Articles | Volume 16, issue 12
https://doi.org/10.5194/gmd-16-3407-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3407-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY, USA
A. Park Williams
Department of Geography, University of California, Los Angeles, CA, USA
Caroline S. Juang
Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY, USA
Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
Winslow D. Hansen
Cary Institute of Ecosystem Studies, Millbrook, NY, USA
Pierre Gentine
Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
Related authors
No articles found.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Winslow D. Hansen, Adrianna Foster, Benjamin Gaglioti, Rupert Seidl, and Werner Rammer
Geosci. Model Dev., 16, 2011–2036, https://doi.org/10.5194/gmd-16-2011-2023, https://doi.org/10.5194/gmd-16-2011-2023, 2023
Short summary
Short summary
Permafrost and the thick soil-surface organic layers that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and soil organic layer module that operates at fine spatial (1 ha) and temporal (daily) resolutions.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Pierre Gentine, Adam Massmann, Benjamin R. Lintner, Sayed Hamed Alemohammad, Rong Fu, Julia K. Green, Daniel Kennedy, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 23, 4171–4197, https://doi.org/10.5194/hess-23-4171-2019, https://doi.org/10.5194/hess-23-4171-2019, 2019
Short summary
Short summary
Land–atmosphere interactions are key for the exchange of water, energy, and carbon dioxide, especially in the tropics. We here review some of the recent findings on land–atmosphere interactions in the tropics and where we see potential challenges and paths forward.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Wen Li Zhao, Yu Jiu Xiong, Kyaw Tha Paw U, Pierre Gentine, Baoyu Chen, and Guo Yu Qiu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-160, https://doi.org/10.5194/hess-2019-160, 2019
Manuscript not accepted for further review
Short summary
Short summary
Accurate evapotranspiration (ET) estimation requires an in-depth identification of uncertainty sources. Using high density eddy covariance observations, we evaluated the effects of resistances on ET estimation and discussed possible solutions. The results show that more complex resistance parameterizations leads to more uncertainty, although prior calibration can improve the ET estimates and that a new model without resistance parameterization introduces less uncertainty into the ET estimation.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
Adam Massmann, Pierre Gentine, and Changjie Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-553, https://doi.org/10.5194/hess-2018-553, 2018
Revised manuscript not accepted
Short summary
Short summary
Plants can sense increasing dryness in the air and close up the pores
on their leaves, preventing water loss. However, drier air also
naturally demands more water from the land surface. Here we develop a
simplified theory for when land surface water loss increases
(atmospheric demand dominates) or decreases (plant response dominates)
in response to increased dryness in the air. This theory provides
intuition for how ecosystems regulate water in response to changes in
atmospheric dryness.
Tim van Emmerik, Susan Steele-Dunne, Pierre Gentine, Rafael S. Oliveira, Paulo Bittencourt, Fernanda Barros, and Nick van de Giesen
Biogeosciences, 15, 6439–6449, https://doi.org/10.5194/bg-15-6439-2018, https://doi.org/10.5194/bg-15-6439-2018, 2018
Short summary
Short summary
Trees are very important for the water and carbon cycles. Climate and weather models often assume constant vegetation parameters because good measurements are missing. We used affordable accelerometers to measure tree sway of 19 trees in the Amazon rainforest. We show that trees respond very differently to the same weather conditions, which means that vegetation parameters are dynamic. With our measurements trees can be accounted for more realistically, improving climate and weather models.
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Short summary
Using satellite reflectance measurements and a machine learning algorithm, we generated a new solar-induced chlorophyll fluorescence (SIF) dataset that is closely linked to plant photosynthesis. This new dataset has higher spatial and temporal resolutions, and lower uncertainty compared to the existing satellite retrievals. We also demonstrated its application in monitoring drought and improving the understanding of the SIF–photosynthesis relationship.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-682, https://doi.org/10.5194/hess-2017-682, 2018
Revised manuscript not accepted
Short summary
Short summary
Potential evaporation is a key parameter in numerous models used for assessing water use and drought severity. Yet, multiple incompatible methods have been proposed, thus estimates of potential evaporation remain uncertain. Based on the largest available dataset of FLUXNET data, we identify the best method to calculate potential evaporation globally. A simple radiation-driven method calibrated per biome consistently performed best; more complex models did not perform as good.
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
Carolin Klinger, Bernhard Mayer, Fabian Jakub, Tobias Zinner, Seung-Bu Park, and Pierre Gentine
Atmos. Chem. Phys., 17, 5477–5500, https://doi.org/10.5194/acp-17-5477-2017, https://doi.org/10.5194/acp-17-5477-2017, 2017
Short summary
Short summary
Radiation is driving weather and climate. Yet, the effect of radiation on clouds is not fully understood and often only poorly represented in models. Better understanding and better parameterizations of the radiation–cloud interaction are therefore essential. Using our newly developed fast
neighboring column approximationfor 3-D thermal heating and cooling rates, we show that thermal radiation changes cloud circulation and causes organization and a deepening of the clouds.
Nir Y. Krakauer, Michael J. Puma, Benjamin I. Cook, Pierre Gentine, and Larissa Nazarenko
Earth Syst. Dynam., 7, 863–876, https://doi.org/10.5194/esd-7-863-2016, https://doi.org/10.5194/esd-7-863-2016, 2016
Short summary
Short summary
We simulated effects of irrigation on climate with the NASA GISS global climate model. Present-day irrigation levels affected air pressures and temperatures even in non-irrigated land and ocean areas. The simulated effect was bigger and more widespread when ocean temperatures in the climate model could change, rather than being fixed. We suggest that expanding irrigation may affect global climate more than previously believed.
B. R. Lintner, P. Gentine, K. L. Findell, and G. D. Salvucci
Hydrol. Earth Syst. Sci., 19, 2119–2131, https://doi.org/10.5194/hess-19-2119-2015, https://doi.org/10.5194/hess-19-2119-2015, 2015
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
Related subject area
Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate
A radiative–convective model computing precipitation with the maximum entropy production hypothesis
Leveraging regional mesh refinement to simulate future climate projections for California using the Simplified Convection-Permitting E3SM Atmosphere Model Version 0
Machine learning parameterization of the multi-scale Kain–Fritsch (MSKF) convection scheme and stable simulation coupled in the Weather Research and Forecasting (WRF) model using WRF–ML v1.0
Impacts of spatial heterogeneity of anthropogenic aerosol emissions in a regionally refined global aerosol–climate model
cfr (v2024.1.26): a Python package for climate field reconstruction
NEWTS1.0: Numerical model of coastal Erosion by Waves and Transgressive Scarps
Evaluation of isoprene emissions from the coupled model SURFEX–MEGANv2.1
A comprehensive Earth system model (AWI-ESM2.1) with interactive icebergs: effects on surface and deep-ocean characteristics
The regional climate–chemistry–ecology coupling model RegCM-Chem (v4.6)–YIBs (v1.0): development and application
Coupling the regional climate model ICON-CLM v2.6.6 into the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
An overview of cloud–radiation denial experiments for the Energy Exascale Earth System Model version 1
The computational and energy cost of simulation and storage for climate science: lessons from CMIP6
Subgrid-scale variability of cloud ice in the ICON-AES 1.3.00
INFERNO-peat v1.0.0: a representation of northern high-latitude peat fires in the JULES-INFERNO global fire model
The 4DEnVar-based weakly coupled land data assimilation system for E3SM version 2
Continental-scale bias-corrected climate and hydrological projections for Australia
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4.8.0
A one-dimensional urban flow model with an eddy-diffusivity mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)
DCMIP2016: the tropical cyclone test case
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical mixing parameterization on Arctic sea ice and upper ocean properties using the NEMO-SI3 model
Methane dynamics in the Baltic Sea: investigating concentration, flux and isotopic composition patterns using the coupled physical-biogeochemical model BALTSEM-CH4 v1.0
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Quentin Pikeroen, Didier Paillard, and Karine Watrin
Geosci. Model Dev., 17, 3801–3814, https://doi.org/10.5194/gmd-17-3801-2024, https://doi.org/10.5194/gmd-17-3801-2024, 2024
Short summary
Short summary
All accurate climate models use equations with poorly defined parameters, where knobs for the parameters are turned to fit the observations. This process is called tuning. In this article, we use another paradigm. We use a thermodynamic hypothesis, the maximum entropy production, to compute temperatures, energy fluxes, and precipitation, where tuning is impossible. For now, the 1D vertical model is used for a tropical atmosphere. The correct order of magnitude of precipitation is computed.
Jishi Zhang, Peter Bogenschutz, Qi Tang, Philip Cameron-smith, and Chengzhu Zhang
Geosci. Model Dev., 17, 3687–3731, https://doi.org/10.5194/gmd-17-3687-2024, https://doi.org/10.5194/gmd-17-3687-2024, 2024
Short summary
Short summary
We developed a regionally refined climate model that allows resolved convection and performed a 20-year projection to the end of the century. The model has a resolution of 3.25 km in California, which allows us to predict climate with unprecedented accuracy, and a resolution of 100 km for the rest of the globe to achieve efficient, self-consistent simulations. The model produces superior results in reproducing climate patterns over California that typical modern climate models cannot resolve.
Xiaohui Zhong, Xing Yu, and Hao Li
Geosci. Model Dev., 17, 3667–3685, https://doi.org/10.5194/gmd-17-3667-2024, https://doi.org/10.5194/gmd-17-3667-2024, 2024
Short summary
Short summary
In order to forecast localized warm-sector rainfall in the south China region, numerical weather prediction models are being run with finer grid spacing. The conventional convection parameterization (CP) performs poorly in the gray zone, necessitating the development of a scale-aware scheme. We propose a machine learning (ML) model to replace the scale-aware CP scheme. Evaluation against the original CP scheme has shown that the ML-based CP scheme can provide accurate and reliable predictions.
Taufiq Hassan, Kai Zhang, Jianfeng Li, Balwinder Singh, Shixuan Zhang, Hailong Wang, and Po-Lun Ma
Geosci. Model Dev., 17, 3507–3532, https://doi.org/10.5194/gmd-17-3507-2024, https://doi.org/10.5194/gmd-17-3507-2024, 2024
Short summary
Short summary
Anthropogenic aerosol emissions are an essential part of global aerosol models. Significant errors can exist from the loss of emission heterogeneity. We introduced an emission treatment that significantly improved aerosol emission heterogeneity in high-resolution model simulations, with improvements in simulated aerosol surface concentrations. The emission treatment will provide a more accurate representation of aerosol emissions and their effects on climate.
Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins
Geosci. Model Dev., 17, 3409–3431, https://doi.org/10.5194/gmd-17-3409-2024, https://doi.org/10.5194/gmd-17-3409-2024, 2024
Short summary
Short summary
Climate field reconstruction encompasses methods that estimate the evolution of climate in space and time based on natural archives. It is useful to investigate climate variations and validate climate models, but its implementation and use can be difficult for non-experts. This paper introduces a user-friendly Python package called cfr to make these methods more accessible, thanks to the computational and visualization tools that facilitate efficient and reproducible research on past climates.
Rose V. Palermo, J. Taylor Perron, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes, and Andrew D. Ashton
Geosci. Model Dev., 17, 3433–3445, https://doi.org/10.5194/gmd-17-3433-2024, https://doi.org/10.5194/gmd-17-3433-2024, 2024
Short summary
Short summary
Models of rocky coastal erosion help us understand the controls on coastal morphology and evolution. In this paper, we present a simplified model of coastline erosion driven by either uniform erosion where coastline erosion is constant or wave-driven erosion where coastline erosion is a function of the wave power. This model can be used to evaluate how coastline changes reflect climate, sea-level history, material properties, and the relative influence of different erosional processes.
Safae Oumami, Joaquim Arteta, Vincent Guidard, Pierre Tulet, and Paul David Hamer
Geosci. Model Dev., 17, 3385–3408, https://doi.org/10.5194/gmd-17-3385-2024, https://doi.org/10.5194/gmd-17-3385-2024, 2024
Short summary
Short summary
In this paper, we coupled the SURFEX and MEGAN models. The aim of this coupling is to improve the estimation of biogenic fluxes by using the SURFEX canopy environment model. The coupled model results were validated and several sensitivity tests were performed. The coupled-model total annual isoprene flux is 442 Tg; this value is within the range of other isoprene estimates reported. The ultimate aim of this coupling is to predict the impact of climate change on biogenic emissions.
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
Geosci. Model Dev., 17, 3279–3301, https://doi.org/10.5194/gmd-17-3279-2024, https://doi.org/10.5194/gmd-17-3279-2024, 2024
Short summary
Short summary
We present long-term simulations with interactive icebergs in the Southern Ocean. By melting, icebergs reduce the temperature and salinity of the surrounding ocean. In our simulations, we find that this cooling effect of iceberg melting is not limited to the surface ocean but also reaches the deep ocean and propagates northward into all ocean basins. Additionally, the formation of deep-water masses in the Southern Ocean is enhanced.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
EGUsphere, https://doi.org/10.5194/egusphere-2024-923, https://doi.org/10.5194/egusphere-2024-923, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI version 2.0 including the regional climate model ICON-CLM coupled with the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in the ICON-CLM model makes it more flexible to couple with an external ocean model and an external hydrological discharge model.
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
Geosci. Model Dev., 17, 3111–3135, https://doi.org/10.5194/gmd-17-3111-2024, https://doi.org/10.5194/gmd-17-3111-2024, 2024
Short summary
Short summary
Seven new experimental setups designed to interfere with cloud radiative heating have been added to the Energy Exascale Earth System Model (E3SM). These experiments include both those that test the mean impact of cloud radiative heating and those examining its covariance with circulations. This paper documents the code changes and steps needed to run these experiments. Results corroborate prior findings for how cloud radiative heating impacts circulations and rainfall patterns.
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024, https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Short summary
We present a collection of performance metrics gathered during the Coupled Model Intercomparison Project Phase 6 (CMIP6), a worldwide initiative to study climate change. We analyse the metrics that resulted from collaboration efforts among many partners and models and describe our findings to demonstrate the utility of our study for the scientific community. The research contributes to understanding climate modelling performance on the current high-performance computing (HPC) architectures.
Sabine Doktorowski, Jan Kretzschmar, Johannes Quaas, Marc Salzmann, and Odran Sourdeval
Geosci. Model Dev., 17, 3099–3110, https://doi.org/10.5194/gmd-17-3099-2024, https://doi.org/10.5194/gmd-17-3099-2024, 2024
Short summary
Short summary
Especially over the midlatitudes, precipitation is mainly formed via the ice phase. In this study we focus on the initial snow formation process in the ICON-AES, the aggregation process. We use a stochastical approach for the aggregation parameterization and investigate the influence in the ICON-AES. Therefore, a distribution function of cloud ice is created, which is evaluated with satellite data. The new approach leads to cloud ice loss and an improvement in the process rate bias.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev., 17, 3025–3040, https://doi.org/10.5194/gmd-17-3025-2024, https://doi.org/10.5194/gmd-17-3025-2024, 2024
Short summary
Short summary
Improving climate predictions have profound socio-economic impacts. This study introduces a new weakly coupled land data assimilation (WCLDA) system for a coupled climate model. We demonstrate improved simulation of soil moisture and temperature in many global regions and throughout the soil layers. Furthermore, significant improvements are also found in reproducing the time evolution of the 2012 US Midwest drought. The WCLDA system provides the groundwork for future predictability studies.
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024, https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
Short summary
We detail the production of datasets and communication to end users of high-resolution projections of rainfall, runoff, and soil moisture for the entire Australian continent. This is important as previous projections for Australia were for small regions and used differing techniques for their projections, making comparisons difficult across Australia's varied climate zones. The data will be beneficial for research purposes and to aid adaptation to climate change.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-362, https://doi.org/10.5194/egusphere-2024-362, 2024
Short summary
Short summary
In this study, we improve an existing climate model to account for human water usage across domestic, industrial, and agriculture purposes. With the new capabilities, the model is now better equipped for studying questions related to water scarcity in both present and future conditions under climate change. Despite the advancements, there remains important limitations in our modelling framework which requires further work.
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024, https://doi.org/10.5194/gmd-17-2547-2024, 2024
Short summary
Short summary
The effects of ozone (O3) stress on crop photosynthesis and leaf senescence were added to maize, rice, soybean, and wheat crop models. The modified models reproduced growth and yields under different O3 levels measured in field experiments and reported in the literature. The combined interactions between O3 and additional stresses were reproduced with the new models. These updated crop models can be used to simulate impacts of O3 stress under future climate change and air pollution scenarios.
Jiachen Lu, Negin Nazarian, Melissa Anne Hart, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 17, 2525–2545, https://doi.org/10.5194/gmd-17-2525-2024, https://doi.org/10.5194/gmd-17-2525-2024, 2024
Short summary
Short summary
This study enhances urban canopy models by refining key assumptions. Simulations for various urban scenarios indicate discrepancies in turbulent transport efficiency for flow properties. We propose two modifications that involve characterizing diffusion coefficients for momentum and turbulent kinetic energy separately and introducing a physics-based
mass-fluxterm. These adjustments enhance the model's performance, offering more reliable temperature and surface flux estimates.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-36, https://doi.org/10.5194/gmd-2024-36, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-49, https://doi.org/10.5194/gmd-2024-49, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We study the parameters involved in the turbulent kinetic energy mixed layer penetration scheme of the NEMO model in Arctic sea ice-covered regions. This evaluation reveals the impact of these parameters on mixed layer depth, sea surface temperature and salinity, and ocean stratification. Our findings also demonstrate considerable impacts on sea ice thickness and sea ice concentration, emphasizing the importance of accurate ocean mixing representation in understanding Arctic climate dynamics.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-211, https://doi.org/10.5194/gmd-2023-211, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Methane (CH4) cycling in the Baltic Sea is studied through model simulations, allowing a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source, and two main sinks: CH4 oxidation in the water (87 % of the sinks) and outgassing to the atmosphere (13 % of the sinks). This study addresses CH4 emissions from coastal seas and is a first step towards understanding the relative importance of open water outgassing compared to local coastal hotspots.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for
ecological applications and modelling, Int. J. Climatol.,
33, 121–131, https://doi.org/10.1002/joc.3413, 2013. a
Abatzoglou, J. T. and Kolden, C. A.: Relationships between climate and
macroscale area burned in the western United States, Int. J. Wildland Fire, 22, 1003–1020, https://doi.org/10.1071/WF13019, 2013. a
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change
on wildfire across western US forests, P. Nl. Acad.
Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016. a, b, c
Abatzoglou, J. T., Kolden, C. A., Williams, A. P., Lutz, J. A., and Smith, A.
M. S.: Climatic influences on interannual variability in regional burn
severity across western US forests, Int. J. Wildland Fire,
26, 269–275, https://doi.org/10.1071/WF16165, 2017. a, b
Abatzoglou, J. T., Battisti, D. S., Williams, A. P., Hansen, W. D., Harvey,
B. J., and Kolden, C. A.: Projected increases in western US forest fire
despite growing fuel constraints, Commun. Earth Environ., 2, 227,
https://doi.org/10.1038/s43247-021-00299-0, 2021a. a
Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A., and
Westerling, A. L.: Increasing Synchronous Fire Danger in Forests of the
Western United States, Geophys. Res. Lett., 48, e2020GL091377,
https://doi.org/10.1029/2020GL091377, 2021b. a
Abolafia-Rosenzweig, R., He, C., and Chen, F.: Winter and spring climate
explains a large portion of interannual variability and trend in western
U.S. summer fire burned area, Environ. Res. Lett., 17, 054030,
https://doi.org/10.1088/1748-9326/ac6886, 2022. a
Alvarez-Melis, D. and Jaakkola, T. S.: Towards Robust Interpretability
with Self-Explaining Neural Networks, ArXiv, arXiv e-prints, 2018. a
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017. a, b
Anderson, D. B.: Relative Humidity or Vapor Pressure Deficit,
Ecology, 17, 277–282, http://www.jstor.org/stable/1931468,
1936. a
Andrews, P. L.: The Rothermel surface fire spread model and associated
developments: A comprehensive explanation, Gen. Tech. Rep. RMRS-GTR-371. Fort
Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain
Research Station. 121 pp., 371, 2018. a
Bailey, R. G.: Ecoregions of the United States, in: Ecosystem Geography, Springer New York, New York, NY,
83–104,
https://doi.org/10.1007/978-1-4612-2358-0_7, 1996. a
Bakhshaii, A. and Johnson, E.: A review of a new generation of
wildfire–atmosphere modeling, Can. J. Forest Res., 49,
565–574, https://doi.org/10.1139/cjfr-2018-0138, 2019. a
Balch, J. K., Bradley, B. A., D'Antonio, C. M., and Gómez-Dans, J.: Introduced
annual grass increases regional fire activity across the arid western USA
(1980–2009), Global Change Biol., 19, 173–183, https://doi.org/10.1111/gcb.12046,
2013. a
Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., and
Mahood, A. L.: Human-started wildfires expand the fire niche across the
United States, P. Natl. Acad. Sci. USA, 114,
2946–2951, https://doi.org/10.1073/pnas.1617394114, 2017. a, b
Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L.,
Wigneron, J. P., Weber, U., Reichstein, M., Fu, Z., Anthoni, P., Arneth, A.,
Haverd, V., Jain, A. K., Joetzjer, E., Knauer, J., Lienert, S., Loughran, T.,
McGuire, P. C., Tian, H., Viovy, N., and Zaehle, S.: Direct and seasonal
legacy effects of the 2018 heat wave and drought on European ecosystem
productivity, Sci. Adv., 6, eaba2724, https://doi.org/10.1126/sciadv.aba2724, 2020. a, b
Bishop, C.: Mixture density networks, Working paper, Aston University, https://publications.aston.ac.uk/id/eprint/373/ (last access: 16 June 2023), 1994. a
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison,
S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston,
J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam,
T. W., van der Werf, G. R., and Pyne, S. J.: Fire in the Earth System,
Science, 324, 481–484, https://doi.org/10.1126/science.1163886, 2009. a
Bradstock, R. A.: A biogeographic model of fire regimes in Australia: current
and future implications, Global Ecol. Biogeogr., 19, 145–158,
https://doi.org/10.1111/j.1466-8238.2009.00512.x, 2010. a
Brey, S. J., Barnes, E. A., Pierce, J. R., Wiedinmyer, C., and Fischer, E. V.:
Environmental Conditions, Ignition Type, and Air Quality Impacts
of Wildfires in the Southeastern and Western United States, Earth's
Future, 6, 1442–1456, https://doi.org/10.1029/2018EF000972, 2018. a
Brey, S. J., Barnes, E. A., Pierce, J. R., Swann, A. L. S., and Fischer, E. V.:
Past Variance and Future Projections of the Environmental Conditions Driving
Western U.S. Summertime Wildfire Burn Area, Earth's Future, 9, e2020EF001645,
https://doi.org/10.1029/2020EF001645, 2021. a
Buch, J., Williams, A. P., Juang, C., Hansen, W. D., and Gentine, P.: SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7277980, 2022. a
Burke, M., Heft-Neal, S., Li, J., Driscoll, A., Baylis, P., Stigler, M., Weill,
J. A., Burney, J. A., Wen, J., Childs, M. L., and Gould, C. F.: Exposures and
behavioural responses to wildfire smoke, Nature Human Behaviour, 1351–1361,
https://doi.org/10.1038/s41562-022-01396-6, 2022. a
Carreau, J. and Bengio, Y.: A Hybrid Pareto Model for Conditional Density
Estimation of Asymmetric Fat-Tail Data, in: Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics, edited by:
Meila, M. and Shen, X., vol. 2 of Proceedings of Machine Learning
Research, 51–58, PMLR, San Juan, Puerto Rico,
https://proceedings.mlr.press/v2/carreau07a.html (last access: 23 October 2022), 2007. a
Chatterji, N. S., Haque, S., and Hashimoto, T.: Undersampling is a
Minimax Optimal Robustness Intervention in Nonparametric Classification, ArXiv,
arXiv e-prints, 2022. a
Chen, B., Jin, Y., Scaduto, E., Moritz, M. A., Goulden, M. L., and Randerson,
J. T.: Climate, Fuel, and Land Use Shaped the Spatial Pattern of
Wildfire in California's Sierra Nevada, J. Geophys.
Res.-Biogeo., 126, e2020JG005786, https://doi.org/10.1029/2020JG005786, 2021. a
Coffield, S. R., Graff, C. A., Chen, Y., Smyth, P., Foufoula-Georgiou, E.,
Randerson, J. T., Coffield, S. R., Graff, C. A., Chen, Y., Smyth, P.,
Foufoula-Georgiou, E., and Randerson, J. T.: Machine learning to predict
final fire size at the time of ignition, Int. J. Wildland Fire, 28, 861–873, https://doi.org/10.1071/WF19023, 2019. a
Cohen, J. E. and Xu, M.: Random sampling of skewed distributions implies
Taylor's power law of fluctuation scaling, P. Natl. Acad. Sci. USA, 112, 7749–7754, https://doi.org/10.1073/pnas.1503824112, 2015. a
Coop, J. D., Parks, S. A., Stevens-Rumann, C. S., Crausbay, S. D., Higuera,
P. E., Hurteau, M. D., Tepley, A., Whitman, E., Assal, T., Collins, B. M.,
Davis, K. T., Dobrowski, S., Falk, D. A., Fornwalt, P. J., Fulé, P. Z.,
Harvey, B. J., Kane, V. R., Littlefield, C. E., Margolis, E. Q., North, M.,
Parisien, M.-A., Prichard, S., and Rodman, K. C.: Wildfire-Driven Forest
Conversion in Western North American Landscapes, BioScience, 70,
659–673, https://doi.org/10.1093/biosci/biaa061, 2020. a
Crimmins, M. A., Comrie, A. C., Crimmins, M. A., and Comrie, A. C.:
Interactions between antecedent climate and wildfire variability across
south-eastern Arizona, Int. J. Wildland Fire, 13,
455–466, https://doi.org/10.1071/WF03064, 2004. a
Daly, C., Gibson, W., Doggett, M., Smith, J., and Taylor, G.: Up-to-date
monthly climate maps for the conterminous United States, Proc., 14th AMS
Conf. on Applied Climatology, 13–16 January 2004, Seattle, WA, USA, 84th AMS Annual Meeting Combined Preprints, Paper P5.1,
2004. a
Dennison, P. E., Brewer, S. C., Arnold, J. D., and Moritz, M. A.: Large
wildfire trends in the western United States, 1984–2011, Geophys. Res. Lett., 41, 2928–2933, https://doi.org/10.1002/2014GL059576, 2014. a, b
Didan, K.: MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN
grid V006, NASA EOSDIS Land Processes DAAC, 10, 415, https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015. a
Dillon, G. K., Holden, Z. A., Morgan, P., Crimmins, M. A., Heyerdahl, E. K.,
and Luce, C. H.: Both topography and climate affected forest and woodland
burn severity in two regions of the western US, 1984 to 2006, Ecosphere, 2, 130,
https://doi.org/10.1890/ES11-00271.1, 2011. a
Ebert-Uphoff, I., Lagerquist, R., Hilburn, K., Lee, Y., Haynes, K., Stock, J.,
Kumler, C., and Stewart, J. Q.: CIRA Guide to Custom Loss Functions for
Neural Networks in Environmental Sciences – Version 1,
https://arxiv.org/abs/2106.09757 (last access: 14 June 2023), 2021. a
Eidenshink, J. C., Schwind, B., Brewer, K., Zhu, Z.-L., Quayle, B., and Howard,
S. M.: A project for monitoring trends in burn severity, Fire Ecology, 3,
3–21, https://doi.org/10.4996/fireecology.0301003, 2007. a
Fosberg, M. A.: Weather in wildland fire management: The fire-weather index,
Paper presented at the Conference on Sierra Nevada Meteorology, 19–21 June 1978, South Lake Tahoe, California, Am.
Meteorol. Soc., 1978. a
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeo.,
118, 317–328, https://doi.org/10.1002/jgrg.20042, 2013. a
Gutierrez, A. A., Hantson, S., Langenbrunner, B., Chen, B., Jin, Y., Goulden,
M. L., and Randerson, J. T.: Wildfire response to changing daily temperature
extremes in California's Sierra Nevada, Sci. Adv., 7, eabe6417,
https://doi.org/10.1126/sciadv.abe6417, 2021. a
Hansen, W. D., Braziunas, K. H., Rammer, W., Seidl, R., and Turner, M. G.: It
takes a few to tango: changing climate and fire regimes can cause
regeneration failure of two subalpine conifers, Ecology, 99, 966–977,
https://doi.org/10.1002/ecy.2181, 2018. a
Hansen, W. D., Krawchuk, M. A., Trugman, A. T., and Williams, A. P.: The
Dynamic Temperate and Boreal Fire and Forest-Ecosystem Simulator
(DYNAFFOREST): Development and evaluation, Environ. Model.
Softw., 156, 105473, https://doi.org/10.1016/j.envsoft.2022.105473,
2022. a, b
Harris, L. and Taylor, A. H.: Previous burns and topography limit and reinforce
fire severity in a large wildfire, Ecosphere, 8, e02019,
https://doi.org/10.1002/ecs2.2019, 2017. a
Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S., and Brown, T. A.:
Vegetation mediated the impacts of postglacial climate change on fire regimes
in the south-central Brooks Range, Alaska, Ecol. Monogr., 79,
201–219, https://doi.org/10.1890/07-2019.1, 2009. a
Holsinger, L., Parks, S. A., and Miller, C.: Weather, fuels, and topography
impede wildland fire spread in western US landscapes, Forest Ecol.
Manage., 380, 59–69, https://doi.org/10.1016/j.foreco.2016.08.035,
2016. a
Hooker, G., Mentch, L., and Zhou, S.: Unrestricted permutation forces
extrapolation: variable importance requires at least one more model, or there
is no free variable importance, Stat. Comput., 31, 82,
https://doi.org/10.1007/s11222-021-10057-z, 2021. a
Hurteau, M. D., Liang, S., Westerling, A. L., and Wiedinmyer, C.:
Vegetation-fire feedback reduces projected area burned under climate change,
Sci. Rep., 9, 2838, https://doi.org/10.1038/s41598-019-39284-1, 2019. a
Iglesias, V., Balch, J. K., and Travis, W. R.: U.S. fires became larger, more
frequent, and more widespread in the 2000s, Sci. Adv., 8, eabc0020,
https://doi.org/10.1126/sciadv.abc0020, 2022. a
Jain, P., Coogan, S. C., Subramanian, S. G., Crowley, M., Taylor, S., and
Flannigan, M. D.: A review of machine learning applications in wildfire
science and management, Environ. Rev., 28, 478–505,
https://doi.org/10.1139/er-2020-0019, 2020. a
Jia, S., Kim, S. H., Nghiem, S. V., Doherty, P., and Kafatos, M. C.: Patterns
of population displacement during mega-fires in California detected using
Facebook Disaster Maps, Environ. Res. Lett., 15, 074029,
https://doi.org/10.1088/1748-9326/ab8847, 2020. a
Jong-Levinger, A., Banerjee, T., Houston, D., and Sanders, B. F.: Compound
Post-Fire Flood Hazards Considering Infrastructure Sedimentation, Earth's
Future, 10, e2022EF002670, https://doi.org/10.1029/2022EF002670, 2022. a
Joseph, M. B., Rossi, M. W., Mietkiewicz, N. P., Mahood, A. L., Cattau, M. E.,
Denis, L. A. S., Nagy, R. C., Iglesias, V., Abatzoglou, J. T., and Balch,
J. K.: Spatiotemporal prediction of wildfire size extremes with Bayesian
finite sample maxima, Ecol. Appl., 29, e01898, https://doi.org/10.1002/eap.1898,
2019. a, b, c
Joshi, J. and Sukumar, R.: Improving prediction and assessment of global fires
using multilayer neural networks, Sci. Rep., 11, 3295,
https://doi.org/10.1038/s41598-021-81233-4, 2021. a
Juang, C. and Williams, P.: Western US MTBS-Interagency (WUMI) wildfire dataset, Dryad [data set], https://doi.org/10.5061/dryad.sf7m0cg72, 2022. a
Juang, C. S., Williams, A. P., Abatzoglou, J. T., Balch, J. K., Hurteau, M. D.,
and Moritz, M. A.: Rapid Growth of Large Forest Fires Drives the
Exponential Response of Annual Forest-Fire Area to Aridity in
the Western United States, Geophys. Res. Lett., 49, e2021GL097131,
https://doi.org/10.1029/2021GL097131, 2022. a, b, c, d, e
Kalashnikov, D. A., Abatzoglou, J. T., Nauslar, N. J., Swain, D. L., Touma, D.,
and Singh, D.: Meteorological and geographical factors associated with dry
lightning in central and northern California, Environ. Res.-Climate, 1, 025001, https://doi.org/10.1088/2752-5295/ac84a0, 2022. a
Keeley, J. E. and Syphard, A. D.: Historical patterns of wildfire ignition
sources in California ecosystems, Int. J. Wildland Fire,
27, 781–799, https://doi.org/10.1071/WF18026, 2018. a, b
Keeley, J. E., Guzman-Morales, J., Gershunov, A., Syphard, A. D., Cayan, D.,
Pierce, D. W., Flannigan, M., and Brown, T. J.: Ignitions explain more than
temperature or precipitation in driving Santa Ana wind fires, Sci. Adv., 7, eabh2262, https://doi.org/10.1126/sciadv.abh2262, 2021. a
Kitzberger, T., Falk, D. A., Westerling, A. L., and Swetnam, T. W.: Direct and
indirect climate controls predict heterogeneous early-mid 21st century
wildfire burned area across western and boreal North America, PLOS ONE,
12, e0188486, https://doi.org/10.1371/journal.pone.0188486, 2017. a
Klein Goldewijk, K. and Ramankutty, N.: Land cover change over the last three
centuries due to human activities: The availability of new global data
sets, GeoJournal, 61, 335–344, https://doi.org/10.1007/s10708-004-5050-z, 2004. a
Knapp, P. A.: Spatio-Temporal Patterns of Large Grassland Fires in
the Intermountain West, U.S.A., Global Ecol. Biogeogr.
Lett., 7, 259, https://doi.org/10.2307/2997600, 1998. a
Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human population density on fire frequency at the global scale, Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, 2014. a
Kondylatos, S., Prapas, I., Ronco, M., Papoutsis, I., Camps-Valls, G., Piles,
M., Fernandez-Torres, M.-A., and Carvalhais, N.: Wildfire Danger Prediction
and Understanding With Deep Learning, Geophys. Res. Lett., 49, e2022GL099368,
https://doi.org/10.1029/2022GL099368, 2022. a
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J., and Hayhoe, K.:
Global Pyrogeography: the Current and Future Distribution of
Wildfire, PLoS ONE, 4, e5102, https://doi.org/10.1371/journal.pone.0005102, 2009. a
Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I. C., and Harrison, S. P.: The importance of antecedent vegetation and drought conditions as global drivers of burnt area, Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, 2021. a, b
Levin, R., Cherepanova, V., Schwarzschild, A., Bansal, A., Bruss, C. B.,
Goldstein, T., Wilson, A. G., and Goldblum, M.: Transfer Learning with Deep
Tabular Models, ArXiv, arXiv preprint arXiv:2206.15306, 2022. a
Li, F., Zeng, X. D., and Levis, S.: A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model, Biogeosciences, 9, 2761–2780, https://doi.org/10.5194/bg-9-2761-2012, 2012. a
Li, S. and Banerjee, T.: Spatial and temporal pattern of wildfires in
California from 2000 to 2019, Sci. Rep., 11, 8779,
https://doi.org/10.1038/s41598-021-88131-9, 2021. a
Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.: Climate
and wildfire area burned in western U.S. ecoprovinces, 1916–2003,
Ecol. Appl., 19, 1003–1021,
https://doi.org/10.1890/07-1183.1, 2009. a, b
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model
Predictions, in: Advances in Neural Information Processing Systems 30, edited
by: Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., 4765–4774,
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf (last access: 23 October 2022),
2017. a
Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S. P.,
Higuera, P. E., Joos, F., Power, M. J., and Prentice, I. C.: Climate and
human influences on global biomass burning over the past two millennia,
Nat. Geosci., 1, 697–702, https://doi.org/10.1038/ngeo313, 2008. a
Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S.,
Briles, C. E., Brown, K. J., Colombaroli, D., Hallett, D. J., Power, M. J.,
Scharf, E. A., and Walsh, M. K.: Long-term perspective on wildfires in the
western USA, P. Natl. Acad. Sci. USA, 109, E535–E543,
https://doi.org/10.1073/pnas.1112839109, 2012. a
Monteith, J. L.: Evaporation and environment, in: Symposia of the society for
experimental biology, 19, 205–234, Cambridge University Press
(CUP), https://scholar.google.com/scholar_lookup?title=Evaporation+and+environment+in+the+State+and+Movement+of+Water+in+Living+Organisms&author=Monteith,+J.L.&publication_year=1965&pages=205-234 (last access: 16 June 2023), 1965. a
Moritz, M. A., Moody, T. J., Krawchuk, M. A., Hughes, M., and Hall, A.: Spatial
variation in extreme winds predicts large wildfire locations in chaparral
ecosystems, Geophys. Res. Lett., 37, L04801,
https://doi.org/10.1029/2009GL041735, 2010. a
Nadarajah, S., Zhang, Y., and Pogány, T. K.: On sums of independent
Generalized Pareto random variables with applications to Insurance and CAT
bonds, Probab. Eng. Inform. Sc., 32,
296–305, https://doi.org/10.1017/S0269964817000055, 2018. a
O'Dell, K., Ford, B., Fischer, E. V., and Pierce, J. R.: Contribution of
Wildland-Fire Smoke to US PM2.5 and Its Influence on Recent
Trends, Environ. Sci. Technol., 53, 1797–1804,
https://doi.org/10.1021/acs.est.8b05430, 2019. a
Orville, R. E. and Huffines, G. R.: Cloud-to-Ground Lightning in the United
States: NLDN Results in the First Decade, 1989–98, Mon. Weather
Rev., 129, 1179–1193,
https://doi.org/10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2, 2001. a
Parisien, M.-A. and Moritz, M. A.: Environmental controls on the distribution
of wildfire at multiple spatial scales, Ecol. Monogr., 79, 127–154,
https://doi.org/10.1890/07-1289.1, 2009. a, b, c, d
Parisien, M.-A., Snetsinger, S., Greenberg, J. A., Nelson, C. R., Schoennagel,
T., Dobrowski, S. Z., and Moritz, M. A.: Spatial variability in wildfire
probability across the western United States, Int. J. Wildland Fire, 21, 313, https://doi.org/10.1071/WF11044, 2012. a
Parks, S. A., Miller, C., Parisien, M.-A., Holsinger, L. M., Dobrowski, S. Z.,
and Abatzoglou, J.: Wildland fire deficit and surplus in the western United
States, 1984–2012, Ecosphere, 6, 1–13,
https://doi.org/10.1890/ES15-00294.1, 2015. a
Parks, S. A., Parisien, M.-A., Miller, C., Holsinger, L. M., and Baggett,
L. S.: Fine-scale spatial climate variation and drought mediate the
likelihood of reburning, Ecol. Appl., 28, 573–586,
https://doi.org/10.1002/eap.1671, 2018. a
Perez-Cruz, F.: Kullback-Leibler divergence estimation of continuous
distributions, in: 2008 IEEE International Symposium on Information Theory, 6–11 July 2008, Toronto, ON, Canada,
1666–1670, https://doi.org/10.1109/ISIT.2008.4595271, 2008. a
Potter, B. E. and McEvoy, D.: Weather Factors Associated with Extremely Large
Fires and Fire Growth Days, Earth Interactions, 25, 160–176,
https://doi.org/10.1175/EI-D-21-0008.1, 2021. a
Pureswaran, D. S., Roques, A., and Battisti, A.: Forest Insects and Climate
Change, Current Forestry Reports, 4, 35–50,
https://doi.org/10.1007/s40725-018-0075-6, 2018. a
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017. a
Radeloff, V. C., Hammer, R. B., Stewart, S. I., Fried, J. S., Holcomb, S. S.,
and McKeefry, J. F.: The Wildland-Urban Interface in the United
States, Ecol. Appl., 15, 799–805,
https://doi.org/10.1890/04-1413, 2005. a
Rahimi, S., Krantz, W., Lin, Y., Bass, B., Goldenson, N., Hall, A., Jebo, Z.,
and Norris, J.: Evaluation of a Reanalysis-Driven Configuration of WRF4 Over
the Western United States From 1980–2020, J. Geophys. Res.-Atmos., 127, e2021JD035699, https://doi.org/10.1029/2021JD035699, 2022. a
Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M., and Konings, A. G.:
Plant-water sensitivity regulates wildfire vulnerability, Nat. Ecol.
Evol., 6, 332–339, https://doi.org/10.1038/s41559-021-01654-2, 2022. a
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid
processes in climate models, P. Natl. Acad. Sci. USA,
115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018. a
Richards, J., Huser, R., Bevacqua, E., and Zscheischler, J.: Insights into the
drivers and spatio-temporal trends of extreme Mediterranean wildfires with
statistical deep-learning, ArXiv, arXiv preprint arXiv:2212.01796, 2022. a
Rigden, A. J., Powell, R. S., Trevino, A., McColl, K. A., and Huybers, P.:
Microwave Retrievals of Soil Moisture Improve Grassland Wildfire
Predictions, Geophys. Res. Lett., 47, e2020GL091410,
https://doi.org/10.1029/2020GL091410, 2020. a
Riley, K. and Thompson, M.: An Uncertainty Analysis of Wildfire Modeling,
chap. 13, 191–213, American Geophysical Union (AGU),
https://doi.org/10.1002/9781119028116.ch13, 2016. a
Rollins, M. G.: LANDFIRE: a nationally consistent vegetation, wildland fire,
and fuel assessment, Int. J. Wildland Fire, 18, 235–249,
https://doi.org/10.1071/WF08088, 2009. a
Rollins, M. G., Morgan, P., and Swetnam, T.: Landscape-scale controls over 20th
century fire occurrence in two large Rocky Mountain (USA) wilderness
areas, Landscape Ecol., 17, 539–557, https://doi.org/10.1023/A:1021584519109, 2002. a, b
Romps, D. M., Seeley, J. T., Vollaro, D., and Molinari, J.: Projected increase
in lightning strikes in the United States due to global warming, Science,
346, 851–854, https://doi.org/10.1126/science.1259100, 2014. a
Schoenberg, F. P., Peng, R., and Woods, J.: On the distribution of wildfire
sizes, Environmetrics, 14, 583–592, https://doi.org/10.1002/env.605, 2003. a
Scollnik, D. P. M.: On composite lognormal-Pareto models, Scandinavian
Actuarial Journal, 2007, 20–33, https://doi.org/10.1080/03461230601110447, 2007. a
Seager, R., Hooks, A., Williams, A. P., Cook, B., Nakamura, J., and Henderson,
N.: Climatology, Variability, and Trends in the U.S. Vapor Pressure
Deficit, an Important Fire-Related Meteorological Quantity, J.
Appl. Meteorol. Climatol., 54, 1121–1141,
https://doi.org/10.1175/JAMC-D-14-0321.1, 2015. a
Spawn, S. A., Sullivan, C. C., Lark, T. J., and Gibbs, H. K.: Harmonized global
maps of above and belowground biomass carbon density in the year 2010,
Sci. Data, 7, 112, https://doi.org/10.1038/s41597-020-0444-4, 2020. a
Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 3:
Simulation and mathematical analogue models, Int. J. Wildland Fire, 18, 387–403, 2009. a
Swetnam, T. W. and Betancourt, J. L.: Mesoscale Disturbance and Ecological
Response to Decadal Climatic Variability in the American Southwest, J. Climate, 11, 3128–3147,
https://doi.org/10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2, 1998. a
Tschumi, E., Lienert, S., van der Wiel, K., Joos, F., and Zscheischler, J.: The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition, Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, 2022. a
Vose, R., Applequist, S., Squires, M., Durre, I., Menne, M., Williams, C.,
Fenimore, C., Gleason, K., and Arndt, D.: Improved Historical Temperature
and Precipitation Time Series for U.S. Climate Divisions, J.
Appl. Meteorol. Climatol., 53, 1232–1251,
https://doi.org/10.1175/JAMC-D-13-0248.1, 2014. a
Wacker, R. S. and Orville, R. E.: Changes in measured lightning flash count and
return stroke peak current after the 1994 U.S. National Lightning
Detection Network upgrade: 1. Observations, J. Geophys.
Res.-Atmos., 104, 2151–2157,
https://doi.org/10.1029/1998JD200060, 1999. a
Wang, S. S.-C. and Wang, Y.: Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques, Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020, 2020. a, b
Wang, S. S.-C., Qian, Y., Leung, L. R., and Zhang, Y.: Identifying Key
Drivers of Wildfires in the Contiguous US Using Machine
Learning and Game Theory Interpretation, Earth's Future, 9, e2020EF001910,
https://doi.org/10.1029/2020EF001910, 2021. a, b, c
Westerling, A. L.: Increasing western US forest wildfire activity:
sensitivity to changes in the timing of spring, Philos. T.
Roy. Soc. B, 371, 20150178, https://doi.org/10.1098/rstb.2015.0178,
2016. a
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming
and Earlier Spring Increase Western U.S. Forest Wildfire Activity, Science,
313, 940–943, https://doi.org/10.1126/science.1128834, 2006. a
Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H., and Ryan,
M. G.: Continued warming could transform Greater Yellowstone fire regimes
by mid-21st century, P. Natl. Acad. Sci. USA, 108,
13165–13170, https://doi.org/10.1073/pnas.1110199108, 2011. a, b
Williams, A. P. and Abatzoglou, J. T.: Recent Advances and Remaining
Uncertainties in Resolving Past and Future Climate Effects on
Global Fire Activity, Current Climate Change Reports, 2, 1–14,
https://doi.org/10.1007/s40641-016-0031-0, 2016. a
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A.,
Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer,
H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., and McDowell,
N. G.: Temperature as a potent driver of regional forest drought stress and
tree mortality, Nat. Clim. Change, 3, 292–297,
https://doi.org/10.1038/nclimate1693, 2013. a
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman‐Morales, J.,
Bishop, D. A., Balch, J. K., and Lettenmaier, D. P.: Observed Impacts of
Anthropogenic Climate Change on Wildfire in California, Earth's
Future, 7, 892–910, https://doi.org/10.1029/2019EF001210, 2019. a, b
Williams, A. P., Livneh, B., McKinnon, K. A., Hansen, W. D., Mankin, J. S.,
Cook, B. I., Smerdon, J. E., Varuolo-Clarke, A. M., Bjarke, N. R., Juang,
C. S., and Lettenmaier, D. P.: Growing impact of wildfire on western US water
supply, P. Natl. Acad. Sci. USA, 119, e2114069119,
https://doi.org/10.1073/pnas.2114069119, 2022. a
Wu, X., Liu, H., Hartmann, H., Ciais, P., Kimball, J. S., Schwalm, C. R.,
Camarero, J. J., Chen, A., Gentine, P., Yang, Y., Zhang, S., Li, X., Xu, C.,
Zhang, W., Li, Z., and Chen, D.: Timing and Order of Extreme Drought and
Wetness Determine Bioclimatic Sensitivity of Tree Growth, Earth's Future, 10,
e2021EF002530, https://doi.org/10.1029/2021EF002530, 2022. a
Xie, Y., Lin, M., Decharme, B., Delire, C., Horowitz, L. W., Lawrence, D. M.,
Li, F., and Séférian, R.: Tripling of western US particulate pollution from
wildfires in a warming climate, P. Natl. Acad. Sci. USA, 119, e2111372119, https://doi.org/10.1073/pnas.2111372119, 2022. a
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case, A.,
Costello, C., Dewitz, J., Fry, J., Funk, M., Granneman, B., Liknes, G. C.,
Rigge, M., and Xian, G.: A new generation of the United States National
Land Cover Database: Requirements, research priorities, design, and
implementation strategies, ISPRS J. Photogramm. Remote, 146, 108–123,
https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018. a
Yuval, J. and O'Gorman, P. A.: Stable machine-learning parameterization of
subgrid processes for climate modeling at a range of resolutions, Nat.
Commun., 11, 3295, https://doi.org/10.1038/s41467-020-17142-3, 2020. a
Zeng, X., Broxton, P., and Dawson, N.: Snowpack Change From 1982 to 2016 Over
Conterminous United States, Geophys. Res. Lett., 45,
12940–12947, https://doi.org/10.1029/2018GL079621, 2018.
a
Zeng, X., Broxton, P., and Dawson, N.: Daily 4 km Gridded SWE and Snow
Depth from Assimilated In-Situ and Modeled Data over the Conterminous US,
Version 1, NASA National Snow and Ice Data Center Distributed Active Archive
Center [data set], https://doi.org/10.5067/0GGPB220EX6A, 2019. a
Zheng, B., Ciais, P., Chevallier, F., Chuvieco, E., Chen, Y., and Yang, H.:
Increasing forest fire emissions despite the decline in global burned area,
Sci. Adv., 7, eabh2646, https://doi.org/10.1126/sciadv.abh2646, 2021. a
Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S.,
Lorenz, R., Seneviratne, S. I., and Gentine, P.: Land-atmosphere feedbacks
exacerbate concurrent soil drought and atmospheric aridity, P. Natl. Acad. Sci. USA, 116, 18848–18853,
https://doi.org/10.1073/pnas.1904955116, 2019. a
Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E., and Hall, A.: Quantifying
contributions of natural variability and anthropogenic forcings on increased
fire weather risk over the western United States, P. Natl. Acad. Sci. USA, 118, e2111875118, https://doi.org/10.1073/pnas.2111875118, 2021. a
Zou, Y., Wang, Y., Qian, Y., Tian, H., Yang, J., and Alvarado, E.: Using CESM-RESFire to understand climate–fire–ecosystem interactions and the implications for decadal climate variability, Atmos. Chem. Phys., 20, 995–1020, https://doi.org/10.5194/acp-20-995-2020, 2020. a
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
We leverage machine learning techniques to construct a statistical model of grid-scale fire...