Articles | Volume 16, issue 15
https://doi.org/10.5194/gmd-16-4581-2023
https://doi.org/10.5194/gmd-16-4581-2023
Model experiment description paper
 | 
11 Aug 2023
Model experiment description paper |  | 11 Aug 2023

The KNMI Large Ensemble Time Slice (KNMI–LENTIS)

Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel

Related authors

A topographically-controlled tipping point for complete Greenland ice-sheet melt
Michele Petrini, Meike Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter Leguy, William Lipscomb, and Heiko Goelzer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-154,https://doi.org/10.5194/tc-2023-154, 2023
Preprint under review for TC
Short summary
Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
Simone Tilmes, Douglas G. MacMartin, Jan T. M. Lenaerts, Leo van Kampenhout, Laura Muntjewerf, Lili Xia, Cheryl S. Harrison, Kristen M. Krumhardt, Michael J. Mills, Ben Kravitz, and Alan Robock
Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020,https://doi.org/10.5194/esd-11-579-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
Monsoon Mission Coupled Forecast System version 2.0: model description and Indian monsoon simulations
Deepeshkumar Jain, Suryachandra A. Rao, Ramu A. Dandi, Prasanth A. Pillai, Ankur Srivastava, Maheswar Pradhan, and Kiran V. Gangadharan
Geosci. Model Dev., 17, 709–729, https://doi.org/10.5194/gmd-17-709-2024,https://doi.org/10.5194/gmd-17-709-2024, 2024
Short summary
Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient modeling strategies applied to the Southern Ocean
Nathan Beech, Thomas Rackow, Tido Semmler, and Thomas Jung
Geosci. Model Dev., 17, 529–543, https://doi.org/10.5194/gmd-17-529-2024,https://doi.org/10.5194/gmd-17-529-2024, 2024
Short summary
Truly conserving with conservative remapping methods
Karl E. Taylor
Geosci. Model Dev., 17, 415–430, https://doi.org/10.5194/gmd-17-415-2024,https://doi.org/10.5194/gmd-17-415-2024, 2024
Short summary
High-resolution downscaling of CMIP6 Earth system and global climate models using deep learning for Iberia
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio A. Bento, and Angelina Bushenkova
Geosci. Model Dev., 17, 229–259, https://doi.org/10.5194/gmd-17-229-2024,https://doi.org/10.5194/gmd-17-229-2024, 2024
Short summary
Earth system modeling on modular supercomputing architecture: coupled atmosphere–ocean simulations with ICON 2.6.6-rc
Abhiraj Bishnoi, Olaf Stein, Catrin I. Meyer, René Redler, Norbert Eicker, Helmuth Haak, Lars Hoffmann, Daniel Klocke, Luis Kornblueh, and Estela Suarez
Geosci. Model Dev., 17, 261–273, https://doi.org/10.5194/gmd-17-261-2024,https://doi.org/10.5194/gmd-17-261-2024, 2024
Short summary

Cited articles

Aven, T. and Renn, O.: An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change, Risk Analysis, 35, 701–712, https://doi.org/10.1111/risa.12298, 2015. a
Balsamo, G., Viterbo, P., Beijaars, A., van den Hurk, B., Hirschi, M., Betts, A. K., and Scipal, K.: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009. a
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J. R., Haimberger, L., Woollen, J., Buontempo, C., and Thépaut, J. N.: The ERA5 global reanalysis: Preliminary extension to 1950, Q. J. Roy. Meteor. Soc., 147, 4186–4227, https://doi.org/10.1002/qj.4174, 2021. a
Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., van der Velde, M., and Makowski, D.: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France, Nat. Commun., 9, 1627, https://doi.org/10.1038/s41467-018-04087-x, 2018. a, b
Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F., Ramos, A. M., Vignotto, E., Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., van der Wiel, K., Wu, W., Zhang, T., and Zscheischler, J.: Guidelines for Studying Diverse Types of Compound Weather and Climate Events, Earth's Future, 9, e2021EF002340, https://doi.org/10.1029/2021EF002340, 2021. a
Download
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.