illustrating the cost-effectiveness of coastal adaptation.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Chen Zhang and Tianyu Fu
Geosci. Model Dev., 16, 4315–4329, https://doi.org/10.5194/gmd-16-4315-2023, https://doi.org/10.5194/gmd-16-4315-2023, 2023
Short summary
Short summary
A new automatic calibration toolkit was developed and implemented into the recalibration of a 3-D water quality model, with observations in a wider range of hydrological variability. Compared to the model calibrated with the original strategy, the recalibrated model performed significantly better in modeled total phosphorus, chlorophyll a, and dissolved oxygen. Our work indicates that hydrological variability in the calibration periods has a non-negligible impact on the water quality models.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023, https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
Short summary
Water temperature (WT) datasets of low-order rivers are scarce. In this study, five different models are used to predict the WT of 83 rivers. Generally, the results show that the models' hyperparameter optimization is essential and that to minimize the prediction error it is relevant to apply all the models considered in this study. Results also show that there is a logarithmic correlation among the error of the predicted river WT and the watershed time of concentration.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Christina Asmus, Peter Hoffmann, Joni-Pekka Pietikäinen, Jürgen Böhner, and Diana Rechid
EGUsphere, https://doi.org/10.5194/egusphere-2023-890, https://doi.org/10.5194/egusphere-2023-890, 2023
Short summary
Short summary
Irrigation modifies the land surface and soil conditions. The caused effects can be quantified using numerical climate models. Our study introduces a new irrigation parameterization, which is simulating the effects of irrigation on land, atmosphere, and vegetation. We applied the parameterization and evaluated the results in their physical consistency. We found an improvement in the model results in the 2 m temperature representation in comparison with observational data for our study.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann
Geosci. Model Dev., 16, 3723–3748, https://doi.org/10.5194/gmd-16-3723-2023, https://doi.org/10.5194/gmd-16-3723-2023, 2023
Short summary
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
Geosci. Model Dev., 16, 3355–3373, https://doi.org/10.5194/gmd-16-3355-2023, https://doi.org/10.5194/gmd-16-3355-2023, 2023
Short summary
Short summary
Simultaneous modelling of ocean, sea ice, and atmosphere in coupled models is critical for understanding all of the processes that happen in the Antarctic. Here we have developed a coupled model for the Ross Sea, P-SKRIPS, that conserves heat and mass between the ocean and sea ice model (MITgcm) and the atmosphere model (PWRF). We have shown that our developments reduce the model drift, which is important for long-term simulations. P-SKRIPS shows good results in modelling coastal polynyas.
Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith P. Shine, Benjamin Lührs, and Florian Linke
Geosci. Model Dev., 16, 3313–3334, https://doi.org/10.5194/gmd-16-3313-2023, https://doi.org/10.5194/gmd-16-3313-2023, 2023
Short summary
Short summary
This paper describes a newly developed submodel ACCF V1.0 based on the MESSy 2.53.0 infrastructure. The ACCF V1.0 is based on the prototype algorithmic climate change functions (aCCFs) v1.0 to enable climate-optimized flight trajectories. One highlight of this paper is that we describe a consistent full set of aCCFs formulas with respect to fuel scenario and metrics. We demonstrate the usage of the ACCF submodel using AirTraf V2.0 to optimize trajectories for cost and climate impact.
Peter Ukkonen and Robin J. Hogan
Geosci. Model Dev., 16, 3241–3261, https://doi.org/10.5194/gmd-16-3241-2023, https://doi.org/10.5194/gmd-16-3241-2023, 2023
Short summary
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it is computationally too costly to simulate precisely. This has led to attempts to replace radiation codes based on physical equations with neural networks (NNs) that are faster but uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs only to predict optical properties is accurate and reliable.
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023, https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Short summary
Differential programming is a technique that enables the automatic computation of derivatives of the output of models with respect to model parameters. Applying these techniques to Earth system modeling leverages the increasing availability of high-quality data to improve the models themselves. This can be done by either using calibration techniques that use gradient-based optimization or incorporating machine learning methods that can learn previously unresolved influences directly from data.
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023, https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Short summary
This study conducts the first global evaluation of the latest generation of global climate models to simulate a set of fire weather indicators from the Canadian Fire Weather Index System. Models are shown to perform relatively strongly at the global scale, but they show substantial regional and seasonal differences. The results demonstrate the value of model evaluation and selection in producing reliable fire danger projections, ultimately to support decision-making and forest management.
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023, https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
Short summary
Desert dust has significant impacts on climate, public health, infrastructure and ecosystems. An impact assessment requires numerical predictions, which are challenging because the dust emissions are not well known. We present a novel approach using satellite observations and machine learning to more accurately estimate the emissions and to improve the model simulations.
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev., 16, 2995–3012, https://doi.org/10.5194/gmd-16-2995-2023, https://doi.org/10.5194/gmd-16-2995-2023, 2023
Short summary
Short summary
Using outputs of global biogeochemical ocean model and machine learning methods, we demonstrate that it will be possible to identify linkages between surface environmental and ecosystem structure and the export of carbon to depth by sinking organic particles using real observations. It will be possible to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
Zhenxia Liu, Zengjie Wang, Jian Wang, Zhengfang Zhang, Dongshuang Li, Zhaoyuan Yu, Linwang Yuan, and Wen Luo
Geosci. Model Dev., 16, 2939–2955, https://doi.org/10.5194/gmd-16-2939-2023, https://doi.org/10.5194/gmd-16-2939-2023, 2023
Short summary
Short summary
This study introduces an improved method of the Globally Resolved Energy Balance (GREB) model by the Bayesian network. The improved method constructs a coarse–fine structure that combines a dynamical model with a statistical model based on employing the GREB model as the global framework and utilizing Bayesian networks as the local optimization. The results show that the improved model has better applicability and stability on a global scale and maintains good robustness on the timescale.
Colin Tully, David Neubauer, and Ulrike Lohmann
Geosci. Model Dev., 16, 2957–2973, https://doi.org/10.5194/gmd-16-2957-2023, https://doi.org/10.5194/gmd-16-2957-2023, 2023
Short summary
Short summary
A new method to simulate deterministic ice nucleation processes based on the differential activated fraction was evaluated against a cumulative approach. Box model simulations of heterogeneous-only ice nucleation within cirrus suggest that the latter approach likely underpredicts the ice crystal number concentration. Longer simulations with a GCM show that choosing between these two approaches impacts ice nucleation competition within cirrus but leads to small and insignificant climate effects.
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
Geosci. Model Dev., 16, 2899–2913, https://doi.org/10.5194/gmd-16-2899-2023, https://doi.org/10.5194/gmd-16-2899-2023, 2023
Short summary
Short summary
A mathematical method known as common EOFs is not widely used within the climate research community, but it offers innovative ways of evaluating climate models. We show how common EOFs can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say that they represent a kind of machine learning (ML) for dealing with big data.
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev., 16, 2833–2850, https://doi.org/10.5194/gmd-16-2833-2023, https://doi.org/10.5194/gmd-16-2833-2023, 2023
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features, i.e. a series of parallel-optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g. more than 100 million horizontal grid cells).
Joseph Schoonover, Wilbert Weijer, and Jiaxu Zhang
Geosci. Model Dev., 16, 2795–2809, https://doi.org/10.5194/gmd-16-2795-2023, https://doi.org/10.5194/gmd-16-2795-2023, 2023
Short summary
Short summary
FEOTS aims to enhance the value of data produced by state-of-the-art climate models by providing a framework to diagnose and use ocean transport operators for offline passive tracer simulations. We show that we can capture ocean transport operators from a validated climate model and employ these operators to estimate water mass budgets in an offline regional simulation, using a small fraction of the compute resources required to run a full climate simulation.
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
Geosci. Model Dev., 16, 2719–2736, https://doi.org/10.5194/gmd-16-2719-2023, https://doi.org/10.5194/gmd-16-2719-2023, 2023
Short summary
Short summary
It is hard for scientists to write code which is efficient on different kinds of supercomputers. Python is popular for its user-friendliness. We converted a Fortran code, simulating Earth's atmosphere, into Python. This new code auto-converts to a faster language for processors or graphic cards. Our code runs 3.5–4 times faster on graphic cards than the original on processors in a specific supercomputer system.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-51, https://doi.org/10.5194/gmd-2023-51, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
To assess the ability of Earth System Model (ESM) predictions, we developed a tool called ESMAC Diags to understand the details of how aerosols, clouds, and ACI are represented in ESMs, and this paper describes its version 2 functionality. We compared the model predictions with measurements taken by airplanes, ships, satellites, and ground instruments over four regions over the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Cited articles
Akhtar, N., Brauch, J., Dobler, A., Béranger, K., and Ahrens, B.: Medicanes in an ocean–atmosphere coupled regional climate model, Nat. Hazards Earth Syst. Sci., 14, 2189–2201, https://doi.org/10.5194/nhess-14-2189-2014, 2014.
Akhtar, N., Brauch, J., and Ahrens, B.: Climate modeling over the Mediterranean Sea:
impact of resolution and ocean coupling, Clim. Dynam., 51, 933–948, 2018.
Anav, A., Carillo, A., Palma, M., Struglia, M. V., Turuncoglu, U. U., and Sannino, G.: The ENEA-REG system (v1.0), a multi-component regional Earth system model: sensitivity to different atmospheric components over the Med-CORDEX (Coordinated Regional Climate Downscaling Experiment) region, Geosci. Model Dev., 14, 4159–4185, https://doi.org/10.5194/gmd-14-4159-2021, 2021.
Artale, V., Calmanti, S., Carillo, A., Dell'Aquila, A., Herrmann, M., Pisacane, G., Ruti, P. M., Sannino, G., Struglia, M. V., Giorgi, F., Bi, X., Pal, J. S., Rauscher, S., and The PROTHEUS Group: An atmosphere–ocean regional
climate model for the Mediterranean area: assessment of a present climate
simulation, Clim. Dynam., 35, 721–740,
https://doi.org/10.1007/s00382-009-0691-8, 2010.
Astraldi, M., Balopoulos, S., Candela, J., Font, J., Gacic, M., Gasparini, G. P., Manca, B.,
Theocharis, A., and Tintore, J.: The role of straits and channels in understanding
the characteristics of Mediterranean circulation, Prog. Oceanogr.,
44, 65–108, 1999.
Bourdalle-Badie, R. and Treguier, A. M.: A climatology of run-off for the global
ocean-ice model ORCA025, report MOO-RP-425-365-MER, Mercator-Ocean:
Toulouse, France, 8 pp., https://www.drakkar-ocean.eu/publications/reports/runoff-mercator-06.pdf (last access: 14 August 2023), 2006.
Brewin, R. J. W., Sathyendranath, S., Müller, D., Brockmann, C.,
Deschamps, P.-Y., Devred, E., Doerffer, R., Fomferra, N., Franz, B., Grant, M.,
Groom, S., Horseman, A., Hu, C., Krasemann, H, Lee, Z. P., Maritorena, S.,
Mélin, F., Peters, M., Platt, T., Regner, P., Smyth, T., Steinmetz, F.,
Swinton, J., Werdell, J., and White, G. N.: The Ocean Colour Climate Change
Initiative: III. A round-robin comparison on in-water bio-optical
algorithms, Remote Sens. Environ., 162, 271–294,
https://doi.org/10.1016/j.rse.2013.09.016, 2015.
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S.: Ocean turbulence.
part I: One-point closure model-momentum and heat vertical diffusivities,
J. Phys. Oceanogr., 31, 1413–1426, 2001.
Cassola, F., Ferrari, F., Mazzino, A., and Miglietta, M. M.: The role of the sea on the flash floods events over Liguria,
Geoph. Res. Lett., 43, 3534–3542, 2016.
Cavicchia, L. and von Storch, H.: The simulation of medicanes in a
high-resolution regional climate model, Clim. Dynam., 39, 2273–2290,
https://doi.org/10.1007/s00382-011-1220-0, 2012.
Cavicchia, L., von Storch, H., and Gualdi, S.: Mediterranean Tropical-Like
Cyclones in Present and Future Climate, J. Climate, 27, 7493–7501,
https://doi.org/10.1175/JCLI-D-14-00339.1, 2014.
Choi, S.-J. and Lee, D.-K.: Impact of spectral nudging on the downscaling
of tropical cyclones in regional climate simulations, Adv. Atmos. Sci., 33,
730–742, https://doi.org/10.1007/s00376-016-5061-y, 2016.
Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An
Ensemble Version of the E-OBS Temperature and Precipitation Datasets, J.
Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, P.-A., and Samsó, M.: The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections, Earth Syst. Dynam., 13, 321–340, https://doi.org/10.5194/esd-13-321-2022, 2022.
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from
continents: Latitudinal and seasonal variations, J. Hydrometeorol.,
3, 660–687, 2002.
Davies, H. C. and Turner, R. E.: Updating prediction models by dynamical
relaxation: An examination of the technique, Q. J. Roy. Meteor. Soc.,
103, 225–245, 1977.
Davin, E. L., Maisonnave, E., and Seneviratne, S. I.: Is land surface processes
representation a possible weak link in current Regional Climate Models?,
Environ. Res. Lett., 11, 1–8, https://doi.org/10.1088/1748-9326/11/7/074027,
2016.
Duffourg, F. and Ducrocq, V.: Origin of the moisture feeding the Heavy Precipitating Systems over Southeastern France, Nat. Hazards Earth Syst. Sci., 11, 1163–1178, https://doi.org/10.5194/nhess-11-1163-2011, 2011.
Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, M., Grandi, A.,
Lyubartsev, V., Lecci, R., Aydogdu, A., Delrosso, D., Omar, M., Masina, S., Coppini, G., and Pinardi, N.: A High Resolution Reanalysis for the Mediterranean Sea,
Front. Earth Sci., 9, 702285, https://doi.org/10.3389/feart.2021.702285, 2021.
Feser, F., Rockel, B., von Storch, H., Winterfeldt, J., and Zahn, M.: Regional
Climate Models Add Value to Global Model Data: A Review and Selected
Examples, B. Am. Meteorol. Soc., 92, 1181–1192,
https://doi.org/10.1175/2011BAMS3061.1, 2011.
Fita, L., Polcher, J., Giannaros, T. M., Lorenz, T., Milovac, J., Sofiadis, G., Katragkou, E., and Bastin, S.: CORDEX-WRF v1.3: development of a module for the Weather Research and Forecasting (WRF) model to support the CORDEX community, Geosci. Model Dev., 12, 1029–1066, https://doi.org/10.5194/gmd-12-1029-2019, 2019.
Flaounas, E., Davolio, S., Raveh-Rubin, S., Pantillon, F., Miglietta, M. M.,
Gaertner, M. A., Hatzaki, M., Homar, V., Khodayar, S., Korres, G., Kotroni,
V., Kushta, J., Reale, M., and Ricard, D.: Mediterranean cyclones: current
knowledge and open questions on dynamics, prediction, climatology and
impacts, Weather Clim. Dynam., 3, 173–208,
https://doi.org/10.5194/wcd-3-173-2022, 2022.
Flather, R. A.: A Storm Surge Prediction Model for the Northern Bay of
Bengal with Application to the Cyclone Disaster in April 1991, J. Phys.
Oceanogr., 24, 172–190, https://doi.org/10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2, 1994.
Foley, A. M.: Uncertainty in regional climate modelling: A review, Prog.
Phys. Geogr.-Earth and Environment, 34, 647–670,
https://doi.org/10.1177/0309133310375654, 2010.
Giorgi, F.: Regional Dynamical Downscaling. Oxford Research Encyclopedia of
Climate Science,
https://oxfordre.com/climatescience/view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-784 (last access: 22 June 2023),
2020.
Giorgi, F.: Thirty years of regional climate modeling: Where are we and
where are we going next?, J. Geophys. Res.-Atmos., 124,
5696–5723, https://doi.org/10.1029/2018JD030094, 2019.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118,
6704–6716, https://doi.org/10.1002/2013JC009067, 2013.
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Hagemann, S. and Ho-Hagemann, H. T. M.: The Hydrological Discharge Model – a river runoff component for offline and coupled model applications (5.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5707587, 2021.
Hagemann, S. and Dümenil Gates, L.: Validation of the hydrological cycle of
ECMWF and NCEP reanalyses using the MPI hydrological discharge model, J.
Geophys. Res., 106, 1503–1510, 2001.
Hagemann, S., Stacke, T., and Ho-Hagemann, H.: High resolution discharge
simulations over Europe and the Baltic Sea catchment, Front. Earth Sci.,
8, 12, https://doi.org/10.3389/feart.2020.00012, 2020.
Harzallah, A., Jordà, G., Dubois, C., Sannino, G., Carillo, A., Li, L., Arsouze, T., Cavicchia, L., Beuvier, J., and Akhtar, N.: Long term evolution of heat
budget in the Mediterranean Sea from Med-CORDEX forced and coupled
simulations, Clim. Dynam., 51, 1145–1165,
https://doi.org/10.1007/s00382-016-3363-5, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. R. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hirons, L. C., Klingaman, N. P., and Woolnough, S. J.: The impact of air
sea interactions on the representation of tropical precipitation extremes.
J. Adv. Model. Earth Sy., 10, 550559,
https://doi.org/10.1002/2017MS001252, 2018.
Ho-Hagemann, H. T. M., Hagemann, S., Grayek, S., Petrik, R., Rockel, B.,
Staneva, J., Feser, F., and Schrum, C.: Internal variability in the regional
coupled system model GCOAST-AHOI, Atmos., 11, 227,
https://doi.org/10.3390/atmos11030227, 2020.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113,
D13103, https://doi.org/10.1029/2008JD009944, 2008.
Iona, A., Theodorou, A., Sofianos, S., Watelet, S., Troupin, C., and Beckers, J.-M.: Mediterranean Sea climatic indices: monitoring long-term variability and climate changes, Earth Syst. Sci. Data, 10, 1829–1842, https://doi.org/10.5194/essd-10-1829-2018, 2018.
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further
Developments of the Convection, Viscous Sublayer, and Turbulence Closure
Schemes, Mon. Weather Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Jordà, G., Von Schuckmann, K., Josey, S. A., Caniaux, G., García-Lafuente, J., Sammartino, S., Özsoy, E., Polcher, J., Notarstefano, G., Poulain, P.-M., Adloff, F., Salat, J., Naranjo, C., Schroeder, K., Chiggiato, J., Sannino, G., and Macías, D.: The Mediterranean Sea Heat
and Mass Budgets: Estimates, Uncertainties and Perspectives, Prog. Oceanogr.,
156, 174–208, https://doi.org/10.1016/j.pocean.2017.07.001, 2017.
Kourafalou, V. H. and Barbopoulos, K.: High resolution simulations on the North Aegean Sea seasonal circulation, Ann. Geophys., 21, 251–265, https://doi.org/10.5194/angeo-21-251-2003, 2003.
Lebeaupin Brossier, C. and Drobinski, P.: Numerical high-resolution air-sea
coupling over the Gulf of Lions during two Tramontane/Mistral events, J.
Geophys. Res., 114, D10110, https://doi.org/10.1029/2008JD011601, 2009.
Lebeaupin Brossier, C., Drobinski, P., Béranger, K., Bastin, S., and
Orain, F.: Ocean memory effect on the dynamics of coastal heavy
precipitation preceded by a mistral event in the northwestern Mediterranean,
Q. J. Roy. Meteor. Soc., 139, 1583–1597, https://doi.org/10.1002/qj.2049,
2013.
Lebeaupin Brossier, C., Bastin, S., Béranger, K., and Dobrinski, P.:
Regional mesoscale air sea coupling impacts and extreme meteorological
events role on the Mediterranean Sea water budget, Clim. Dynam., 44, 1029,
https://doi.org/10.1007/s00382-014-2252-z, 2015.
Lellouche, J.-M., Greiner, E., Bourdallé-Badie, R., Garric, G., Melet, A., Drévillon, M., Bricaud, C., Hamon, M., Le Galloudec, O., Regnier, C., Candela, T., Testut, C.-E., Gasparin, F., Ruggiero, G., Benkiran, M., Drillet, Y., and Le Traon, P.-Y.: The Copernicus Global 1/12∘ Oceanic
and Sea Ice GLORYS12 Reanalysis, Front. Earth Sci., 9, 698876,
https://doi.org/10.3389/feart.2021.698876, 2021.
Li, M., Zhang, S., Wu, L., Lin, X., Chang, P., Danabasoglu, G., Wei, Z., Yu,
X., Hu, H., Ma, X., Ma, W., Jia, D., Liu, X., Zhao, H., Mao, K., Ma, Y.,
Jiang, Y., Wang, X., Liu, G., and Chen, Y.: A high-resolution Asia-Pacific
regional coupled prediction system with dynamically downscaling coupled data
assimilation, Sci. Bull., 65, 1849–1858,
https://doi.org/10.1016/j.scib.2020.07.022, 2020.
Li, Y. and Toumi, R.: Improved tropical cyclone intensity forecasts by
assimilating coastal surface currents in an idealized study, Geophys.
Res. Lett., 45, 10019–10026, https://doi.org/10.1029/2018GL079677,
2018.
Lionello, P. and Scarascia, L.: The relation between climate change in the
Mediterranean region and global warming, Reg. Environ. Change, 18, 1481–1493,
https://doi.org/10.1007/s10113-018-1290-1, 2018.
Lionello, P., Martucci, G., and Zampieri, M.: Implementation of a Coupled
Atmosphere-Wave-Ocean Model in the Mediterranean Sea: Sensitivity of the
Short Time Scale Evolution to the Air-Sea Coupling Mechanisms, J.
Atmos. Ocean Sci., 9, 65–95,
https://doi.org/10.1080/1023673031000151421, 2003.
MacDonald, A. M., Candela, J., and Bryden, H. L.: An estimate of the net heat transport
through the Strait of Gibraltar, in: Seasonal and
interannual variability of the Western Mediterranean Sea, edited by: LaViolette, P. E., Coastal Estuarine
Stud. AGU, Washington DC, 13–32, https://doi.org/10.1029/CE046p0013, 1994.
Madec, G. and The NEMO System Team: NEMO Ocean Engine. Note Du Pole De
Modélisation. Paris, France: Institut Pierre-Simon Laplace, Zenodo,
https://doi.org/10.5281/zenodo.3248739, 2017.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982.
Mooney, P. A., Mulligan, F. J., and Fealy, R.: Evaluation of the Sensitivity
of the Weather Research and Forecasting Model to Parameterization Schemes
for Regional Climates of Europe over the Period 1990–95, J. Climate, 26,
1002–1017, https://doi.org/10.1175/JCLI-D-11-00676.1, 2013.
Morel, A. and Maritorena, S.: Bio-optical properties of oceanic waters: A
reappraisal, J. Geophys. Res.-Oceans, 106, 7163–7180,
https://doi.org/10.1029/2000JC000319, 2001.
Nabat, P., Somot, S., Cassou, C., Mallet, M., Michou, M., Bouniol, D., Decharme, B., Drugé, T., Roehrig, R., and Saint-Martin, D.: Modulation of radiative aerosols effects by atmospheric circulation over the Euro-Mediterranean region, Atmos. Chem. Phys., 20, 8315–8349, https://doi.org/10.5194/acp-20-8315-2020, 2020.
Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model: Its
Numerical Stability and Application to a Regional Prediction of Advection
Fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006.
NEMO: https://forge.ipsl.jussieu.fr/nemo/wiki, last access: 14 August 2023.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with
multiparameterization options (Noah-MP): 1. Model description and evaluation
with local-scale measurements, J. Geophys. Res., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.
Omrani, H., Drobinski, P., and Dubos, T.: Using nudging to improve
global-regional dynamic consistency in limited-area climate modeling: What
should we nudge?, Clim. Dynam., 44, 1627–1644, 2015.
Penny, S. G., Akella, S., Balmaseda, M. A., Browne, P., Carton, J. A., Chevallier, M.,
Counillon, F., Domingues, C., Frolov, S., Heimbach, P., Hogan, P., Hoteit, I., Iovino, D.,
Laloyaux, P., Martin, M. J., Masina, S., Moore, A. M., de Rosnay, P., Schepers, D., Sloyan,
B. M., Storto, A., Subramanian, A., Nam, S., Vitart, F., Yang, C., Fujii, Y., Zuo, H., O'Kane,
T., Sandery, P., Moore, T., and Chapman, C. C.: Observational Needs for Improving
Ocean and Coupled Reanalysis, S2S Prediction, and Decadal Prediction, Front.
Mar. Sci., 6, 391, https://doi.org/10.3389/fmars.2019.00391, 2019.
Pisano, A., Marullo, S., Artale, V., Falcini, F., Yang, C., Leonelli, F. E.,
Santoleri, R., and Buongiorno Nardelli, B.: New evidence of mediterranean
climate change and variability from sea surface temperature observations,
Remote Sens., 12, 132, https://doi.org/10.3390/rs12010132, 2020.
Reale, M., Giorgi, F., Solidoro, C., Di Biagio, V., Di Sante, F., Mariotti, L., Farneti, R., and Sannino, G.: The regional Earth system Model RegCM-ES: Evaluation
of the Mediterranean climate and marine biogeochemistry, J. Adv.
Model. Earth Sy., 12, e2019MS001812,
https://doi.org/10.1029/2019MS001812, 2020.
Reale, M., Cabos Narvaez, W. D., Cavicchia, L., Conte, D., Coppola, E., Flaounas, E., Giorgi, F., Gualdi, S., Hochman, A., Li, L., Lionello, P., Podrascanin, Z., Salon, S., Sanchez-Gomez, E., Scoccimarro, E., Sein, D. V., an Somot, S.: Future projections of
Mediterranean cyclone characteristics using the Med-CORDEX ensemble of
coupled regional climate system models, Clim. Dynam., 58, 2501–2524,
https://doi.org/10.1007/s00382-021-06018-x, 2022a.
Reale, M., Cossarini, G., Lazzari, P., Lovato, T., Bolzon, G., Masina, S., Solidoro, C., and Salon, S.: Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea, Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, 2022b.
Ricchi, A., Miglietta, M. M., Barbariol, F., Benetazzo, A., Bergamasco, A.,
Bonaldo, D., Cassardo, C., Falcieri, F. M., Modugno, G., Russo, A., Sclavo,
M., and Carniel, S.: Sensitivity of a Mediterranean Tropical-Like Cyclone to
Different Model Configurations and Coupling Strategies, Atmosphere, 8, 92,
https://doi.org/10.3390/atmos8050092, 2017.
Rockel, B.: The Regional Downscaling Approach: a Brief History and Recent
Advances, Curr. Clim. Change Rep., 1, 22–29,
https://doi.org/10.1007/s40641-014-0001-3, 2015.
Rockel, B., Castro, C. L., Pielke Sr., R. A., von Storch, H., and Lencini, G.:
Dynamical downscaling: Assessment of model system dependent retained and
added variability for two different regional climate models, J. Geophys.
Res., 113, D21107, https://doi.org/10.1029/2007JD009461, 2008.
Rummukainen, M.: Added value in regional climate modeling, Wires Clim. Change,
7, 145–159, https://doi.org/10.1002/wcc.378, 2016.
Rummukainen, M., Rockel, B., Bärring, L., Christensen, J. H., and
Reckermann, M.: Twenty-First-Century Challenges in Regional Climate Modeling,
B. Am. Meteorol. Soc., 96, ES135–ES138,
https://doi.org/10.1175/BAMS-D-14-00214.1, 2015.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A., Dell’Aquila, A., Pisacane, G., Harzallah, A.,
Lombardi, E., Ahrens, B., Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J., Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos, W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E., Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M., Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O., Jordà, G., L’Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G., Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage, K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and Vervatis, V.: Med-CORDEX Initiative for Mediterranean Climate
Studies, B. Am. Meteorol. Soc., 97, 1187–1208,
https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Scoccimarro, E., Bellucci, A., Storto, A., Gualdi, S., Masina, S., and
Navarra, A.: Remote sub-surface ocean temperature as a predictor of Atlantic
hurricane activity, P. Natl. Acad. Sci. USA, 115, 11460–11464,
https://doi.org/10.1073/pnas.1810755115, 2018.
Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M., Barker, D., and Huang, X.-Y.: A Description of the Advanced Research WRF
Model Version 4.3 (No. NCAR/TN-556+STR),
https://doi.org/10.5065/1dfh-6p97, 2021.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): a splitexplicit, free-surface,
topography-following-coordinate oceanic model, Ocean Modell., 9,
347–404, 2005.
Soto-Navarro, J., Jordá, G., Amores, A., Cabos, W., Somot, S., Sevault, F., Macías, D., Djurdjevic, V., Sannino, G., Li, L., and Sein, D.: Evolution of Mediterranean Sea water properties under climate
change scenarios in the Med-CORDEX ensemble, Clim. Dynam., 54, 2135–2165,
https://doi.org/10.1007/s00382-019-05105-4, 2020.
Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P., Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions, Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018.
Storto, A.: Variational quality control of hydrographic profile data with
non-Gaussian errors for global ocean variational data assimilation systems,
Ocean Model., 104, 226–241, https://doi.org/10.1016/j.ocemod.2016.06.011,
2016.
Storto, A.: MESMAR v1: A new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region, Article data (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7899115, 2023.
Storto, A. and Randriamampianina, R.: Ensemble variational assimilation for
the representation of background error covariances in a high-latitude
regional model, J. Geophys. Res., 115, D17204,
https://doi.org/10.1029/2009JD013111, 2010.
Storto, A., Masina, S., and Dobricic, S.: Estimation and Impact of
Nonuniform Horizontal Correlation Length Scales for Global Ocean Physical
Analyses, J. Atmos. Ocean. Tech., 31, 2330–2349,
https://doi.org/10.1175/JTECH-D-14-00042.1, 2014.
Storto, A., Masina, S., and Navarra, A.: Evaluation of the CMCC
eddy-permitting global ocean physical reanalysis system (C-GLORS,
1982–2012) and its assimilation components, Q. J. Roy. Meteor. Soc., 142,
738–758, https://doi.org/10.1002/qj.2673, 2016.
Storto, A., Oddo, P., Cipollone, A., Mirouze, I., and Lemieux-Dudon, B.:
Extending an oceanographic variational scheme to allow for affordable hybrid
and four-dimensional data assimilation, Ocean Model., 128, 67–86,
https://doi.org/10.1016/j.ocemod.2018.06.005, 2018a.
Storto, A., Martin, M. J., Deremble, B., and Masina, S.: Strongly Coupled Data
Assimilation Experiments with Linearized Ocean–Atmosphere Balance
Relationships, Mon. Weather Rev., 146, 1233–1257,
https://doi.org/10.1175/MWR-D-17-0222.1, 2018b.
Storto, A., Masina, S., Simoncelli, S., Iovino, D., Cipollone, A., Drevillon, M., Drillet, Y., von Schuckman, K., Parent, L., Garric, G., Greiner, E., Desportes, C., Zuo, H., Balmaseda, M. A., and Peterson, K. A.: The added value of the
multi-system spread information for ocean heat content and steric sea level
investigations in the CMEMS GREP ensemble reanalysis product, Clim. Dynam., 53,
287–312, https://doi.org/10.1007/s00382-018-4585-5, 2019.
Storto, A., Hesham Essa, Y., de Toma, V., Anav, A., Sannino, G., Santoleri, R., and Yang, C.: MESMAR v1: A new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region, Coupled model code (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7898938, 2023.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
Forecasts of Winter Precipitation Using an Improved Bulk Microphysics
Scheme. Part II: Implementation of a New Snow Parameterization, Mon.
Weather Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1,
2008.
Tsujino, H., Urakawa, S.,
Nakano, H., Small, R. J., Kim, W. M.,
Yeager, S. G., Danabasoglu, G.,
Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W.,
Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J.,
Griffies, S. M., Harada, Y., Ilicak, M.,
Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y.,
Large, W. G., Le Sommer, J., Marsland, S. J., Masina, S.,
Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean-sea-ice
models (JRA55-do)., Ocean Model., 130, 79–139,
https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265, 2003.
Vannucchi, V., Taddei, S., Capecchi, V., Bendoni, M., and Brandini, C.: Dynamical
Downscaling of ERA5 Data on the North-Western Mediterranean Sea: From
Atmosphere to High-Resolution Coastal Wave Climate, J. Mar.
Sci. Eng., 9, 208, https://doi.org/10.3390/jmse9020208,
2021.
Wang, M., Du, Y., Qiu, B., Xie, S., and Feng, M.: Dynamics on Seasonal
Variability of EKE Associated with TIWs in the Eastern Equatorial Pacific
Ocean, J. Phys. Oceanogr., 49, 1503–1519,
https://doi.org/10.1175/JPO-D-18-0163.1, 2019.
wrf-model: WRF, GitHub [code], https://github.com/wrf-model/WRF (last access: 14 August 2023.
Wunsch, C. and Stammer, D.: Atmospheric loading and the oceanic “inverted
barometer” effect, Rev. Geophys., 35, 79–107, https://doi.org/10.1029/96RG03037,
1997.
Zeng, X. and Beljaars, A.: A prognostic scheme of sea surface skin
temperature for modeling and data assimilation, Geophys. Res. Lett., 32,
L14605, https://doi.org/10.1029/2005gl023030, 2005.
Zhang, F. and Emanuel, K.: Promises in air-sea fully coupled data
assimilation for future hurricane prediction, Geophys. Res. Lett.,
45, 13173–13177, https://doi.org/10.1029/2018GL080970, 2018.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Regional climate models are a fundamental tool for a very large number of applications and are...