Articles | Volume 16, issue 12
https://doi.org/10.5194/gmd-16-3407-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3407-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY, USA
A. Park Williams
Department of Geography, University of California, Los Angeles, CA, USA
Caroline S. Juang
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY, USA
Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
Winslow D. Hansen
Cary Institute of Ecosystem Studies, Millbrook, NY, USA
Pierre Gentine
Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
Related authors
No articles found.
Mitra Cattry, Wenli Zhao, Juan Nathaniel, Jinghao Qiu, Yao Zhang, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2024-3726, https://doi.org/10.5194/egusphere-2024-3726, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Climate change alters Mediterranean biota, affecting how they absorb and store carbon. These associated impacts arise from short- and long-term effects of rainfall, temperature, and other atmospheric forcings, which existing tools struggle to capture. This study presents a memory-integrated model combining high- and low-resolution data to track daily ecosystem responses. By analyzing past conditions, we show how earlier conditions shape plant carbon uptake and improve predictions.
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-365, https://doi.org/10.5194/egusphere-2025-365, 2025
Short summary
Short summary
We developed a machine learning model that accounts for the memory effects of soil moisture and vegetation to predict Evaporative Fraction (EF) without relying on soil moisture as a direct input. The model accurately predicts EF during dry periods for the unseen sites, highlighting the key of meteorological memory effects. The learned memory effect related to rooting depth and soil water holding capacity could potentially serve as proxies for assessing the plant water stress.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Winslow D. Hansen, Adrianna Foster, Benjamin Gaglioti, Rupert Seidl, and Werner Rammer
Geosci. Model Dev., 16, 2011–2036, https://doi.org/10.5194/gmd-16-2011-2023, https://doi.org/10.5194/gmd-16-2011-2023, 2023
Short summary
Short summary
Permafrost and the thick soil-surface organic layers that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and soil organic layer module that operates at fine spatial (1 ha) and temporal (daily) resolutions.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Pierre Gentine, Adam Massmann, Benjamin R. Lintner, Sayed Hamed Alemohammad, Rong Fu, Julia K. Green, Daniel Kennedy, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 23, 4171–4197, https://doi.org/10.5194/hess-23-4171-2019, https://doi.org/10.5194/hess-23-4171-2019, 2019
Short summary
Short summary
Land–atmosphere interactions are key for the exchange of water, energy, and carbon dioxide, especially in the tropics. We here review some of the recent findings on land–atmosphere interactions in the tropics and where we see potential challenges and paths forward.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Wen Li Zhao, Yu Jiu Xiong, Kyaw Tha Paw U, Pierre Gentine, Baoyu Chen, and Guo Yu Qiu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-160, https://doi.org/10.5194/hess-2019-160, 2019
Manuscript not accepted for further review
Short summary
Short summary
Accurate evapotranspiration (ET) estimation requires an in-depth identification of uncertainty sources. Using high density eddy covariance observations, we evaluated the effects of resistances on ET estimation and discussed possible solutions. The results show that more complex resistance parameterizations leads to more uncertainty, although prior calibration can improve the ET estimates and that a new model without resistance parameterization introduces less uncertainty into the ET estimation.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
Adam Massmann, Pierre Gentine, and Changjie Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-553, https://doi.org/10.5194/hess-2018-553, 2018
Revised manuscript not accepted
Short summary
Short summary
Plants can sense increasing dryness in the air and close up the pores
on their leaves, preventing water loss. However, drier air also
naturally demands more water from the land surface. Here we develop a
simplified theory for when land surface water loss increases
(atmospheric demand dominates) or decreases (plant response dominates)
in response to increased dryness in the air. This theory provides
intuition for how ecosystems regulate water in response to changes in
atmospheric dryness.
Tim van Emmerik, Susan Steele-Dunne, Pierre Gentine, Rafael S. Oliveira, Paulo Bittencourt, Fernanda Barros, and Nick van de Giesen
Biogeosciences, 15, 6439–6449, https://doi.org/10.5194/bg-15-6439-2018, https://doi.org/10.5194/bg-15-6439-2018, 2018
Short summary
Short summary
Trees are very important for the water and carbon cycles. Climate and weather models often assume constant vegetation parameters because good measurements are missing. We used affordable accelerometers to measure tree sway of 19 trees in the Amazon rainforest. We show that trees respond very differently to the same weather conditions, which means that vegetation parameters are dynamic. With our measurements trees can be accounted for more realistically, improving climate and weather models.
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Short summary
Using satellite reflectance measurements and a machine learning algorithm, we generated a new solar-induced chlorophyll fluorescence (SIF) dataset that is closely linked to plant photosynthesis. This new dataset has higher spatial and temporal resolutions, and lower uncertainty compared to the existing satellite retrievals. We also demonstrated its application in monitoring drought and improving the understanding of the SIF–photosynthesis relationship.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-682, https://doi.org/10.5194/hess-2017-682, 2018
Revised manuscript not accepted
Short summary
Short summary
Potential evaporation is a key parameter in numerous models used for assessing water use and drought severity. Yet, multiple incompatible methods have been proposed, thus estimates of potential evaporation remain uncertain. Based on the largest available dataset of FLUXNET data, we identify the best method to calculate potential evaporation globally. A simple radiation-driven method calibrated per biome consistently performed best; more complex models did not perform as good.
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
Carolin Klinger, Bernhard Mayer, Fabian Jakub, Tobias Zinner, Seung-Bu Park, and Pierre Gentine
Atmos. Chem. Phys., 17, 5477–5500, https://doi.org/10.5194/acp-17-5477-2017, https://doi.org/10.5194/acp-17-5477-2017, 2017
Short summary
Short summary
Radiation is driving weather and climate. Yet, the effect of radiation on clouds is not fully understood and often only poorly represented in models. Better understanding and better parameterizations of the radiation–cloud interaction are therefore essential. Using our newly developed fast
neighboring column approximationfor 3-D thermal heating and cooling rates, we show that thermal radiation changes cloud circulation and causes organization and a deepening of the clouds.
Nir Y. Krakauer, Michael J. Puma, Benjamin I. Cook, Pierre Gentine, and Larissa Nazarenko
Earth Syst. Dynam., 7, 863–876, https://doi.org/10.5194/esd-7-863-2016, https://doi.org/10.5194/esd-7-863-2016, 2016
Short summary
Short summary
We simulated effects of irrigation on climate with the NASA GISS global climate model. Present-day irrigation levels affected air pressures and temperatures even in non-irrigated land and ocean areas. The simulated effect was bigger and more widespread when ocean temperatures in the climate model could change, rather than being fixed. We suggest that expanding irrigation may affect global climate more than previously believed.
B. R. Lintner, P. Gentine, K. L. Findell, and G. D. Salvucci
Hydrol. Earth Syst. Sci., 19, 2119–2131, https://doi.org/10.5194/hess-19-2119-2015, https://doi.org/10.5194/hess-19-2119-2015, 2015
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
Related subject area
Climate and Earth system modeling
A Fortran–Python interface for integrating machine learning parameterization into earth system models
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Investigating Carbon and Nitrogen Conservation in Reported CMIP6 Earth System Model Data
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Reducing Time and Computing Costs in EC-Earth: An Automatic Load-Balancing Approach for Coupled ESMs
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025, https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
Short summary
Earth system models (ESMs) struggle with the uncertainties associated with parameterizing subgrid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran–Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity, and effectiveness.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3522, https://doi.org/10.5194/egusphere-2024-3522, 2024
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from CMIP6 Earth System Models. Our findings reveal significant discrepancies between flux and pool size data, particularly in nitrogen, where cumulative imbalances can reach hundreds of gigatons. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Ingo Richter, Ping Chang, Gokhan Danabasoglu, Dietmar Dommenget, Guillaume Gastineau, Aixue Hu, Takahito Kataoka, Noel Keenlyside, Fred Kucharski, Yuko Okumura, Wonsun Park, Malte Stuecker, Andrea Taschetto, Chunzai Wang, Stephen Yeager, and Sang-Wook Yeh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3110, https://doi.org/10.5194/egusphere-2024-3110, 2024
Short summary
Short summary
The tropical ocean basins influence each other through multiple pathways and mechanisms, here referred to as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models, but have obtained conflicting results. This may be partly due to differences in experiment protocols, and partly due to systematic model errors. TBIMIP aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-155, https://doi.org/10.5194/gmd-2024-155, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This work presents an automatic tool to enhance the performance of climate models by optimizing how computer resources are allocated. Traditional methods are time-consuming and error-prone, often resulting in inefficient simulations. Our tool improves speed and reduces computational costs without needing expert knowledge. The tool has been tested on European climate models, making simulations up to 34 % faster while using fewer resources, helping to make climate simulations more efficient.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-183, https://doi.org/10.5194/gmd-2024-183, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we developed and applied a weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. It also enhances the simulation of interannual precipitation and temperature variability over the southern US. This system is to support future predictability studies.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for
ecological applications and modelling, Int. J. Climatol.,
33, 121–131, https://doi.org/10.1002/joc.3413, 2013. a
Abatzoglou, J. T. and Kolden, C. A.: Relationships between climate and
macroscale area burned in the western United States, Int. J. Wildland Fire, 22, 1003–1020, https://doi.org/10.1071/WF13019, 2013. a
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change
on wildfire across western US forests, P. Nl. Acad.
Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016. a, b, c
Abatzoglou, J. T., Kolden, C. A., Williams, A. P., Lutz, J. A., and Smith, A.
M. S.: Climatic influences on interannual variability in regional burn
severity across western US forests, Int. J. Wildland Fire,
26, 269–275, https://doi.org/10.1071/WF16165, 2017. a, b
Abatzoglou, J. T., Battisti, D. S., Williams, A. P., Hansen, W. D., Harvey,
B. J., and Kolden, C. A.: Projected increases in western US forest fire
despite growing fuel constraints, Commun. Earth Environ., 2, 227,
https://doi.org/10.1038/s43247-021-00299-0, 2021a. a
Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A., and
Westerling, A. L.: Increasing Synchronous Fire Danger in Forests of the
Western United States, Geophys. Res. Lett., 48, e2020GL091377,
https://doi.org/10.1029/2020GL091377, 2021b. a
Abolafia-Rosenzweig, R., He, C., and Chen, F.: Winter and spring climate
explains a large portion of interannual variability and trend in western
U.S. summer fire burned area, Environ. Res. Lett., 17, 054030,
https://doi.org/10.1088/1748-9326/ac6886, 2022. a
Alvarez-Melis, D. and Jaakkola, T. S.: Towards Robust Interpretability
with Self-Explaining Neural Networks, ArXiv, arXiv e-prints, 2018. a
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017. a, b
Anderson, D. B.: Relative Humidity or Vapor Pressure Deficit,
Ecology, 17, 277–282, http://www.jstor.org/stable/1931468,
1936. a
Andrews, P. L.: The Rothermel surface fire spread model and associated
developments: A comprehensive explanation, Gen. Tech. Rep. RMRS-GTR-371. Fort
Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain
Research Station. 121 pp., 371, 2018. a
Bailey, R. G.: Ecoregions of the United States, in: Ecosystem Geography, Springer New York, New York, NY,
83–104,
https://doi.org/10.1007/978-1-4612-2358-0_7, 1996. a
Bakhshaii, A. and Johnson, E.: A review of a new generation of
wildfire–atmosphere modeling, Can. J. Forest Res., 49,
565–574, https://doi.org/10.1139/cjfr-2018-0138, 2019. a
Balch, J. K., Bradley, B. A., D'Antonio, C. M., and Gómez-Dans, J.: Introduced
annual grass increases regional fire activity across the arid western USA
(1980–2009), Global Change Biol., 19, 173–183, https://doi.org/10.1111/gcb.12046,
2013. a
Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., and
Mahood, A. L.: Human-started wildfires expand the fire niche across the
United States, P. Natl. Acad. Sci. USA, 114,
2946–2951, https://doi.org/10.1073/pnas.1617394114, 2017. a, b
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L.,
Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A.,
Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T.,
McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal
legacy effects of the 2018 heat wave and drought on European ecosystem
productivity, Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724, 2020. a, b
Bishop, C.: Mixture density networks, Working paper, Aston University, https://publications.aston.ac.uk/id/eprint/373/ (last access: 16 June 2023), 1994. a
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison,
S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston,
J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam,
T. W., van der Werf, G. R., and Pyne, S. J.: Fire in the Earth System,
Science, 324, 481–484, https://doi.org/10.1126/science.1163886, 2009. a
Bradstock, R. A.: A biogeographic model of fire regimes in Australia: current
and future implications, Global Ecol. Biogeogr., 19, 145–158,
https://doi.org/10.1111/j.1466-8238.2009.00512.x, 2010. a
Brey, S. J., Barnes, E. A., Pierce, J. R., Wiedinmyer, C., and Fischer, E. V.:
Environmental Conditions, Ignition Type, and Air Quality Impacts
of Wildfires in the Southeastern and Western United States, Earth's
Future, 6, 1442–1456, https://doi.org/10.1029/2018EF000972, 2018. a
Brey, S. J., Barnes, E. A., Pierce, J. R., Swann, A. L. S., and Fischer, E. V.:
Past Variance and Future Projections of the Environmental Conditions Driving
Western U.S. Summertime Wildfire Burn Area, Earth's Future, 9, e2020EF001645,
https://doi.org/10.1029/2020EF001645, 2021. a
Buch, J., Williams, A. P., Juang, C., Hansen, W. D., and Gentine, P.: SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7277980, 2022. a
Burke, M., Heft-Neal, S., Li, J., Driscoll, A., Baylis, P., Stigler, M., Weill,
J. A., Burney, J. A., Wen, J., Childs, M. L., and Gould, C. F.: Exposures and
behavioural responses to wildfire smoke, Nature Human Behaviour, 1351–1361,
https://doi.org/10.1038/s41562-022-01396-6, 2022. a
Carreau, J. and Bengio, Y.: A Hybrid Pareto Model for Conditional Density
Estimation of Asymmetric Fat-Tail Data, in: Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics, edited by:
Meila, M. and Shen, X., vol. 2 of Proceedings of Machine Learning
Research, 51–58, PMLR, San Juan, Puerto Rico,
https://proceedings.mlr.press/v2/carreau07a.html (last access: 23 October 2022), 2007. a
Chatterji, N. S., Haque, S., and Hashimoto, T.: Undersampling is a
Minimax Optimal Robustness Intervention in Nonparametric Classification, ArXiv,
arXiv e-prints, 2022. a
Chen, B., Jin, Y., Scaduto, E., Moritz, M. A., Goulden, M. L., and Randerson,
J. T.: Climate, Fuel, and Land Use Shaped the Spatial Pattern of
Wildfire in California's Sierra Nevada, J. Geophys.
Res.-Biogeo., 126, e2020JG005786, https://doi.org/10.1029/2020JG005786, 2021. a
Coffield, S. R., Graff, C. A., Chen, Y., Smyth, P., Foufoula-Georgiou, E.,
Randerson, J. T., Coffield, S. R., Graff, C. A., Chen, Y., Smyth, P.,
Foufoula-Georgiou, E., and Randerson, J. T.: Machine learning to predict
final fire size at the time of ignition, Int. J. Wildland Fire, 28, 861–873, https://doi.org/10.1071/WF19023, 2019. a
Cohen, J. E. and Xu, M.: Random sampling of skewed distributions implies
Taylor's power law of fluctuation scaling, P. Natl. Acad. Sci. USA, 112, 7749–7754, https://doi.org/10.1073/pnas.1503824112, 2015. a
Coop, J. D., Parks, S. A., Stevens-Rumann, C. S., Crausbay, S. D., Higuera,
P. E., Hurteau, M. D., Tepley, A., Whitman, E., Assal, T., Collins, B. M.,
Davis, K. T., Dobrowski, S., Falk, D. A., Fornwalt, P. J., Fulé, P. Z.,
Harvey, B. J., Kane, V. R., Littlefield, C. E., Margolis, E. Q., North, M.,
Parisien, M.-A., Prichard, S., and Rodman, K. C.: Wildfire-Driven Forest
Conversion in Western North American Landscapes, BioScience, 70,
659–673, https://doi.org/10.1093/biosci/biaa061, 2020. a
Crimmins, M. A., Comrie, A. C., Crimmins, M. A., and Comrie, A. C.:
Interactions between antecedent climate and wildfire variability across
south-eastern Arizona, Int. J. Wildland Fire, 13,
455–466, https://doi.org/10.1071/WF03064, 2004. a
Daly, C., Gibson, W., Doggett, M., Smith, J., and Taylor, G.: Up-to-date
monthly climate maps for the conterminous United States, Proc., 14th AMS
Conf. on Applied Climatology, 13–16 January 2004, Seattle, WA, USA, 84th AMS Annual Meeting Combined Preprints, Paper P5.1,
2004. a
Dennison, P. E., Brewer, S. C., Arnold, J. D., and Moritz, M. A.: Large
wildfire trends in the western United States, 1984–2011, Geophys. Res. Lett., 41, 2928–2933, https://doi.org/10.1002/2014GL059576, 2014. a, b
Didan, K.: MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN
grid V006, NASA EOSDIS Land Processes DAAC, 10, 415, https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015. a
Dillon, G. K., Holden, Z. A., Morgan, P., Crimmins, M. A., Heyerdahl, E. K.,
and Luce, C. H.: Both topography and climate affected forest and woodland
burn severity in two regions of the western US, 1984 to 2006, Ecosphere, 2, 130,
https://doi.org/10.1890/ES11-00271.1, 2011. a
Ebert-Uphoff, I., Lagerquist, R., Hilburn, K., Lee, Y., Haynes, K., Stock, J.,
Kumler, C., and Stewart, J. Q.: CIRA Guide to Custom Loss Functions for
Neural Networks in Environmental Sciences – Version 1,
https://arxiv.org/abs/2106.09757 (last access: 14 June 2023), 2021. a
Eidenshink, J. C., Schwind, B., Brewer, K., Zhu, Z.-L., Quayle, B., and Howard,
S. M.: A project for monitoring trends in burn severity, Fire Ecology, 3,
3–21, https://doi.org/10.4996/fireecology.0301003, 2007. a
Fosberg, M. A.: Weather in wildland fire management: The fire-weather index,
Paper presented at the Conference on Sierra Nevada Meteorology, 19–21 June 1978, South Lake Tahoe, California, Am.
Meteorol. Soc., 1978. a
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeo.,
118, 317–328, https://doi.org/10.1002/jgrg.20042, 2013. a
Gutierrez, A. A., Hantson, S., Langenbrunner, B., Chen, B., Jin, Y., Goulden,
M. L., and Randerson, J. T.: Wildfire response to changing daily temperature
extremes in California's Sierra Nevada, Sci. Adv., 7, eabe6417,
https://doi.org/10.1126/sciadv.abe6417, 2021. a
Hansen, W. D., Braziunas, K. H., Rammer, W., Seidl, R., and Turner, M. G.: It
takes a few to tango: changing climate and fire regimes can cause
regeneration failure of two subalpine conifers, Ecology, 99, 966–977,
https://doi.org/10.1002/ecy.2181, 2018. a
Hansen, W. D., Krawchuk, M. A., Trugman, A. T., and Williams, A. P.: The
Dynamic Temperate and Boreal Fire and Forest-Ecosystem Simulator
(DYNAFFOREST): Development and evaluation, Environ. Model.
Softw., 156, 105473, https://doi.org/10.1016/j.envsoft.2022.105473,
2022. a, b
Harris, L. and Taylor, A. H.: Previous burns and topography limit and reinforce
fire severity in a large wildfire, Ecosphere, 8, e02019,
https://doi.org/10.1002/ecs2.2019, 2017. a
Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S., and Brown, T. A.:
Vegetation mediated the impacts of postglacial climate change on fire regimes
in the south-central Brooks Range, Alaska, Ecol. Monogr., 79,
201–219, https://doi.org/10.1890/07-2019.1, 2009. a
Holsinger, L., Parks, S. A., and Miller, C.: Weather, fuels, and topography
impede wildland fire spread in western US landscapes, Forest Ecol.
Manage., 380, 59–69, https://doi.org/10.1016/j.foreco.2016.08.035,
2016. a
Hooker, G., Mentch, L., and Zhou, S.: Unrestricted permutation forces
extrapolation: variable importance requires at least one more model, or there
is no free variable importance, Stat. Comput., 31, 82,
https://doi.org/10.1007/s11222-021-10057-z, 2021. a
Hurteau, M. D., Liang, S., Westerling, A. L., and Wiedinmyer, C.:
Vegetation-fire feedback reduces projected area burned under climate change,
Sci. Rep., 9, 2838, https://doi.org/10.1038/s41598-019-39284-1, 2019. a
Iglesias, V., Balch, J. K., and Travis, W. R.: U.S. fires became larger, more
frequent, and more widespread in the 2000s, Sci. Adv., 8, eabc0020,
https://doi.org/10.1126/sciadv.abc0020, 2022. a
Jain, P., Coogan, S. C., Subramanian, S. G., Crowley, M., Taylor, S., and
Flannigan, M. D.: A review of machine learning applications in wildfire
science and management, Environ. Rev., 28, 478–505,
https://doi.org/10.1139/er-2020-0019, 2020. a
Jia, S., Kim, S. H., Nghiem, S. V., Doherty, P., and Kafatos, M. C.: Patterns
of population displacement during mega-fires in California detected using
Facebook Disaster Maps, Environ. Res. Lett., 15, 074029,
https://doi.org/10.1088/1748-9326/ab8847, 2020. a
Jong-Levinger, A., Banerjee, T., Houston, D., and Sanders, B. F.: Compound
Post-Fire Flood Hazards Considering Infrastructure Sedimentation, Earth's
Future, 10, e2022EF002670, https://doi.org/10.1029/2022EF002670, 2022. a
Joseph, M. B., Rossi, M. W., Mietkiewicz, N. P., Mahood, A. L., Cattau, M. E.,
Denis, L. A. S., Nagy, R. C., Iglesias, V., Abatzoglou, J. T., and Balch,
J. K.: Spatiotemporal prediction of wildfire size extremes with Bayesian
finite sample maxima, Ecol. Appl., 29, e01898, https://doi.org/10.1002/eap.1898,
2019. a, b, c
Joshi, J. and Sukumar, R.: Improving prediction and assessment of global fires
using multilayer neural networks, Sci. Rep., 11, 3295,
https://doi.org/10.1038/s41598-021-81233-4, 2021. a
Juang, C. and Williams, P.: Western US MTBS-Interagency (WUMI) wildfire dataset, Dryad [data set], https://doi.org/10.5061/dryad.sf7m0cg72, 2022. a
Juang, C. S., Williams, A. P., Abatzoglou, J. T., Balch, J. K., Hurteau, M. D.,
and Moritz, M. A.: Rapid Growth of Large Forest Fires Drives the
Exponential Response of Annual Forest-Fire Area to Aridity in
the Western United States, Geophys. Res. Lett., 49, e2021GL097131,
https://doi.org/10.1029/2021GL097131, 2022. a, b, c, d, e
Kalashnikov, D. A., Abatzoglou, J. T., Nauslar, N. J., Swain, D. L., Touma, D.,
and Singh, D.: Meteorological and geographical factors associated with dry
lightning in central and northern California, Environ. Res.-Climate, 1, 025001, https://doi.org/10.1088/2752-5295/ac84a0, 2022. a
Keeley, J. E. and Syphard, A. D.: Historical patterns of wildfire ignition
sources in California ecosystems, Int. J. Wildland Fire,
27, 781–799, https://doi.org/10.1071/WF18026, 2018. a, b
Keeley, J. E., Guzman-Morales, J., Gershunov, A., Syphard, A. D., Cayan, D.,
Pierce, D. W., Flannigan, M., and Brown, T. J.: Ignitions explain more than
temperature or precipitation in driving Santa Ana wind fires, Sci. Adv., 7, eabh2262, https://doi.org/10.1126/sciadv.abh2262, 2021. a
Kitzberger, T., Falk, D. A., Westerling, A. L., and Swetnam, T. W.: Direct and
indirect climate controls predict heterogeneous early-mid 21st century
wildfire burned area across western and boreal North America, PLOS ONE,
12, e0188486, https://doi.org/10.1371/journal.pone.0188486, 2017. a
Klein Goldewijk, K. and Ramankutty, N.: Land cover change over the last three
centuries due to human activities: The availability of new global data
sets, GeoJournal, 61, 335–344, https://doi.org/10.1007/s10708-004-5050-z, 2004. a
Knapp, P. A.: Spatio-Temporal Patterns of Large Grassland Fires in
the Intermountain West, U.S.A., Global Ecol. Biogeogr.
Lett., 7, 259, https://doi.org/10.2307/2997600, 1998. a
Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human population density on fire frequency at the global scale, Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, 2014. a
Kondylatos, S., Prapas, I., Ronco, M., Papoutsis, I., Camps-Valls, G., Piles,
M., Fernandez-Torres, M.-A., and Carvalhais, N.: Wildfire Danger Prediction
and Understanding With Deep Learning, Geophys. Res. Lett., 49, e2022GL099368,
https://doi.org/10.1029/2022GL099368, 2022. a
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J., and Hayhoe, K.:
Global Pyrogeography: the Current and Future Distribution of
Wildfire, PLoS ONE, 4, e5102, https://doi.org/10.1371/journal.pone.0005102, 2009. a
Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I. C., and Harrison, S. P.: The importance of antecedent vegetation and drought conditions as global drivers of burnt area, Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, 2021. a, b
Levin, R., Cherepanova, V., Schwarzschild, A., Bansal, A., Bruss, C. B.,
Goldstein, T., Wilson, A. G., and Goldblum, M.: Transfer Learning with Deep
Tabular Models, ArXiv, arXiv preprint arXiv:2206.15306, 2022. a
Li, F., Zeng, X. D., and Levis, S.: A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model, Biogeosciences, 9, 2761–2780, https://doi.org/10.5194/bg-9-2761-2012, 2012. a
Li, S. and Banerjee, T.: Spatial and temporal pattern of wildfires in
California from 2000 to 2019, Sci. Rep., 11, 8779,
https://doi.org/10.1038/s41598-021-88131-9, 2021. a
Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.: Climate
and wildfire area burned in western U.S. ecoprovinces, 1916–2003,
Ecol. Appl., 19, 1003–1021,
https://doi.org/10.1890/07-1183.1, 2009. a, b
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model
Predictions, in: Advances in Neural Information Processing Systems 30, edited
by: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., 4765–4774,
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf (last access: 23 October 2022),
2017. a
Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S. P.,
Higuera, P. E., Joos, F., Power, M. J., and Prentice, I. C.: Climate and
human influences on global biomass burning over the past two millennia,
Nat. Geosci., 1, 697–702, https://doi.org/10.1038/ngeo313, 2008. a
Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S.,
Briles, C. E., Brown, K. J., Colombaroli, D., Hallett, D. J., Power, M. J.,
Scharf, E. A., and Walsh, M. K.: Long-term perspective on wildfires in the
western USA, P. Natl. Acad. Sci. USA, 109, E535–E543,
https://doi.org/10.1073/pnas.1112839109, 2012. a
Monteith, J. L.: Evaporation and environment, in: Symposia of the society for
experimental biology, 19, 205–234, Cambridge University Press
(CUP), https://scholar.google.com/scholar_lookup?title=Evaporation+and+environment+in+the+State+and+Movement+of+Water+in+Living+Organisms&author=Monteith,+J.L.&publication_year=1965&pages=205-234 (last access: 16 June 2023), 1965. a
Moritz, M. A., Moody, T. J., Krawchuk, M. A., Hughes, M., and Hall, A.: Spatial
variation in extreme winds predicts large wildfire locations in chaparral
ecosystems, Geophys. Res. Lett., 37, L04801,
https://doi.org/10.1029/2009GL041735, 2010. a
Nadarajah, S., Zhang, Y., and Pogány, T. K.: On sums of independent
Generalized Pareto random variables with applications to Insurance and CAT
bonds, Probab. Eng. Inform. Sc., 32,
296–305, https://doi.org/10.1017/S0269964817000055, 2018. a
O'Dell, K., Ford, B., Fischer, E. V., and Pierce, J. R.: Contribution of
Wildland-Fire Smoke to US PM2.5 and Its Influence on Recent
Trends, Environ. Sci. Technol., 53, 1797–1804,
https://doi.org/10.1021/acs.est.8b05430, 2019. a
Orville, R. E. and Huffines, G. R.: Cloud-to-Ground Lightning in the United
States: NLDN Results in the First Decade, 1989–98, Mon. Weather
Rev., 129, 1179–1193,
https://doi.org/10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2, 2001. a
Parisien, M.-A. and Moritz, M. A.: Environmental controls on the distribution
of wildfire at multiple spatial scales, Ecol. Monogr., 79, 127–154,
https://doi.org/10.1890/07-1289.1, 2009. a, b, c, d
Parisien, M.-A., Snetsinger, S., Greenberg, J. A., Nelson, C. R., Schoennagel,
T., Dobrowski, S. Z., and Moritz, M. A.: Spatial variability in wildfire
probability across the western United States, Int. J. Wildland Fire, 21, 313, https://doi.org/10.1071/WF11044, 2012. a
Parks, S. A., Miller, C., Parisien, M.-A., Holsinger, L. M., Dobrowski, S. Z.,
and Abatzoglou, J.: Wildland fire deficit and surplus in the western United
States, 1984–2012, Ecosphere, 6, 1–13,
https://doi.org/10.1890/ES15-00294.1, 2015. a
Parks, S. A., Parisien, M.-A., Miller, C., Holsinger, L. M., and Baggett,
L. S.: Fine-scale spatial climate variation and drought mediate the
likelihood of reburning, Ecol. Appl., 28, 573–586,
https://doi.org/10.1002/eap.1671, 2018. a
Perez-Cruz, F.: Kullback-Leibler divergence estimation of continuous
distributions, in: 2008 IEEE International Symposium on Information Theory, 6–11 July 2008, Toronto, ON, Canada,
1666–1670, https://doi.org/10.1109/ISIT.2008.4595271, 2008. a
Potter, B. E. and McEvoy, D.: Weather Factors Associated with Extremely Large
Fires and Fire Growth Days, Earth Interactions, 25, 160–176,
https://doi.org/10.1175/EI-D-21-0008.1, 2021. a
Pureswaran, D. S., Roques, A., and Battisti, A.: Forest Insects and Climate
Change, Current Forestry Reports, 4, 35–50,
https://doi.org/10.1007/s40725-018-0075-6, 2018. a
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017. a
Radeloff, V. C., Hammer, R. B., Stewart, S. I., Fried, J. S., Holcomb, S. S.,
and McKeefry, J. F.: The Wildland-Urban Interface in the United
States, Ecol. Appl., 15, 799–805,
https://doi.org/10.1890/04-1413, 2005. a
Rahimi, S., Krantz, W., Lin, Y., Bass, B., Goldenson, N., Hall, A., Jebo, Z.,
and Norris, J.: Evaluation of a Reanalysis-Driven Configuration of WRF4 Over
the Western United States From 1980–2020, J. Geophys. Res.-Atmos., 127, e2021JD035699, https://doi.org/10.1029/2021JD035699, 2022. a
Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M., and Konings, A. G.:
Plant-water sensitivity regulates wildfire vulnerability, Nat. Ecol.
Evol., 6, 332–339, https://doi.org/10.1038/s41559-021-01654-2, 2022. a
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid
processes in climate models, P. Natl. Acad. Sci. USA,
115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018. a
Richards, J., Huser, R., Bevacqua, E., and Zscheischler, J.: Insights into the
drivers and spatio-temporal trends of extreme Mediterranean wildfires with
statistical deep-learning, ArXiv, arXiv preprint arXiv:2212.01796, 2022. a
Rigden, A. J., Powell, R. S., Trevino, A., McColl, K. A., and Huybers, P.:
Microwave Retrievals of Soil Moisture Improve Grassland Wildfire
Predictions, Geophys. Res. Lett., 47, e2020GL091410,
https://doi.org/10.1029/2020GL091410, 2020. a
Riley, K. and Thompson, M.: An Uncertainty Analysis of Wildfire Modeling,
chap. 13, 191–213, American Geophysical Union (AGU),
https://doi.org/10.1002/9781119028116.ch13, 2016. a
Rollins, M. G.: LANDFIRE: a nationally consistent vegetation, wildland fire,
and fuel assessment, Int. J. Wildland Fire, 18, 235–249,
https://doi.org/10.1071/WF08088, 2009. a
Rollins, M. G., Morgan, P., and Swetnam, T.: Landscape-scale controls over 20th
century fire occurrence in two large Rocky Mountain (USA) wilderness
areas, Landscape Ecol., 17, 539–557, https://doi.org/10.1023/A:1021584519109, 2002. a, b
Romps, D. M., Seeley, J. T., Vollaro, D., and Molinari, J.: Projected increase
in lightning strikes in the United States due to global warming, Science,
346, 851–854, https://doi.org/10.1126/science.1259100, 2014. a
Schoenberg, F. P., Peng, R., and Woods, J.: On the distribution of wildfire
sizes, Environmetrics, 14, 583–592, https://doi.org/10.1002/env.605, 2003. a
Scollnik, D. P. M.: On composite lognormal-Pareto models, Scandinavian
Actuarial Journal, 2007, 20–33, https://doi.org/10.1080/03461230601110447, 2007. a
Seager, R., Hooks, A., Williams, A. P., Cook, B., Nakamura, J., and Henderson,
N.: Climatology, Variability, and Trends in the U.S. Vapor Pressure
Deficit, an Important Fire-Related Meteorological Quantity, J.
Appl. Meteorol. Climatol., 54, 1121–1141,
https://doi.org/10.1175/JAMC-D-14-0321.1, 2015. a
Spawn, S. A., Sullivan, C. C., Lark, T. J., and Gibbs, H. K.: Harmonized global
maps of above and belowground biomass carbon density in the year 2010,
Sci. Data, 7, 112, https://doi.org/10.1038/s41597-020-0444-4, 2020. a
Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 3:
Simulation and mathematical analogue models, Int. J. Wildland Fire, 18, 387–403, 2009. a
Swetnam, T. W. and Betancourt, J. L.: Mesoscale Disturbance and Ecological
Response to Decadal Climatic Variability in the American Southwest, J. Climate, 11, 3128–3147,
https://doi.org/10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2, 1998. a
Tschumi, E., Lienert, S., van der Wiel, K., Joos, F., and Zscheischler, J.: The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition, Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, 2022. a
Vose, R., Applequist, S., Squires, M., Durre, I., Menne, M., Williams, C.,
Fenimore, C., Gleason, K., and Arndt, D.: Improved Historical Temperature
and Precipitation Time Series for U.S. Climate Divisions, J.
Appl. Meteorol. Climatol., 53, 1232–1251,
https://doi.org/10.1175/JAMC-D-13-0248.1, 2014. a
Wacker, R. S. and Orville, R. E.: Changes in measured lightning flash count and
return stroke peak current after the 1994 U.S. National Lightning
Detection Network upgrade: 1. Observations, J. Geophys.
Res.-Atmos., 104, 2151–2157,
https://doi.org/10.1029/1998JD200060, 1999. a
Wang, S. S.-C. and Wang, Y.: Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques, Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020, 2020. a, b
Wang, S. S.-C., Qian, Y., Leung, L. R., and Zhang, Y.: Identifying Key
Drivers of Wildfires in the Contiguous US Using Machine
Learning and Game Theory Interpretation, Earth's Future, 9, e2020EF001910,
https://doi.org/10.1029/2020EF001910, 2021. a, b, c
Westerling, A. L.: Increasing western US forest wildfire activity:
sensitivity to changes in the timing of spring, Philos. T.
Roy. Soc. B, 371, 20150178, https://doi.org/10.1098/rstb.2015.0178,
2016. a
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming
and Earlier Spring Increase Western U.S. Forest Wildfire Activity, Science,
313, 940–943, https://doi.org/10.1126/science.1128834, 2006. a
Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., and Ryan,
M. G.: Continued warming could transform Greater Yellowstone fire regimes
by mid-21st century, P. Natl. Acad. Sci. USA, 108,
13165–13170, https://doi.org/10.1073/pnas.1110199108, 2011. a, b
Williams, A. P. and Abatzoglou, J. T.: Recent Advances and Remaining
Uncertainties in Resolving Past and Future Climate Effects on
Global Fire Activity, Current Climate Change Reports, 2, 1–14,
https://doi.org/10.1007/s40641-016-0031-0, 2016. a
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A.,
Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer,
H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., and McDowell,
N. G.: Temperature as a potent driver of regional forest drought stress and
tree mortality, Nat. Clim. Change, 3, 292–297,
https://doi.org/10.1038/nclimate1693, 2013. a
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman‐Morales, J.,
Bishop, D. A., Balch, J. K., and Lettenmaier, D. P.: Observed Impacts of
Anthropogenic Climate Change on Wildfire in California, Earth's
Future, 7, 892–910, https://doi.org/10.1029/2019EF001210, 2019. a, b
Williams, A. P., Livneh, B., McKinnon, K. A., Hansen, W. D., Mankin, J. S.,
Cook, B. I., Smerdon, J. E., Varuolo-Clarke, A. M., Bjarke, N. R., Juang,
C. S., and Lettenmaier, D. P.: Growing impact of wildfire on western US water
supply, P. Natl. Acad. Sci. USA, 119, e2114069119,
https://doi.org/10.1073/pnas.2114069119, 2022. a
Wu, X., Liu, H., Hartmann, H., Ciais, P., Kimball, J. S., Schwalm, C. R.,
Camarero, J. J., Chen, A., Gentine, P., Yang, Y., Zhang, S., Li, X., Xu, C.,
Zhang, W., Li, Z., and Chen, D.: Timing and Order of Extreme Drought and
Wetness Determine Bioclimatic Sensitivity of Tree Growth, Earth's Future, 10,
e2021EF002530, https://doi.org/10.1029/2021EF002530, 2022. a
Xie, Y., Lin, M., Decharme, B., Delire, C., Horowitz, L. W., Lawrence, D. M.,
Li, F., and Séférian, R.: Tripling of western US particulate pollution from
wildfires in a warming climate, P. Natl. Acad. Sci. USA, 119, e2111372119, https://doi.org/10.1073/pnas.2111372119, 2022. a
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A.,
Costello, C., Dewitz, J., Fry, J., Funk, M., Granneman, B., Liknes, G. C.,
Rigge, M., and Xian, G.: A new generation of the United States National
Land Cover Database: Requirements, research priorities, design, and
implementation strategies, ISPRS J. Photogramm. Remote, 146, 108–123,
https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018. a
Yuval, J. and O'Gorman, P. A.: Stable machine-learning parameterization of
subgrid processes for climate modeling at a range of resolutions, Nat.
Commun., 11, 3295, https://doi.org/10.1038/s41467-020-17142-3, 2020. a
Zeng, X., Broxton, P., and Dawson, N.: Snowpack Change From 1982 to 2016 Over
Conterminous United States, Geophys. Res. Lett., 45,
12940–12947, https://doi.org/10.1029/2018GL079621, 2018.
a
Zeng, X., Broxton, P., and Dawson, N.: Daily 4 km Gridded SWE and Snow
Depth from Assimilated In-Situ and Modeled Data over the Conterminous US,
Version 1, NASA National Snow and Ice Data Center Distributed Active Archive
Center [data set], https://doi.org/10.5067/0GGPB220EX6A, 2019. a
Zheng, B., Ciais, P., Chevallier, F., Chuvieco, E., Chen, Y., and Yang, H.:
Increasing forest fire emissions despite the decline in global burned area,
Sci. Adv., 7, eabh2646, https://doi.org/10.1126/sciadv.abh2646, 2021. a
Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S.,
Lorenz, R., Seneviratne, S. I., and Gentine, P.: Land-atmosphere feedbacks
exacerbate concurrent soil drought and atmospheric aridity, P. Natl. Acad. Sci. USA, 116, 18848–18853,
https://doi.org/10.1073/pnas.1904955116, 2019. a
Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E., and Hall, A.: Quantifying
contributions of natural variability and anthropogenic forcings on increased
fire weather risk over the western United States, P. Natl. Acad. Sci. USA, 118, e2111875118, https://doi.org/10.1073/pnas.2111875118, 2021. a
Zou, Y., Wang, Y., Qian, Y., Tian, H., Yang, J., and Alvarado, E.: Using CESM-RESFire to understand climate–fire–ecosystem interactions and the implications for decadal climate variability, Atmos. Chem. Phys., 20, 995–1020, https://doi.org/10.5194/acp-20-995-2020, 2020. a
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
We leverage machine learning techniques to construct a statistical model of grid-scale fire...