Articles | Volume 16, issue 15
https://doi.org/10.5194/gmd-16-4581-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-4581-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
Laura Muntjewerf
CORRESPONDING AUTHOR
Department of R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Richard Bintanja
Department of R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, the Netherlands
Thomas Reerink
Department of R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Karin van der Wiel
Department of R&D Weather and Climate Models, Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Related authors
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025, https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Short summary
Anthropogenic warming is causing accelerated Greenland ice sheet melt. Here, we use a computer model to understand how prolonged warming and ice melt could threaten ice sheet stability. We find a threshold beyond which Greenland will lose more than 80 % of its ice over several thousand years, due to the interaction of surface and solid-Earth processes. Nearly complete Greenland ice sheet melt occurs when the ice margin disconnects from a region of high elevation in western Greenland.
René M. van Westen, Karin van der Wiel, Swinda K. J. Falkena, and Frank Selten
EGUsphere, https://doi.org/10.5194/egusphere-2025-1440, https://doi.org/10.5194/egusphere-2025-1440, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) moderates the European climate. The AMOC is a tipping element and may collapse to a substantially weaker state under climate change. Such an event induces global and regional climate shifts. The European hydroclimate becomes drier under an AMOC collapse, this response is not considered in the 'standard' hydroclimate projections. Our results indicate a considerable influence of the AMOC on the European hydroclimate.
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025, https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Short summary
Anthropogenic warming is causing accelerated Greenland ice sheet melt. Here, we use a computer model to understand how prolonged warming and ice melt could threaten ice sheet stability. We find a threshold beyond which Greenland will lose more than 80 % of its ice over several thousand years, due to the interaction of surface and solid-Earth processes. Nearly complete Greenland ice sheet melt occurs when the ice margin disconnects from a region of high elevation in western Greenland.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Raúl R. Cordero, Sarah Feron, Alessandro Damiani, Pedro J. Llanillo, Jorge Carrasco, Alia L. Khan, Richard Bintanja, Zutao Ouyang, and Gino Casassa
The Cryosphere, 17, 4995–5006, https://doi.org/10.5194/tc-17-4995-2023, https://doi.org/10.5194/tc-17-4995-2023, 2023
Short summary
Short summary
We investigate the response of Antarctic sea ice to year-to-year changes in the tropospheric–stratospheric dynamics. Our findings suggest that, by affecting the tropospheric westerlies, the strength of the stratospheric polar vortex has played a major role in recent record-breaking anomalies in Antarctic sea ice.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022, https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary
Short summary
Recent studies have identified the weather systems in observational data, where wave patterns with high-magnitude values that circle around the whole globe in either wavenumber 5 or wavenumber 7 are responsible for the extreme events. In conclusion, we find that the climate models are able to reproduce the large-scale atmospheric circulation patterns as well as their associated surface variables such as temperature, precipitation, and sea level pressure.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Henrique M. D. Goulart, Karin van der Wiel, Christian Folberth, Juraj Balkovic, and Bart van den Hurk
Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, https://doi.org/10.5194/esd-12-1503-2021, 2021
Short summary
Short summary
Agriculture is sensitive to weather conditions and to climate change. We identify the weather conditions linked to soybean failures and explore changes related to climate change. Additionally, we build future versions of a historical extreme season under future climate scenarios. Results show that soybean failures are likely to increase with climate change. Future events with similar physical conditions to the extreme season are not expected to increase, but events with similar impacts are.
Twan van Noije, Tommi Bergman, Philippe Le Sager, Declan O'Donnell, Risto Makkonen, María Gonçalves-Ageitos, Ralf Döscher, Uwe Fladrich, Jost von Hardenberg, Jukka-Pekka Keskinen, Hannele Korhonen, Anton Laakso, Stelios Myriokefalitakis, Pirkka Ollinaho, Carlos Pérez García-Pando, Thomas Reerink, Roland Schrödner, Klaus Wyser, and Shuting Yang
Geosci. Model Dev., 14, 5637–5668, https://doi.org/10.5194/gmd-14-5637-2021, https://doi.org/10.5194/gmd-14-5637-2021, 2021
Short summary
Short summary
This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in CMIP6. We give an overview of the model and describe in detail how it differs from its predecessor and the other EC-Earth3 configurations. The model's performance is characterized using coupled simulations conducted for CMIP6. The model has an effective equilibrium climate sensitivity of 3.9 °C and a transient climate response of 2.1 °C.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Cited articles
Aven, T. and Renn, O.: An Evaluation of the Treatment of Risk and
Uncertainties in the IPCC Reports on Climate Change, Risk Analysis, 35, 701–712,
https://doi.org/10.1111/risa.12298, 2015. a
Balsamo, G., Viterbo, P., Beijaars, A., van den Hurk, B., Hirschi, M., Betts,
A. K., and Scipal, K.: A revised hydrology for the ECMWF model: Verification
from field site to terrestrial water storage and impact in the integrated
forecast system, J. Hydrometeorol., 10, 623–643,
https://doi.org/10.1175/2008JHM1068.1, 2009. a
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P.,
Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers,
D., Soci, C., Villaume, S., Bidlot, J. R., Haimberger, L., Woollen, J.,
Buontempo, C., and Thépaut, J. N.: The ERA5 global reanalysis:
Preliminary extension to 1950, Q. J. Roy. Meteor.
Soc., 147, 4186–4227, https://doi.org/10.1002/qj.4174, 2021. a
Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., van der Velde, M., and
Makowski, D.: Causes and implications of the unforeseen 2016 extreme yield
loss in the breadbasket of France, Nat. Commun., 9, 1627,
https://doi.org/10.1038/s41467-018-04087-x, 2018. a, b
Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F., Ramos,
A. M., Vignotto, E., Bastos, A., Blesić, S., Durante, F., Hillier, J.,
Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., van der
Wiel, K., Wu, W., Zhang, T., and Zscheischler, J.: Guidelines for Studying
Diverse Types of Compound Weather and Climate Events, Earth's Future, 9, e2021EF002340,
https://doi.org/10.1029/2021EF002340, 2021. a
Bintanja, R., van der Wiel, K., van der Linden, E. C., Reusen, J., Bogerd, L.,
Krikken, F., and Selten, F. M.: Strong future increases in Arctic
precipitation variability linked to poleward moisture transport, Science
Advances, 6, eaax6869, https://doi.org/10.1126/sciadv.aax6869, 2020. a
Blackport, R., Screen, J. A., van der Wiel, K., and Bintanja, R.: Minimal
influence of reduced Arctic sea ice on coincident cold winters in
mid-latitudes, Nat. Clim. Change, 9, 697–704, https://doi.org/10.1038/s41558-019-0551-4,
2019. a
Bonekamp, P. N., Wanders, N., van der Wiel, K., Lutz, A. F., and Immerzeel,
W. W.: Using large ensemble modelling to derive future changes in mountain
specific climate indicators in a 2 and 3 ∘C warmer world in High
Mountain Asia, Int. J. Climatol., 41, E964–E979,
https://doi.org/10.1002/joc.6742, 2021. a
Boulaguiem, Y., Zscheischler, J., Vignotto, E., van der Wiel, K., and Engelke,
S.: Modeling and simulating spatial extremes by combining extreme value
theory with generative adversarial networks, Environmental Data Science, 1,
e5, https://doi.org/10.1017/eds.2022.4, 2022. a
Brown, P. T., Ming, Y., Li, W., and Hill, S. A.: Change in the magnitude and
mechanisms of global temperature variability with warming, Nat. Clim.
Change, 7, 743–748, https://doi.org/10.1038/nclimate3381, 2017. a
Champagne, O., Arain, M. A., Leduc, M., Coulibaly, P., and McKenzie, S.: Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario, Hydrol. Earth Syst. Sci., 24, 3077–3096, https://doi.org/10.5194/hess-24-3077-2020, 2020. a
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E.,
Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S.,
Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from
Earth system model initial-condition large ensembles and future prospects,
Nat. Clim. Change, 10, 277–286, https://doi.org/10.1038/s41558-020-0731-2,
2020a. a, b, c
Deser, C., Phillips, A. S., Simpson, I. R., Rosenbloom, N., Coleman, D.,
Lehner, F., Pendergrass, A. G., Dinezio, P., and Stevenson, S.: Isolating
the evolving contributions of anthropogenic aerosols and greenhouse gases: A
new CESM1 large ensemble community resource, J. Climate, 33, 7835–7858,
https://doi.org/10.1175/JCLI-D-20-0123.1, 2020b. a
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022. a, b, c, d, e, f, g
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M., Beljaars, A., Schar, C.,
and Elder, K.: An improved snow scheme for the ECMWF land surface model:
Description and offline validation, J. Hydrometeorol., 11, 899–916,
https://doi.org/10.1175/2010JHM1249.1, 2010. a
Goulart, H. M. D., van der Wiel, K., Folberth, C., Balkovic, J., and van den Hurk, B.: Storylines of weather-induced crop failure events under climate change, Earth Syst. Dynam., 12, 1503–1527, https://doi.org/10.5194/esd-12-1503-2021, 2021. a
Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., Fladrich, U., Fuentes Franco, R., García-Serrano, J., von Hardenberg, J., Koenigk, T., Levine, X., Meccia, V. L., van Noije, T., van den Oord, G., Palmeiro, F. M., Rodrigo, M., Ruprich-Robert, Y., Le Sager, P., Tourigny, E., Wang, S., van Weele, M., and Wyser, K.: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation, Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, 2020. a
Hawkins, E., Smith, R. S., Gregory, J. M., and Stainforth, D. A.: Irreducible
uncertainty in near-term climate projections, Clim. Dynam., 46, 3807–3819,
https://doi.org/10.1007/s00382-015-2806-8, 2016. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c
Jerez, S., Thais, F., Tobin, I., Wild, M., Colette, A., Yiou, P., and Vautard,
R.: The CLIMIX model: A tool to create and evaluate spatially-resolved
scenarios of photovoltaic and wind power development, Renew. Sust. Energ. Rev., 42, 1–15,
https://doi.org/10.1016/j.rser.2014.09.041, 2015. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) Large Ensemble Project: A Community
Resource for Studying Climate Change in the Presence of Internal Climate
Variability, B. Am. Meteorol. Soc., 96,
1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015. a
Kelder, T., Wanders, N., van der Wiel, K., Marjoribanks, T. I., Slater, L. J.,
Wilby, R. L., and Prudhomme, C.: Interpreting extreme climate impacts from
large ensemble simulations – Are they unseen or unrealistic?, Environ.
Res. Lett., 17, 044052, https://doi.org/10.1088/1748-9326/ac5cf4, 2022. a
Kew, S. F., Philip, S. Y., Hauser, M., Hobbins, M., Wanders, N., van Oldenborgh, G. J., van der Wiel, K., Veldkamp, T. I. E., Kimutai, J., Funk, C., and Otto, F. E. L.: Impact of precipitation and increasing temperatures on drought trends in eastern Africa, Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, 2021. a
Kirchmeier-Young, M. C., Zwiers, F. W., and Gillett, N. P.: Attribution of
extreme events in Arctic Sea ice extent, J. Climate, 30, 553–571,
https://doi.org/10.1175/JCLI-D-16-0412.1, 2017. a
Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy: Generation
CMIP5 and how we got there, Geophys. Res. Lett., 40, 1194–1199,
https://doi.org/10.1002/grl.50256, 2013. a
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf, S.,
and Gray, L.: Extreme weather events in early summer 2018 connected by a
recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14, 054002,
https://doi.org/10.1088/1748-9326/ab13bf, 2019. a
Leduc, M., Mailhot, A., Frigon, A., Martel, J. L., Ludwig, R., Brietzke, G. B.,
Giguère, M., Brissette, F., Turcotte, R., Braun, M., and Scinocca, J.:
The ClimEx project: A 50-member ensemble of climate change projections at
12-km resolution over Europe and northeastern North America with the Canadian
Regional Climate Model (CRCM5), J. Appl. Meteorol.
Clim., 58, 663–693, https://doi.org/10.1175/JAMC-D-18-0021.1, 2019. a
Lenderink, G., van den Hurk, B. J., Klein Tank, A. M., van Oldenborgh, G. J.,
van Meijgaard, E., de Vries, H., and Beersma, J. J.: Preparing local climate
change scenarios for the Netherlands using resampling of climate model
output, Environ. Res. Lett., 9, 115008,
https://doi.org/10.1088/1748-9326/9/11/115008, 2014. a
Lloyd, E. A. and Shepherd, T. G.: Climate change attribution and legal
contexts: evidence and the role of storylines, Climatic Change, 167, 28,
https://doi.org/10.1007/s10584-021-03177-y, 2021. a
Lock, S. J., Lang, S. T., Leutbecher, M., Hogan, R. J., and Vitart, F.:
Treatment of model uncertainty from radiation by the Stochastically
Perturbed Parametrization Tendencies (SPPT) scheme and associated revisions
in the ECMWF ensembles, Q. J. Roy. Meteor.
Soc., 145, 75–89, https://doi.org/10.1002/qj.3570, 2019. a
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M.,
Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C.,
Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M.,
Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The
Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate
System Variability, J. Adv. Model. Earth Sy., 11, 2050–2069,
https://doi.org/10.1029/2019MS001639, 2019. a
Maher, N., Milinski, S., and Ludwig, R.: Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble, Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021, 2021. a
Marotzke, J.: Quantifying the irreducible uncertainty in near-term climate
projections, WIRES Clim. Change, 10, e563,
https://doi.org/10.1002/wcc.563, 2019. a
Massey, N., Jones, R., Otto, F. E., Aina, T., Wilson, S., Murphy, J. M.,
Hassell, D., Yamazaki, Y. H., and Allen, M. R.: weather@home – development and
validation of a very large ensemble modelling system for probabilistic event
attribution, Q. J. Roy. Meteor. Soc., 141, 1528–1545,
https://doi.org/10.1002/qj.2455, 2015. a
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer,
R. J., Taylor, K. E., and Schlund, M.: Context for interpreting equilibrium
climate sensitivity and transient climate response from the CMIP6 Earth
system models, Science Advances, 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981, 2020. a
Milinski, S., Maher, N., and Olonscheck, D.: How large does a large ensemble need to be?, Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, 2020. a
Muntjewerf, L., Bintanja, R., Reerink, T., and Van der Wiel, K.: KNMI-LENTIS
large ensemble time slice dataset description, Zenodo [data set], https://doi.org/10.5281/zenodo.7573137,
2023a. a
Muntjewerf, L., Bintanja, R., Reerink, T., and Van der Wiel, K.: KNMI-LENTIS
production scripts, Zenodo [code], https://doi.org/10.5281/zenodo.7594694, 2023b. a
Nanditha, J. S., van der Wiel, K., Bhatia, U., Stone, D., Selton, F., and
Mishra, V.: A seven-fold rise in the probability of exceeding the observed
hottest summer in India in a 2 ∘C warmer world, Environ. Res.
Lett., 15, 044028, https://doi.org/10.1088/1748-9326/ab7555, 2020. a
Ollinaho, P., Lock, S. J., Leutbecher, M., Bechtold, P., Beljaars, A., Bozzo,
A., Forbes, R. M., Haiden, T., Hogan, R. J., and Sandu, I.: Towards
process-level representation of model uncertainties: stochastically perturbed
parametrizations in the ECMWF ensemble, Q. J. Roy.
Meteor. Soc., 143, 408–422, https://doi.org/10.1002/qj.2931, 2017. a
Pascale, S., Kapnick, S. B., Delworth, T. L., Hidalgo, H. G., and Cooke, W. F.:
Natural variability vs forced signal in the 2015–2019 Central American
drought, Climatic Change, 168, 16, https://doi.org/10.1007/s10584-021-03228-4, 2021. a
Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sanderson, B. M.:
Precipitation variability increases in a warmer climate, Scientific
Reports, 7, 17966, https://doi.org/10.1038/s41598-017-17966-y, 2017. a
Philip, S., Sparrow, S., Kew, S. F., van der Wiel, K., Wanders, N., Singh, R., Hassan, A., Mohammed, K., Javid, H., Haustein, K., Otto, F. E. L., Hirpa, F., Rimi, R. H., Islam, A. K. M. S., Wallom, D. C. H., and van Oldenborgh, G. J.: Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives, Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, 2019. a
Philip, S. Y., Kew, S. F., van der Wiel, K., Wanders, N., van Oldenborgh,
G. J., and Philip, S. Y.: Regional differentiation in climate change induced
drought trends in the Netherlands, Environ. Res. Lett., 15, 094081,
https://doi.org/10.1088/1748-9326/ab97ca, 2020. a
Poschlod, B., Willkofer, F., and Ludwig, R.: Impact of climate change on the
hydrological regimes in Bavaria, Water (Switzerland), 12, 1599,
https://doi.org/10.3390/w12061599, 2020. a
Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J., Kim, J.-E., Simpson, I. R., Stein, K., Stuecker, M. F., Yamaguchi, R., Bódai, T., Chung, E.-S., Huang, L., Kim, W. M., Lamarque, J.-F., Lombardozzi, D. L., Wieder, W. R., and Yeager, S. G.: Ubiquity of human-induced changes in climate variability, Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, 2021. a
Schaeffer, M., Selten, F. M., and Opsteegh, J. D.: Shifts of means are not a
proxy for changes in extreme winter temperatures in climate projections,
Clim. Dynam., 25, 51–63, https://doi.org/10.1007/s00382-004-0495-9, 2005. a
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West,
I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A.,
Sobel, A. H., Stainforth, D. A., Tett, S. F., Trenberth, K. E., van den Hurk,
B. J., Watkins, N. W., Wilby, R. L., and Zenghelis, D. A.: Storylines: an
alternative approach to representing uncertainty in physical aspects of
climate change, Climatic Change, 151, 555–571, https://doi.org/10.1007/s10584-018-2317-9, 2018. a
Sillmann, J., Shepherd, T. G., van den Hurk, B., Hazeleger, W., Martius, O.,
Slingo, J., and Zscheischler, J.: Event-Based Storylines to Address Climate
Risk, Earth's Future, 9, e2020EF001783, https://doi.org/10.1029/2020EF001783, 2021. a
Singh, H. K., Goldenson, N., Fyfe, J. C., and Polvani, L. M.: Uncertainty in
Preindustrial Global Ocean Initialization Can Yield Irreducible Uncertainty
in Southern Ocean Surface Climate, J. Climate, 36, 383–403,
https://doi.org/10.1175/JCLI-D-21-0176.1, 2023. a
Sperna Weiland, R., van der Wiel, K., Selten, F., and Coumou, D.: Intransitive
atmosphere dynamics leading to persistent hot-dry or cold-wet European
summers, J. Climate, 34, 6303–6317, https://doi.org/10.1175/JCLI-D-20-0943.1, 2021. a
Tschumi, E., Lienert, S., van der Wiel, K., Joos, F., and Zscheischler, J.: A
climate database with varying drought-heat signatures for climate impact
modelling, Geosci. Data J., 9, 154–166, https://doi.org/10.1002/gdj3.129, 2021. a
Tschumi, E., Lienert, S., van der Wiel, K., Joos, F., and Zscheischler, J.: The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition, Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, 2022. a
van den Hurk, B. J. J., Viterbo, P., Beljaars, A., and Betts, A.: Offline
validation of the ERA40 surface scheme, 295, Technical memorandum, ECMWF, https://doi.org/10.21957/9aoaspz8, 2000. a
van der Wiel, K. and Bintanja, R.: Contribution of climatic changes in mean
and variability to monthly temperature and precipitation extremes,
Communications Earth & Environment, 2, 1, https://doi.org/10.1038/s43247-020-00077-4,
2021. a, b, c
van der Wiel, K., Bloomfield, H. C., Lee, R. W., Stoop, L. P., Blackport, R.,
Screen, J. A., and Selten, F. M.: The influence of weather regimes on
European renewable energy production and demand, Environ. Res.
Lett., 14, 094010, https://doi.org/10.1088/1748-9326/ab38d3, 2019a. a
van der Wiel, K., Stoop, L. P., van Zuijlen, B. R., Blackport, R., van den
Broek, M. A., and Selten, F. M.: Meteorological conditions leading to
extreme low variable renewable energy production and extreme high energy
shortfall, Renew. Sust. Energ. Rev., 111, 261–275,
https://doi.org/10.1016/j.rser.2019.04.065, 2019b. a, b
van der Wiel, K., Wanders, N., Selten, F. M., and Bierkens, M. F.: Added Value
of Large Ensemble Simulations for Assessing Extreme River Discharge in a
2 ∘C Warmer World, Geophys. Res. Lett., 46, 2093–2102,
https://doi.org/10.1029/2019GL081967, 2019c. a, b, c, d
van der Wiel, K., Selten, F. M., Bintanja, R., Blackport, R., and Screen,
J. A.: Ensemble climate-impact modelling: extreme impacts from moderate
meteorological conditions, Environ. Res. Lett., 15, 034050,
https://doi.org/10.1088/1748-9326/ab7668, 2020. a, b
van der Wiel, K., Lenderink, G., and de Vries, H.: Physical storylines of
future European drought events like 2018 based on ensemble climate
modelling, Weather and Climate Extremes, 33, 100350,
https://doi.org/10.1016/j.wace.2021.100350, 2021.
a, b, c
van der Wiel, K., Batelaan, T. J., and Wanders, N.: Large increases of
multi-year droughts in north-western Europe in a warmer climate, Clim.
Dynam., Clim. Dynam., 60, 1781–1800, https://doi.org/10.1007/s00382-022-06373-3, 2022. a
van Kempen, G., van der Wiel, K., and Melsen, L. A.: The impact of hydrological model structure on the simulation of extreme runoff events, Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, 2021. a, b
van Oldenborgh, G. J., van der Wiel, K., Kew, S., Philip, S., Otto, F.,
Vautard, R., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.:
Pathways and pitfalls in extreme event attribution, Climatic Change, 166, 13,
https://doi.org/10.1007/s10584-021-03071-7, 2021. a
Vogel, J., Rivoire, P., Deidda, C., Rahimi, L., Sauter, C. A., Tschumi, E., van der Wiel, K., Zhang, T., and Zscheischler, J.: Identifying meteorological drivers of extreme impacts: an application to simulated crop yields, Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, 2021. a
Watkins, N. W.: Bunched black (and grouped grey) swans: Dissipative and
non-dissipative models of correlated extreme fluctuations in complex
geosystems, Geophys. Res. Lett., 40, 402–410, https://doi.org/10.1002/grl.50103, 2013. a
Wood, R. R., Lehner, F., Pendergrass, A. G., and Schlunegger, S.: Changes in
precipitation variability across time scales in multiple global climate model
large ensembles, Environ. Res. Lett., 16, 084022,
https://doi.org/10.1088/1748-9326/ac10dd, 2021. a
Wyser, K., Koenigk, T., Fladrich, U., Fuentes-Franco, R., Karami, M. P., and Kruschke, T.: The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1, Geosci. Model Dev., 14, 4781–4796, https://doi.org/10.5194/gmd-14-4781-2021, 2021. a, b
Zhang, T., van der Wiel, K., Wei, T., Screen, J., Yue, X., Zheng, B., Selten,
F., Bintanja, R., Anderson, W., Blackport, R., Glomsrød, S., Liu, Y., Cui,
X., and Yang, X.: Increased wheat price spikes and larger economic
inequality with 2 ∘C global warming, One Earth, 5, 907–916, 2022. a
Zscheischler, J., Westra, S., van den Hurk, B. J., Seneviratne, S. I., Ward,
P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and
Zhang, X.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477,
https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton,
R. M., van den Hurk, B., AghaKouchak, A., Jézéquel, A., Mahecha,
M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.:
A typology of compound weather and climate events, Nature Reviews Earth and Environment, 1, 333–347,
https://doi.org/10.1038/s43017-020-0060-z, 2020. a
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model...